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ABSTRACT: Choropleth maps are the most widely used map type for mapping rates, such as those 
involving disease, crime, and socioeconomic indicators. The essential step of choosing a geographic 
unit to map is often made in an ad hoc manner. Among the desirable characteristics of choropleth 
mapping units are high degree of resolution, homogeneity of population size, homogeneity of land 
area, observation of minimum population thresholds and land area thresholds, temporal stability and 
currency, compactness of shape, audience familiarity, data availability, and the functional relevance of 
the unit to the phenomena mapped. Because of the uneven distribution of human populations, no 
single geographic unit can meet all of these characteristics in practice, and a well designed choropleth 
map necessarily involves some compromise. We present guidelines for choosing geographic units that 
take into account the above criteria, considering 12 geographic units ranging from census blocks to 
states. Even allowing for differences in scale and purpose, some units confer clear advantages over 
others. 
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Introduction

Choropleth rate maps are an effective 
tool for identifying spatial patterns in 
a dataset, and they are used widely for 

visualizing socioeconomic patterns, disease, crime, 
and other human geographic variables (Le et al. 
1995; Champion et al. 1996; Pickle et al. 1996; 
Devesa et al. 1999; Murray and Shyy 2000; Brewer 
and Suchan 2001). They are simple to construct 
within a GIS software package and familiar to 
a wide audience. Among the many design deci-
sions that must be made when constructing a 
choropleth rate map is which geographic unit 
or units to map. Unlike many other aspects of 
choropleth map design, such as categorization 
schemes (Cromley and Mrozinski 1999; Brewer 
and Pickle 2002) and color selection (Brewer et 
al. 1997), the choice of geographic unit has not 
received much formal scrutiny beyond the brief 
discussion found in Robinson et al. (1995), Dent 

(1999), and other cartographic texts. Frequently, 
this decision is made on an ad hoc basis (Walter 
and Birnie 1991; Rushton 2001; Kreiger et al. 
2002). Aside from its direct relevance to cartog-
raphy, the choice of geographic unit relates to 
fundamental issues regarding the delineation of 
space and multiscale analysis that have been iden-
tified as major research themes within the field of 
geography (Cutter et al. 2002).

In this paper we present some basic guidelines 
that can help inform the choice of geographic 
unit. Reflecting our public health orientation, 
most of our examples pertain to the mapping of 
disease rates. We begin by outlining the desirable 
characteristics of geographic units. We follow 
with a discussion of some of the cartographic, 
mathematical, and statistical approaches used to 
overcome the limitations imposed by the available 
units. We then report the results of an investiga-
tion of twelve different geographic units and their 
suitability for choropleth mapping, following 
Slocum’s (1999) framework for choosing a method 
of data classification. 

Desirable Characteristics 
of Geographic Units

Desirable characteristics of geographic units 
include high degree of resolution, homogeneity of 
population size, homogeneity of land area, obser-
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vation of minimum population thresholds and 
land area thresholds, temporal stability and cur-
rency, compactness of shape, audience familiarity, 
data availability and functional relevance. To the 
extent that these characteristics are not present, 
choropleth maps can lead to incorrect or incom-
plete inferences, including the failure to identify 
meaningful patterns and the identification of 
spurious patterns. It is seldom, if ever, possible 
to delineate space in such a way that all of these 
characteristics can be attained, in part because of 
the uneven distribution of human populations. A 
large share of the population typically occupies a 
small share of the land area, placing the charac-
teristics of homogeneity of land area and homoge-
neity of population at odds. In discussing each of 
these characteristics below, we bear in mind three 
distinct map reading tasks: the use of maps as look-
up tables to identify rates in a specific geographic 
unit; the use of maps to assess broader patterns 
and trends; and the comparison of patterns across 
maps (Pickle et al. 1994).

High Degree of Spatial Resolution
In general, the higher the spatial resolution of 
a map, the greater the information content. A 
county map of the United States contains approxi-
mately 60 times more geographic units than a 
state map, for example, and offers more potential 
for regional pattern identification. Increasing the 
spatial resolution does come at the direct expense 
of some of the other criteria, however. It is also the 
case that spatial patterns are sometimes more evi-
dent at a coarser scale than at a finer scale (Edsall 
et al. 2000), leading some authors to advocate the 
production of maps at multiple resolutions (Talbot 
et al. 2000). These caveats are not always well 
understood. In our experience, people interested 
in disease mapping but lacking scientific expertise 
often assume that maps at the finest possible spa-
tial resolution, up to and including the individual 
address level, are the most informative. 

