Chapter - 2: Random Variables

Aveek Dutta
Assistant Professor
Department of Electrical and Computer Engineering
University at Albany
Fall 2019

Definition

- The events are **sets of numbers or a vector of numbers**
- An experiment \mathscr{H} with sample space Ω , the elements ζ are random outcomes.
 - \circ To every ζ a mapping, $X(\zeta)$ maps the outcome to the ${\sf R}^1$
 - \circ All subsets of <u>Borel set</u> of real numbers **B** and their union and intersection are events $((-\infty,x])$

- We are interested in assigning probability to an event $\{\zeta: X(\zeta) \leq x\}$
 - \circ $P[X \leq x] riangleq F_X(x)$ is called the *cumulative distribution function* of X
 - \circ In practice we are interested to learn the **behavior** of X, even if the underlying experiment of probability space is unknown

CDF Example

- Example 2.2-1: Ask random people if they have a younger brother?
 - \circ Two outcomes / events ζ = {Yes, No} and Mapping function $X(\zeta)$: Yes = 1, No = 0
 - Assign probabilities P[Yes] = 1/4 and P[N0] = 3/4 (assumption)
 - Now, we can ask the probability of the random variable X between any interval on \mathbb{R}^1 , e,g (0,1] or [0,1)
- **To read**: Properties of CDF $F_X(x)$
 - \circ Note: $F_X(x)$ is a non-decreasing function

$$P[x_1 < X \le x_2] = F_X(x_2) - F_X(x_1) \ge 0 ext{ for } x_2 > x_1$$

$$\text{Calculate } P[a \leq X \leq b], \quad P[a < X < b], \quad P[a \leq X < b]$$

• **Example 2.3-2:** Bus arrive in **(0,T].** X is the RV that denotes the time of arrival t. If it is equally likely for the bus to arrive in interval **(0,T]**, then what is $F_X(t)$?

PDF

PDF is defined as

$$f_X(x) = rac{dF_X(x)}{dx} \quad \longrightarrow \quad f_X(x) = \int_{-\infty}^x f_X(\xi) d\xi = P[X \leq x]$$

• Univariate Gaussian PDF $X: \mathcal{N}(\mu, \sigma^2)$

$$egin{aligned} F_X(x) &= rac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-rac{(x-\mu)^2}{2\sigma^2}} dy \ \mu & riangleq \int_{-\infty}^\infty x f_X(x) dx \quad ext{and} \quad \sigma^2 & riangleq \int_{-\infty}^\infty (x-\mu)^2 f_X(x) dx \end{aligned}$$

Similar definition exists for discrete RVs except using PMF instead of pdf

Convert Gaussian pdf to standard normal $X : \mathcal{N}(0,1)$

$$egin{aligned} P[a < X \leq b] &= erfigg(rac{b-\mu}{\sigma}igg) - erfigg(rac{a-\mu}{\sigma}igg) \ &= rac{1}{\sqrt{2\pi}}\int_0^x e^{-rac{t^2}{2}}dt \end{aligned}$$

Example

Figure 2.4-3 The areas of the shaded region under curves are (a) $P[X \le x]$; (b) P[X > -x]; (c) P[X > x]; (d) $P[-x < X \le x]$; and (e) P[|X| > x].

Other common distributions

- ullet Rayleigh $f_X(x)=rac{x}{\sigma^2}e^{-x^2/2\sigma^2}u(x)$
- ullet Exponential $f_X(x)=rac{1}{\mu}e^{-x/\mu}u(x)$
- ullet Uniform (b>a) $f_X(x) = rac{1}{b-a}$ a < x < b

