Abbasi Query re Summation and over-dot
The GELLMU source code used for the above follows:
-
...
-
\newcommand{\omeg1}{\omega_1}
-
\newcommand{\omeg2}{\omega_2}
-
\newcommand{\dotomeg1}{{\overset{\cdot}{\omega}}_1}
-
\newcommand{\dotomeg2}{{\overset{\cdot}{\omega}}_2}
-
\newcommand{\overarrow}[1]{\overset{\rightarrow}{#1}}
-
...
-
\begin{eqnarray}[:nonum="true"]
-
K\bal{x, y} & = & x^2 y + x y^2 \\
-
\, & = & \sum_j^2 M_j\bal{x} N_j\bal{y}\sum:
-
\end{eqnarray}
-
-
\begin{eqnarray}[:nonum="true"]
-
\overarrow{a} & = &
-
\overarrow{i}\bal{r\dotomeg2\func{cos}\omeg2;t
-
- r\omeg2^2\func{sin}\omeg2;t + \dotomeg1;L - \omeg1^2r\func{sin}\omeg2t} \\
-
\, & & + \overarrow{j}\bal{2r\omeg1\omeg2\func{cos}\omeg2;t
-
+ \dotomeg1;r\func{sin}\omeg2;t - \omeg1^2L} \\
-
\, & & + \overarrow{k}\bal{-r\dotomeg2\func{sin}\omeg2;t
-
- r\omeg2^2\func{cos}\omeg2;t}
-
\end{eqnarray}