Homogeneity of Population Size 
Homogeneity of population size is important to 
prevent bias in the identification of spatial pat-
terns. For a given map, the smaller the population 
size of a geographic unit, the more likely it will 
have an extreme rate, either high or low. This 
is because variance in rates is inversely propor-
tional to population size, a property that has been 
termed variance instability (Anselin 1990; Gelman 
and Price 1999). The relationship is independent 
of geographic scale. On an international map, the 

smallest-population countries will tend to have 
rates that are disproportionately extreme (i.e., in 
the highest or lowest quantiles); on a census 
block-group map, the smallest-population census 
block-groups will tend to have rates that are dis-
proportionately extreme. The relationship holds 
even if every geographic unit is large, so that a 
unit with 200,000 people is more likely to have 
an extreme rate than a unit with 500,000 people. 
Figure 1 shows that nearly all of the counties in 
the highest and lowest quantiles for prostate 
cancer mortality are in rural parts of the country. 
A plot of rate against the number of cases for these 
data (Figure 2) also reveals this relationship, where 
the number of cases is closely correlated with the 
overall population size. The rates and the number 
of cases were obtained from the National Cancer 
Institute’s web site (NCI 2002; see also Devesa et 
al. 1999). 

To see how a map such as that in Figure 1 can 
be misleading, consider southern Georgia and the 
Florida panhandle, where one or more clusters of 
elevated mortality appear to be present. While 
these elevations are genuine, the map fails to 
convey that Middlesex County, New Jersey, is sta-
tistically similar in terms of both rate and number 
of cases and perhaps equally deserving of scrutiny. 
Similarly, Utah exhibits a consistent pattern of ele-
vated mortality (24.7 cases per 100,000, 95 percent 
confidence interval 23.8-25.6) but is statistically 
indistinguishable from King County, Washington 
(24.0 [23.1-24.8]), or Suffolk County, New York 
(24.2 [23.3-25.1]). In our experience, many map 
users are given to conjecture on the dietary and 
health utilization patterns of rural southerners or 
Mormons, for example, before giving any consid-
eration to the mid-Atlantic metropolitan corridor, 
where patterns tend to be less visually pronounced. 
Other users, overly sensitized to this problem, are 
apt to dismiss any rural patterns as likely statistical 
noise, which is also incorrect.

Homogeneity of Land Area
It is important to try to define units of similar 
land area to limit the natural tendency to associate 
area on a map with magnitude. Geographic units 
that take up the most space on the map command 
the most attention, but such attention is rarely 
warranted. This areal bias problem can seriously 
hamper pattern recognition on a choropleth map 
(Tukey 1979). As Tufte (1983, p. 20) observed, 

“Our visual impression of the data is entangled 
with the circumstances of geographic boundaries, 
shapes and areas.” One of the few experiments 
conducted to assess map readers’ perceptions of 
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clustering found a better correspondence between 
quantitative and perceived measures of cluster-
ing on maps with more regular geographic units 
(Walter 1993). 

The goals of homogeneous population and land 
area are often conflicting. Large areas that draw 
the eye, such as the counties of Idaho, tend to have 
low population, so that the most prominent parts 
of a map have rates that are disproportionately 
extreme. But this problem is present even when 
population sizes are very homogeneous. Figure 3 
shows the year 2000 census tract boundaries for 
Los Angeles County, California.1 The 2000 census 
tracts were designed to contain between 1,500 
and 8,000 persons. In Los Angeles County, 93 
percent of the census tracts fell within this range 
(U.S. Census Bureau 2000). While the census tract 
populations are homogeneous, the areas are not, 
spanning nearly five orders of magnitude. The 
smallest tract (population 2,876) consists of a 
single block of high-rise apartments in downtown 
Los Angeles. The largest (population 685) covers 
the San Gabriel Mountains and falls mainly within 
the Angeles National Forest. Technically, since this 
tract contains fewer than 1,500 people, it should 
have been merged with one or more of its neigh-
bors, which would have widened the range of areas 
even further. 

