Chapter 1: Probability Review

Aveek Dutta
Assistant Professor
Department of Electrical and Computer Engineering
University at Albany
Fall 2019

Joint and Conditional Probability

Conditional Probability

$$
\begin{aligned}
P[B \mid A] & =\frac{P[A B]}{P[A]} \\
P[A \mid B] & =\frac{P[A B]}{P[B]}
\end{aligned}
$$

Joint Probability

Example

source

binary channel

Transition probabilities due to noise
$P[Y=1 \mid X=1]=0.9 \quad P[Y=1 \mid X=0]=0.1$
$P[Y=0 \mid X=1]=0.1 \quad P[Y=0 \mid X=0]=0.9$
Assume the Priors to be
$P[A]=P[B]=\frac{1}{2}$

We may be interested to know the following probabilities:

$$
\begin{aligned}
& P[X=0, Y=0]=P[Y=0 \mid X=0] P[X=0]=0.45 \\
& P[X=0, Y=1]=P[Y=1|X=1| P[X=0]=0.05 \\
& P[X=1, Y=0]=P[Y=0 \mid X=1] P[X=1]=0.05 \\
& P[X=1, Y=1]=P[Y=1|X=1| P[X=1]=0.45
\end{aligned}
$$

Also, unconditional probability or total probability can be computed as

$$
P[B]=P\left[B \mid A_{1}\right] P\left[A_{1}\right]+P\left[B \mid A_{2}\right] P\left[A_{2}\right]+\cdots+P\left[B \mid A_{n}\right] P\left[A_{n}\right]
$$

Iff $\cup_{i=1}^{n} A_{i}=\Omega, A_{i} A_{j}=\phi$ and B is defined over Ω

Independence

If $A_{i}, i=1, \ldots n$ are defined on a probability space \mathscr{P}, the $\left\{A_{i}\right\}$ are said to be independent iff,

$$
\begin{aligned}
P\left[A_{i} A_{j}\right]= & =P\left[A_{i}\right] P\left[A_{j}\right] \\
P\left[A_{i} A_{j} A_{k}\right] & =P\left[A_{i}\right] P\left[A_{j}\right] P\left[A_{k}\right] \\
& \vdots \\
P\left[A_{1} \ldots A_{n}\right]= & =P\left[A_{1}\right] P\left[A_{2}\right] \ldots P\left[A_{n}\right]
\end{aligned}
$$

For all combination of indices such that $1 \leq i \leq j \leq k \cdots \leq n$

Example: Test for Independence
Let
A= Event of picking a black ball
$\mathrm{B}=$ Picking one of the lighter balls
C = picking an even-numbered ball
Check P[ABC] = P[A]P[B]P[C] And Pairwise independence

Bayes'Theorem and Applications

Calculate Posterior Probability $P\left[X_{i} \mid Y_{i}\right]$ and its relation to β ?

Bernoulli Trial

- An experiment that has two outcomes P[success]= \boldsymbol{p} and P[failure]= \boldsymbol{q}
- Since multiple events are independent, $P\left[z_{i_{1}}, \ldots z_{i_{n}}\right]=P\left[z_{i_{1}}\right] \ldots . P\left[z_{i_{n}}\right]$

- $E_{1}=\{H T T\}$
- $E_{2}=\{T H T\}$
- $E_{3}=\{T T H\}$
- Probability of getting two T's regardless of order is $3 p q^{2}$
- Generalizing with \boldsymbol{n} Bernoulli trials, consider an event

$$
A_{k} \triangleq k \text { success in } n \text { trials }=\cup_{i=1}^{K}\left\{a_{i}^{\prime}\right\}
$$

$\left\{a_{i}^{\prime}\right\}$ is the the set of all tuples with (exactly) \boldsymbol{k} successes and \boldsymbol{n} - \boldsymbol{k} failures

- What is the value of \boldsymbol{K} ?
- Therefore using independence of $\left\{a_{i}\right\}$,

Binomial
Probability
Law

$$
P\left[A_{k}\right]=P\left[\bigcup_{i=1}^{K}\left\{a_{i}^{\prime}\right\}\right]=\sum_{i=1}^{K} P\left[\left\{a_{i}^{\prime}\right\}\right] \quad \longrightarrow P\left[A_{k}\right]=\binom{n}{k} \widehat{p^{k} q^{n-k}}
$$

