Abbasi Query re Summation and over-dot

 Kx,y=x2y+xy2 =j2MjxNjy

 a=irω·2cosω2trω22sinω2t+ω·1Lω12rsinω2t +j2rω1ω2cosω2t+ω·1rsinω2tω12L +krω·2sinω2trω22cosω2t

The GELLMU source code used for the above follows:

...
\newcommand{\omeg1}{\omega_1}
\newcommand{\omeg2}{\omega_2}
\newcommand{\dotomeg1}{{\overset{\cdot}{\omega}}_1}
\newcommand{\dotomeg2}{{\overset{\cdot}{\omega}}_2}
\newcommand{\overarrow}[1]{\overset{\rightarrow}{#1}}
...
\begin{eqnarray}[:nonum="true"]
K\bal{x, y} & = & x^2 y + x y^2 \\
\,          & = & \sum_j^2 M_j\bal{x} N_j\bal{y}\sum:
\end{eqnarray}
 
\begin{eqnarray}[:nonum="true"]
\overarrow{a} & = & 
  \overarrow{i}\bal{r\dotomeg2\func{cos}\omeg2;t
  - r\omeg2^2\func{sin}\omeg2;t + \dotomeg1;L - \omeg1^2r\func{sin}\omeg2t} \\
\, &  & + \overarrow{j}\bal{2r\omeg1\omeg2\func{cos}\omeg2;t
        + \dotomeg1;r\func{sin}\omeg2;t - \omeg1^2L} \\
\, &  & + \overarrow{k}\bal{-r\dotomeg2\func{sin}\omeg2;t
          - r\omeg2^2\func{cos}\omeg2;t}
\end{eqnarray}