Minimum Land Area
and Population Thresholds
In the previous example, the problem was not only 
that the sparsely populated mountainous areas of 
northern Los Angeles County commanded most 
of the attention, but that information about the 
densely populated inner city was impossible to 
discern. It stands to reason that a well designed 
choropleth map should allow each individual geo-
graphic unit to be identified. Indeed, this is a nec-
essary condition for the map to fulfill its function 
as a look-up table. But even when using a map to 
identify trends and patterns, the reader may also 
wish to be able to identify an individual unit, such 
as one with a rate very discrepant from the general 
pattern. Imagine, for example, a small town with 
a high rate of some disease surrounded by a large, 
thinly populated region with a low rate. Together, 
the town and its surrounding region have an aver-
age rate. A choropleth map in which these two 
units were combined would reveal the total area 

to have an average rate, which is accurate, if not 
precise. A map in which the two units were not 
combined would imply that the total area had a 
low rate (because the value for the town would 
not be discernable), which is neither accurate nor 
precise. 

The definition of a minimum visible mapping 
unit is influenced by the shape of the areal units, 
the manner in which the boundary lines are ren-
dered, the color scheme, the viewing medium 
(paper or screen), the quality of the viewing 
medium, and the visual acuity of the viewer. Pickle 
et al. (1996) used a minimum size of 250 square 
miles for a national atlas map approximately 9 
inches by 11 inches, which resulted in parts of 
Massachusetts, New York, and New Jersey being 
grouped for greater visibility. At this scale, units 
with a minimum of about one square millimeter 
were presented. Given the print quality of this 
atlas, this was probably a reasonable lower bound.

A minimum population threshold also needs 
to be observed. Consider, for example, a health 
outcome map involving a census tract that has a 
population of just one person (there were 21 such 
tracts in the nation in the 2000 census, including 
two in New York City). The rate for such a tract will 
either be 1, if the person experienced the outcome 
being measured, or 0, if the person did not (or in 
the usual scaling of disease rates, 100,000 or 0 per 
100,000). The tract must either fall into the high-
est or the lowest category, but this information is 
not especially useful. Alternatively, consider a dis-
ease so rare that there are only 10 incident cases 
per year nationwide. At the tract level, rates would 
either be 0, for the vast majority of the tracts, or 
some non-zero value in the tracts where the cases 
occurred. In such an instance, a simple dot map is 
more suitable than a choropleth rate map. 

Epidemiologists, in particular, have confronted 
this problem extensively, yet there is no single 
rule of thumb that is in widespread use. In one 
experiment, the target population for aggrega-
tion was defined as the sample size required to 
detect a doubling of the average disease rate with 
a power of 90 percent and a significance level of 
95 percent (Morris and Munasinghe 1993). This 
meant, for example, that the target population for 
mapping bacterial pneumonia among white males 
was 1,350 but was 6,240 for rarer central nervous 
system cancers. Other sources state, more simply, 
that rates based on fewer than 20 events should be 

1 Census tracts, created by the Census Bureau specifically to facilitate demographic analysis, are “small, relatively permanent geographic 
entities” that, at the time of their creation, are as “homogeneous as possible with respect to population characteristics, economic status, 
and living conditions” (U.S. Census Bureau 1994).
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considered unstable (National Center for Health 
Statistics 1994; New York State Department of 
Health 2001). Perhaps most commonly, if unwisely, 
this issue is simply ignored (Diehr 1984).

Temporal Stability and Currency
When investigating a lengthy time series or com-
paring patterns over time, it is important that the 
geographic units refer to the same areas. For the 
United States as a whole, only states have been 
entirely stable in recent decades. A handful of 
Western counties have been added, and towns 
and cities have been incorporated and unincor-
porated nationwide. Census tracts, block groups, 
and blocks are prone to change dramatically 
from decade to decade, particularly in growing 
areas, making comparisons between decades dif-
ficult. U.S. Postal Service (USPS) ZIP codes are 
subject to change to facilitate mail delivery, and 
they are most dynamic in growing areas. Custom-
defined units, such as Hospital Service Areas, that 
are derived from these other units are necessar-
ily impacted by any changes to them. Temporal 

currency refers to whether the original defining 
characteristics of a geographic unit have changed 
over time. For example, aggregations of census 
tracts based on 1970 median income levels would 
not be an appropriate base layer on which to map 
2000 crime data, quite apart from the difficulty in 
rectifying the different tract definitions. 