Continuous vs Discrete RV

- If CDF is continuous, that is derivative exists for all x, then x is a continuous RV else discrete.
- Formally, for continuous RVs we can write the following

$$P[X \leq x] = F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi$$

Events are union of disjoint intervals in R¹

$$P[x_1 < X \leq x_2] = F_X((x_1, x_2]) = \int_{x_1}^{x_2} f_X(\xi) d\xi$$

$$P[B] = \int_{a_1}^{b_1} f_X(\xi) d\xi + \int_{a_2}^{b_2} f_X(\xi) d\xi + \dots + \int_{a_n}^{b_n} f_X(\xi) d\xi = \int_{\xi: \xi \in B} f_X(\xi) d\xi$$

$$ext{where} \quad B = \{ \xi : \xi \in \cup_{i=1}^n I_i, I_i I_j = \phi ext{ for } i
eq j \} ext{ where } I_i = (a_i, b_i]$$

Discrete RV (see examples in sec 2.5)

$$P_X(x) = P[X = x] = P[X \leq x] - P[X < x] \ F_X(x) riangleq P[X \leq x] = \sum_{\substack{x \in x \ x \in x}} P_X[x_i]$$

PMF for discrete variables

 $P_{y}(x) = 0$ where $F_{y}(x)$ is

Mixed RV

Discontinuous at certain intervals but continuous at others

The *unit step function* and its derivative the *Dirac Delta* function allows us to express CDFs and PDFs of discrete RV in a continuous form

In the pdf shown for a mixed RV:

- 1) What is the constant K?
- 2) Compute $P[X \le 5], P[5 \le X < 10]$
- 3) Draw the Distribution function

$$\int_0^{5+} f_X(x) dx = \int_0^{5+} 0.05 dx + \int_0^{5+} 0.25 \delta(x-5) dx = 0.25 + 0.25 = 0.50$$

$$\int_{5-}^{10-} f_X(x) dx = \int_{5-}^{10-} 0.05 dx + \int_{5-}^{10-} 0.25 \delta(x-5) dx = 0.25 + 0.25 = 0.50$$

Conditional Distribution

• If event C with outcome ζ is at the intersection of $\{\zeta: X(\zeta) \leq x\}$ and $\{\zeta: \zeta \in B\}$

$$F_X(x|B)=rac{P[C]}{P[B]}=rac{P[X{\le}x{,}B]}{P[B]}$$
 and P DF/PMF $= f_X(x|B)=rac{f_X(x,B)}{f_X(B)}$ $= P(X=x,B)$ $= P(X=x,B)$

• Similar to CDF for single events, if $x_2 \leq x_1$

$$\{X \le x_2, B\} = \{X \le x_1, B\} \cup \{x_1 < X \le x_2, B\}$$

$$\Longrightarrow P[X \le x_2|B]P[B] = P[X \le x_1|B]P[B] + P[x_1 < X \le x_2|B]P[B]$$

$$\Longrightarrow P[x_1 < X \le x_2|B] = P[X \le x_2|B] - P[X \le x_1|B] = F_X(x_2|B) - F_X(x_1|B)$$

Similar to total probability of events as sum of conditionals,

$$F_X(x) = \sum_{i=1}^{n} F_X(x|A_i) P[A_i]$$

Bayes' rule for RVs

$$P[B|X=x] = rac{P[X=x|B]P[B]}{P[X=x]}$$

Discrete RV

$$P[B|X=x] = rac{f_X(x|B)P[B]}{f_X(x)}$$

Continuous RV

X is Poisson rv with parameter μ . Find conditional PDF and CDF of $\{X \mid X \text{ is even}\}$

Start with conditional PDF
$$P_X(x|X ext{ is even}) = rac{P(X=x,X ext{ is even})}{P(X ext{ is even})}$$

$$P(X=x,X ext{ is even})$$
 is the probability of the events in $X=x \cap X = X$

This is $P_X(x)$ when x is even and ϕ when x is odd

P(X is even) Can be calculated as

$$\sum_{k=0,2,4,\dots}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} + \sum_{k=1,3,5,\dots}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} = 1$$

$$\sum_{k=0,2,4,\dots}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} - \sum_{k=1,3,5,\dots}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} = \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!} (-1)^{k} e^{-\mu}$$

$$\longrightarrow \sum_{k=0,2,4,\dots}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} = \frac{1}{2} (1 + e^{-2\mu})$$

$$P_X(x|X ext{ is even}) = rac{P(X=x,X ext{ is even})}{P(X ext{ is even})} = rac{2}{1+e^{-2\mu}} rac{\mu^k}{k!} e^{-\mu}$$
 When $k \ge 0$ and k is even, else 0