.. contd

- If \boldsymbol{k} or fewer success instead of exactly the the binomial law is

$$
B(k: n, p)=\sum_{i=0}^{k}\binom{n}{i} p^{i} q^{n-i}
$$

Binomial Distribution Function

- Consequently, the probability of at least \boldsymbol{k} success (or k or more) is

$$
1-B(k-1: n, p)=\sum_{i=k}^{n}\binom{n}{i} p^{i} q^{n-i}
$$

Example 1.9-7: 5 missile strike, Need at least $\mathbf{2}$ hits to destroy. P[miss] $=0.9$. Calculate \mathbf{P} [target still active]?
$\mathrm{P}[$ target destroyed $]=\mathrm{P}$ [at east 2 hits out of 5] $=\sum_{i=2}^{5}\binom{5}{i}(0.1)^{i}(0.9)^{5-i}$
P[target still active] = 1 - P[target destroyed]

Multinomials

- Bernoulli trials outcome with multiple (l) outcomes ζ_{i} with probabilities p_{i}
- For a particular ordered set of outcomes, let $l=3, n=7$

$$
P\left[\zeta_{1} \zeta_{2} \zeta_{3} \zeta_{3} \zeta_{1} \zeta_{2} \zeta_{3}\right]=p_{1}^{2} p_{2}^{2} p_{3}^{3}
$$

- For unordered outcomes count all combination of the outcomes

$$
\binom{n}{r_{1}}\binom{n-r_{1}}{r_{2}}\binom{n-r_{1}-r_{2}}{r_{3}} \ldots\binom{n-r_{1}-r_{2}-\ldots r_{k-1}}{r_{k}}=\frac{n!}{r_{1}!r_{2}!r_{3}!\ldots r_{k}!}
$$

- The generalized probability of a set of (l) outcomes

$$
P(r: n, p)=\frac{n!}{r_{1}!r_{2}!r_{3}!\ldots r_{k}!} p_{1}^{r_{2}} p_{2}^{r_{1}} \ldots p_{l}^{r_{l}}
$$

- For what value of (l), we get Binomial law?

Poisson Law

- If $\boldsymbol{n} \gg \boldsymbol{k}$ and $\boldsymbol{p} \ll \mathbf{1}$, but $\boldsymbol{n} \boldsymbol{p}=\boldsymbol{\mu}$ remain constant, the binomial law reduces to

$$
P\left[A_{k}\right]=\binom{n}{k} p^{k} q^{n-k} \xrightarrow{n \rightarrow \infty} \frac{\mu^{k}}{k!} e^{-\mu} \quad \text { Derivation ? }
$$

Poisson's probability law. It has only one parameter μ

- Application : \mathbf{n} points arrive in \mathbf{T} sec. What is the probability that exactly \boldsymbol{k} points are presents in interval $\boldsymbol{\tau}$?

$\begin{aligned} & \text { Probability of } \\ & \boldsymbol{k} \text { events in } \mathbf{\tau}\end{aligned} \square b(k, t, t+\tau)=\left(\frac{n \tau}{T}\right)^{k} \frac{e^{-(n \tau / T)}}{k!}=e^{(-\lambda \tau)} \frac{(\lambda \tau)^{k}}{k!}$

$$
\text { Where, } p=\tau / T \quad \mu=n . p \quad \lambda=n / T \text { is the average arrival rate }
$$

What happens when $\boldsymbol{\lambda}$ is a function of time? See example $1.10-5$ in textbook

Normal Approx. of Binomial Law

- Binomial and Poisson distributions are discrete distributions
- A standard normal distribution has the cdf

$$
F_{S N}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-p^{2}}{2}} d y \quad \text { What is the pdf? }
$$

- Therefore a bernoulli can be approximated using the normal distribution

$$
b(n ; k, p) \approx \frac{1}{\sqrt{n p q}} f_{S N}\left(\frac{k-n p}{\sqrt{n p q}}\right)=\frac{1}{\sqrt{2 \pi} \sqrt{n p q}} e^{-\frac{1}{2}\left(\frac{k-n p}{\sqrt{n p q}}\right)^{2}}
$$

- Error function $\operatorname{erfc}(x)$

$$
\operatorname{erf} f(x) \triangleq \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{\frac{-y^{2}}{2}} d y
$$

- Therefore,

$$
\begin{aligned}
& F_{S N}=\frac{1}{2}+\operatorname{erf}(x) \quad \text { for } \quad x>0 \\
& F_{S N}=\frac{1}{2}-\operatorname{erf}(|x|) \quad \text { for } \quad x<0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}\left[\mathbf{k}_{\mathbf{1}}<\text { success }<\boldsymbol{k}_{2}\right]= \\
& F_{S N}\left[\frac{k_{2}-n p+0.5}{\sqrt{n p q}}\right]-F_{S N}\left[\frac{k_{1}-n p-0.5}{\sqrt{n p q}}\right] \\
& \\
& \begin{array}{l}
\text { The } 0.5 \text { appears for } \\
\text { continuity correction } \\
\text { from discrete Binomial } \\
\text { to a continuous } \\
\text { Normal approximation }
\end{array}
\end{aligned}
$$