Compactness, Familiarity, Data 
Availability, and Functional Relevance
Other desirable characteristics of geographic 
units include compactness of shape, familiar-
ity, data availability, and functional relevance. 
Compactness of shape refers, in general, to units 
that have a low perimeter-to-area ratio, though 
there is no universally agreed upon measure 
(MacEachren 1985; Young 1988). Given this crite-
rion, the square and rectangular counties of Iowa 
lend themselves to mapping and pattern identi-
fication more readily than the irregular counties 
of Idaho. Familiarity refers to geographic units 
that relate to “pre-existing knowledge structures” 
within the map reader (MacEachren 1995, p. 167). 

Figure 1. Prostate cancer mortality rate among white men, continental United States, by county, 1970-1994. The diverging 
color scheme is taken from Brewer et al. 1997. Counties mentioned in the text are highlighted.
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According to this criterion, a state-level map is 
of greater value than its coarse resolution would 
suggest, because map readers can readily link the 
map content to their own pre-existing knowledge 
of the states. Familiarity is not limited to political 
divisions; “folk categorization” schemes, such as 
regional or neighborhood identifiers, also fit this 
criterion. 

Data availability refers to the breadth of data 
that have been collected for the geographic unit in 
question. There is a great breadth of data available 
for census-defined geographic units compared 
with, say, ZIP codes. Custom-defined units derived 
from political or census-defined units have the 
same data availability as their source units. Related 

to data availability is the idea of comparability 
with previously published maps. If, for example, 
one is interested in assessing the ecological rela-
tionship between an environmental pollutant 
and a disease outcome, and maps of the disease 
outcome have already been published at the 
ZIP code level, then maps of the environmental 
pollutant might also logically be published at 
the ZIP code level. This need not be a limiting 
factor, however, as there exist both cartographic 
and statistical approaches for comparing data 
compiled at different resolutions (Mugglin and 
Carlin 1998; Langford et al. 1999; Eicher and 
Brewer 2001).

Functional relevance refers to whether the 
map units are linked topically or conceptually 
to the theme being mapped. In some circum-
stances, this can be the most important crite-
rion for choosing a mapping unit. For example, 
a state health department may wish to map 
late-stage breast cancer rates using geographic 
units that best match service areas for cancer 
screening programs in that state. Many states 
have such predefined “service planning areas” 
for purposes of policy and service decisions. 
Similarly, legislative districts, with their often 
convoluted shapes, do not lend themselves to 
mapping many kinds of data, but are an obvi-
ous choice for mapping election returns. 

Techniques for Adding 
Value to Choropleth Maps

A variety of cartographic, mathematical, and 
statistical approaches have been employed to 
add value to choropleth maps and minimize 
the limitations described above, though none 
have proven entirely satisfactory (Gelman and 
Price 1999). Perhaps the most common are to 
aggregate data spatially or temporally in order 
to improve rate stability, meet minimum popu-

lation thresholds, and limit the risk of disclosure of 
confidential information. Spatial aggregation can 
be used to help meet minimum land area and pop-
ulation thresholds and can result in more homoge-
neous populations or land area. The literature on 
how to aggregate geographic units optimally is 
extensive, and it is driven in part by the political 
redistricting problem, in which districts need to 
be defined that are equal in population, compact, 
and that follow logical and natural boundaries 
(Huel et al. 1986; Morris and Munasinghe 1993; 
Openshaw and Rao 1995; Carvalho et al. 1996; 
George et al. 1997; Mehrotra et al. 1998; D’Amico 
et al. 2002). Temporal aggregation, while useful 

Figure 2. Relationship between the number of cases and rate for 
the data in Figure 1.

Figure 3. Census tract boundaries, Los Angeles County, showing 
nearly five orders of magnitude difference between the smallest 
and largest tracts.
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for meeting minimum population thresholds, 
does not impact population homogeneity, since 
the proportional relationship between the small-
est and largest population units does not depend 
on the number of years of data involved.

Another commonly used technique is to sup-
press the data in the smallest-population units 
through the definition of a “sparse data” category 
(Le et al. 1995; Devesa et al. 1999; New York State 
Department of Health 2000). This technique may, 
however, interfere with pattern recognition, while 
only displacing the problem (Lewandowsky et al. 
1995). If United States counties with populations 
below 5,000 are suppressed, for example, then the 
highest and lowest rates would be most likely to 
be found among counties with populations just 
slightly over 5,000. Other approaches involve 
highlighting only those geographic units with 
statistically significant high or low rates, mapping 
the p-values of each geographic unit, and various 
permutations thereof (Mason et al. 1975; Walter 
and Birnie 1991; Schlattmann et al. 1996). Since 
statistical power is a function of population size, 
these approaches are biased toward highlighting 
rates in large-population units. Most commonly 
used data-smoothing algorithms, including 
Bayesian smoothing techniques, suffer from this 
same problem (Pringle 1996; Gelman et al. 2000). 
Because small-population geographic units tend 
to be smoothed to a greater extent than large-
population units by most smoothing methods, 
extreme rates end up being disproportionately 
found in the large-population units. Moving-aver-
age smoothing techniques are also prone to edge 
effects, where the probability of a geographic unit 
being highlighted is influenced by whether it hap-
pens to be in the center or on the edge of the area 
being mapped (Kafadar 1996). 

Another option is to transform the data through 
the application of a mathematical function 
designed to minimize some confounding influ-
ence, such as the relationship between population 
size and rate (Cressie 1993). A drawback is that 
such functions tend to generate variables that are 
in different, not easily interpretable, metrics. Such 
functions may also be unique to each data set. Still 
another alternative is to generate multiple maps of 
possible realizations of the true underlying distri-
bution, given the measured rates (Ehlschlaeger et 
al. 1997; Gelman and Price 1999; Nandram et al 
2000). Examination of the consistency of rate esti-
mates across these maps provides a visualization 
of rate stability. While these maps are unbiased 
with respect to population size, the complexity of 
the resulting map-reading task introduces other 

sources of error and bias. One method proposed 
to simplify the visualization of rate stability across 
multiple maps is to present a map showing the 
proportion of the total number of maps for which 
the rate falls in a different category than on the 
average map (Nandram et al. 2000). Even so, mul-
tiple map generation tends to work against the 
conceptual straightforwardness that makes map-
ping attractive in the first place. 

Because rate maps tend to highlight low-popula-
tion geographic units and maps showing statistical 
significance tend to highlight high-population 
units there have been numerous attempts to con-
flate the two onto a single map. Hatched lines 
have been superimposed over a choropleth map 
to indicate areas of uncertainty (MacEachren et 
al. 1998), as well as areas of statistically signifi-
cant clustering (New York State Department of 
Health 2000). Statistically significant clusters have 
been stratified by rate, producing a contouring 
effect that resembles a smoothed map (Boscoe 
et al. 2003). While these maps offer improved 
information content, they may still be mislead-
ing. For example, in Figure 1 each individual 
county in North Dakota has an uncertain rate; 
taken together, however, the rates are significantly 
elevated. Although the use of hatching to indicate 
unreliability has been shown not to interfere with 
pattern recognition (MacEachren et al. 1998), a 
reader might be uncertain about the significance 
and importance of the North Dakota rates if the 
entire state was hatched.

In terms of making geographic areas appear 
more equal, the simplest technique is the inclusion 
of one or more inset maps at a larger scale than 
the primary map. On a county map of the United 
States, for example, it is reasonable to include inset 
maps for the Washington, D.C., and New York City 
areas. Areas can also be represented symbolically, 
such as by placing a color-coded or proportional 
point symbol at each area centroid or by placing in 
each area a number of point symbols proportional 
to the mapped statistic (a dot density map). This 
approach tends to result in widely spaced points 
in low-population areas, making pattern detection 
difficult (Lewandowsky et al. 1993). Geographic 
areas can also be distorted so that the areas them-
selves relate to a variable such as population, but 
so-called cartograms or density-equalizing map 
projections can be problematic to construct and 
interpret (Dorling 1993; Merrill et al. 1996). 
There are other map types, such as dasymetric 
maps and isarithmic maps, which potentially offer 
ways of reducing visual distortion arising from 
heterogeneous populations and areas. All of these 
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non-choropleth map types, however, fall beyond 
the scope of this paper.

Finally, it has been suggested that the best way 
to add value to choropleth maps might be to 
eschew their use altogether (Rushton 2001). The 
division of space into arbitrary units is seen as 
artificially limiting the scope of potential pattern 
identification, particularly when variables such as 
cases of infectious disease or air pollution plumes 
have little reason to follow any artificial boundar-
ies. This view is motivated by the promise of the 
availability of data geocoded to the point level. 
It is true that from a data collection and analy-
sis standpoint, all data on human populations 
would ideally be geocoded to the point level so 
that they could be aggregated to all conceivable 
geographic units of interest, whether political or 
census units, 80 meter squares, or “natural” units 
suggested by the data themselves. Although data 
collection organizations are beginning to call for 
this level of geographic specificity (Wiggins 2002) 
and GPS technology has become affordable and 
portable enough to permit common use, concerns 
of confidentiality and privacy may limit imple-
mentation of point-level geocoding of health-
related data. New Health Insurance Portability 
and Accountability (HIPAA) regulations prohibit 
disclosure of information that would permit 
identification of any individual patient; compli-
ance requires data aggregation or masking. Quite 
apart from these privacy concerns there will always 
remain data sets, particularly historical data sets, 
for which the acquisition of point-level informa-
tion is impractical. Thus, while we are sensitive to 
the concern that choosing a geographic unit can, 
in some situations, mean restricting the benefits of 
exploratory spatial data analysis, we feel that our 
mapping-unit selection criteria will remain appli-
cable for many projects for the foreseeable future. 

Methods
Using the continental United States as an exam-
ple, we evaluated 12 different geographic units 
for which data are readily available or to which 
data can be aggregated, including several custom 
units particular to public health. Each unit was 
then evaluated based on the desirable criteria 
described in this paper. Following the format of 
Slocum’s (1999) criteria for selecting a method of 
classification, each unit was rated as “good,” “fair,” 
or “poor” for each criterion (Table 1). Ratings 
were either objective or subjective, depending 
on the criterion. The rating process was then 
repeated for the island of Manhattan, using the 

four geographic units into which Manhattan can 
be subdivided (Table 2).

The geographic units that were evaluated 
included states, State Economic Areas (SEAs), 
counties, 3-digit ZIP Code Tabulation Areas 
(ZCTAs), 5-digit ZCTAs, county subdivisions, 
Census tracts, Census block groups, Census blocks, 
Hospital Referral Regions (HRRs), Health Service 
Areas, and Hospital Service Areas. For the first 
nine units, definitions follow those of the Census 
Bureau (U.S. Census Bureau 1994; 2000; 2002a; 
2002b). The latter three units are aggregations 
of counties or ZIP codes that were constructed by 
health researchers for specific purposes. Since not 
all of these are likely to be familiar to all readers, a 
brief summary follows. 

Counties, known as parishes in Louisiana, are 
governmental units found in each state; they also 
include independent cities, most of which are in 
Virginia, and the District of Columbia. County 
subdivisions are mainly comprised of cities, towns, 
and townships. The Census Bureau has created 
artificial county subdivisions in states lacking 
these political units. Five-digit ZIP code tabulation 
areas are Census Bureau-defined areas that corre-
late as closely as possible with five-digit ZIP codes 
defined by the United States Postal Service. Three-
digit ZCTAs are aggregations of five-digit ZCTAs, 
aggregated by the first three digits. Census tracts 
are “small, relatively permanent geographic enti-
ties” which, at the time of their creation, are as 

“homogeneous as possible with respect to popula-
tion characteristics, economic status, and living 
conditions” (U.S. Census Bureau 1994). Census 
block groups are subdivisions of tracts, with each 
tract averaging about four block groups. Census 
blocks are the smallest units tabulated by the 
Census Bureau, consisting of areas enclosed by 
streets, roads, railroads, other physical features, 
and political boundaries. On average there are 
about 100 populated blocks per tract, but the 
actual number varies enormously depending on 
local population density. Roughly one-third of all 
blocks have a population of zero; these, along with 
a small number of other zero-population units, 
were excluded from the analysis. 

The remaining units are aggregations of coun-
ties or ZIP codes constructed by other agencies or 
institutions for specific health-related purposes. 
The Dartmouth Atlas of Health Care Project has 
defined two geographic units, both of which are 
aggregations of five-digit ZIP codes as delineated 
by a private vendor (Dartmouth Medical School 
1999). Hospital Service Areas are collections of 
ZIP codes whose residents are typically served by 
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a specific hospital or hospi-
tals. Hospital referral regions 
(HRRs) represent health care 
markets for tertiary care, with 
each HRR containing at least 
one hospital that performs 
major cardiovascular pro-
cedures and neurosurgery. 
Note that we developed 
populations and areas for 
the Dartmouth units using 
ZCTAs rather than their ZIP 
code data. State economic 
areas (SEAs) are counties or 
groups of counties that were 
homogeneous with respect to 
various demographic factors. 
First defined by the Census 
Bureau after the 1950 census 
and revised after the 1960 
census, they are still in lim-
ited use (Devesa et al. 1999). 
Health Service Areas are 
counties or groups of coun-
ties designed by the National 
Center for Health Statistics to 
be self-contained with respect 
to hospital care (Makuc et al. 
1991). We use the amended 
version that was implemented 
in the Atlas of United States 
Mortality (Pickle et al. 1996). 

Homogeneity of population 
size and homogeneity of land 
area were examined using 
data from the 2000 census 
(U.S. Census Bureau 2001). 
These were rated quanti-
tatively by constructing a 
histogram of population and 
area values on a logarithmic 
scale (Figure 4). The position 
on the x-axis shows the rela-
tive coarseness or fineness of 
scale, while the spread of each 
curve indicates the homoge-
neity of the spatial unit. The 
spread, as quantified by the 
geometric standard deviation, 
was used to assign the good, 
fair, and poor ratings. Note 
the homogeneity of census 
tract and block group popu-
lations, and the homogeneity 
of county and Health Service 
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Geographic Unit
Poor
(49)

Fair
(0.44)

Fair
(0.62)
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Good

Good
Good

Fair
Good

Good
Fair

Hospital 
Referral Region

Fair
(304)

Good
(0.37)

Fair
(0.57)

Good
Good

Poor
Fair

Fair
Poor

Poor
Good

State Econom
ic Area

Fair
(506)

Good
(0.39)

Fair
(0.55)

Good
Good

Good
Poor

Poor
Poor

Poor
Poor

Health Service Area
Fair

(798)
Poor

(0.60)
Good
(0.38)

Good
Good

Good
Fair

Fair
Poor

Good
Good

Three-digit ZCTA
Fair

(877)
Fair

(0.44)
Poor

(0.75)
Good

Good
Good

Good
Poor

Poor
Fair

Poor

County
Good

(3,109)
Poor

(0.61)
Good
(0.38)

Fair
Fair

Good
Good

Good
Fair

Good
Fair

Hospital Service Area
Good

(3,408)
Poor

(0.58)
Fair

(0.55)
Fair

Fair
Poor

Fair
Fair

Poor
Poor

Good

Five-digit ZCTA
Good

(31,783)
Poor

(0.78)
Poor

(0.80)
Poor

Poor
Poor

Good
Poor

Poor
Poor

Poor

County Subdivision
Good

(35,157)
Poor

(0.80)
Fair

(0.68)
Poor

Poor
Good

Good
Good

Fair
Fair

Poor

Census Tract
Good

(64,735)
Good
(0.28)

Poor
(0.97)

Fair
Poor

Poor
Good

Fair
Poor

Good
Fair

Census Block Group
Good

(206,920)
Good
(0.27)

Poor
(0.96)

Fair
Poor

Poor
Good

Fair
Poor

Fair
Fair

Census Block 
Good

(5,280,212)
Poor

(0.59)
Poor

(0.93)
Poor

Poor
Poor

Good
Poor

Poor
Poor

Poor

Table 1. Evaluation of m
apping unit criteria for a m

ap of the continental U
nited States.
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Area land areas. The spike at 93 million square 
meters in the county subdivision curve is a legacy 
of the Government Land Office, which, beginning 
in 1812 divided lands west of Ohio into 36 square 
mile townships (Meinig 1995). Spatial resolution, 
minimum population thresholds, and minimum 
land areas also made use of objective measures 
in determining the ratings. Because the latter 
two criteria are sensitive to the rarity of the phe-
nomenon being mapped, we assumed a map of a 
relatively common disease outcome (lung cancer 
mortality) over a 10-year time period. Other cri-

teria were evaluated in qualita-
tive fashion. In determining 
our ratings, we also presumed 
a map author with some GIS 
expertise who is familiar with 
the Census web site and other 
basic means of acquiring data. 

Discussion
Tables 1 and 2 suggest that 
while all units have their 
merits there are many situa-
tions where one unit may be 
clearly favored over another. 
For the continental U.S., states, 
counties and Health Service 
Areas offer consistently better 
ratings than Hospital Referral 
Regions, Hospital Service 
Areas, State Economic Areas, or 
3-digit ZCTAs. For Manhattan, 
census tracts and census block 
groups confer more advan-
tages than five-digit ZCTAs 
or census blocks, with all four 
units having better ratings for 
Manhattan than for the nation 
as a whole. Census blocks rate 
consistently poorly despite 
promising the greatest resolu-
tion; again, in our experience, 
spatial resolution is sometimes 
inappropriately valued above 
all other criteria. The com-
parison between counties and 
Hospital Service Areas is of 
particular interest because the 
two units have similar spatial 
resolutions. Counties fare 
better on six measures, while 
Hospital Service Areas fare 
better on only one (functional 
relationship). A map author 

would have to give serious thought as to whether 
the use of this proxy measurement of hospital uti-
lization was important enough to offset its several 
drawbacks. 

Because Tables 1 and 2 are sensitive to particu-
lar geographic locations, particular data sets, and 
particular output formats, it is not possible to 
draw universal generalizations about which map-
ping units are ideal. We suspect that ZIP codes and 
ZIP-code-derived measures have too many factors 
working against them to ever rate well, but even 

Figure 4. Distribution of geographic units by population and area, continental United 
States. For clarity of presentation, the histograms were smoothed using a locally 
weighted regression smoothing algorithm (Cleveland 1979, S-Plus 2000 User’s Guide 
2000).  A bandwidth (smoothing span) of 12.5% of the x-axis range was used for all 
geographic units except for the area of county subdivisions. For county subdivisions 
a bandwidth of 4% was used so as not to obscure the sharp peak of the distribution 
of area.
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here there could be exceptional circumstances that 
dictate the use of this mapping unit, such as a tele-
phone survey where the results were tabulated only 
by five-digit ZIP code. We do recommend that the 
construction of a table with advantages and disad-
vantages of each available unit, such as Table 1, be 
an early and prominent part of the planning pro-
cess for any substantive choropleth mapping proj-
ect. We also recommend that the largest number 
of mapping units should be shown, so long as 
each unit is clearly distinguishable from its neigh-
bors and each unit has a sufficiently large enough 
population so that the calculated rates are stable. 
Where units are either too small in area or popula-
tion, they should be aggregated with neighboring 
units. Overly large units should be split if the data 
required for mapping the sub-units are available. 
When resources permit, researchers may consider 
creating custom units designed to maximize the 
desirable characteristics of choropleth maps; ide-
ally, these custom units should be defined in terms 
of other units for which the data were collected.

Although this paper focused on the choice of 
geographic unit for mapping, many of the issues 
discussed are also relevant for GIS and spatial 
analysis more generally. The problem of variance 
instability, for instance, is pervasive in many data 
sets and study designs that lack a specific mapping 
component. Aggregation of disease rate data is 
often necessary in order to permit analysis at units 
for which covariate data exist. Availability of dis-
ease rate data is also limited to certain minimum-
sized units by legal restrictions or confidentiality 
concerns. The expectation that finer-resolution 
data yield more robust analytical results is gener-
ally well founded, but the costs and benefits of col-
lecting finer-resolution data need to be weighed 
against overall project goals.

Despite their shortcomings, choropleth maps 
are simple to construct and widely understood. 
Paying careful attention to the units of analysis at 
the design stage can help to mitigate some of their 
potential shortcomings and perhaps allay the need 
for more complex cartographic presentation styles. 
The 11 criteria presented here offer a systematic 
means of informing this choice.
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