CHECK Examples 2.6-3

$$P[A] = 2P[B] = 4P[C] \to P[C] - = 1/7, P[B] = 2/7, P[A] = 4/7$$

• Compute $P[X \le -1]$

$$X \sim \mathcal{N}(-1,4) \stackrel{ ext{A}}{\longrightarrow} X \sim \mathcal{N}(0,1) \stackrel{ ext{B}}{\longrightarrow} X \sim \mathcal{N}(1,4) \stackrel{ ext{C}}{\bigcirc} X \sim \mathcal{N}(1,4) \stackrel{ ext{C}}{\bigcirc}$$

Solution: Apply total probability rule as conditioned on disjoint events a,b,c

$$P[X \leq -1] = P[X \leq -1|A]P[A] + P[X \leq -1|B]P[B] + P[X \leq -1|C]P[C] = 0.354$$

$$egin{aligned} P[X \leq -1|A] &= 1/2 \ P[X \leq -1|B] &= erf\left(rac{-1-0}{1}
ight) &- erf(-\infty) = -erf(1) + 1/2 & (erf(-z) = -erf(z)) \ P[X \leq -1|C] &= erf\left(rac{-1-1}{2}
ight) &- erf(-\infty) = -erf(1) + 1/2 \end{aligned}$$

• Given we observe {X > -1}, from which one is the most likely source?

Solution: We want to compute $max\{P[A|X>-1], P[B|X>-1], P[C|X>-1]\}$

Note:
$$P[X > -1|A] = 1 - P[X \le -1|A] = 1 - 1/2$$
 (from above)

Then use Bayes' rule for conditionals to compute posteriors,

$$P[A|X > -1] = \frac{P[X > -1|A] \cdot P[A]}{P[X > -1]} = \frac{(1-1/2) \cdot 4/7}{1-0.354} = 0.44$$

Joint CDF/PDF

- Joint CDF specifies $F_{XY}(x,y) = P[X \le x, Y \le y]$
- ullet Joint PDF is $f_{XY}(x,y)=rac{\partial^2}{\partial x\partial y}F_{XY}(x,y)$
- TO READ: Properties of joint CDF
- Proof of

for all
$$x_2 \ge x_1, y_2 \ge y_1$$
,

$$F_{XY}(x_2,y_2) - F_{XY}(x_2,y_1) - F_{XY}(x_1,y_2) + F_{XY}(x_1,y_1) \geq 0$$

Start with defining the set

$$\{X \le x_2, Y \le y_2\} = \{x_1 < X \le x_2, y_1 < Y \le y_2\}$$

(x, y)

$$f_{XY}(x,y=e^{-(x+y)}u(x)u(y)$$

Calculate $P[(X,Y)] \in \mathscr{A}, ext{ where } \mathscr{A} = \{(x,y): 0 \leq x \leq 1, |y| \leq x\}$

$$P[(X,Y)] = \int_{x=0}^1 \int_{y=-x}^x e^{-(x+y)} u(x) u(y) dx dy$$
 \vdots
Only positive limits

$$=\int_{x=0}^{1}(e^{-x}-e^{-2x})dx=-e^{-1}+1-(-rac{1}{2}e^{-2}+rac{1}{2})$$

Marginal Distribution and Independence

Marginal Distributions and densities

$$egin{aligned} F_X(x) &= F_{XY}(x,\infty) = \int_{-\infty}^x d\xi \int_{-\infty}^\infty dy f(\xi,y)
ightarrow f_X(x) = rac{dF_X(x)}{dx} \ F_Y(y) &= F_{XY}(\infty,y) = \int_{-\infty}^y d\eta \int_{-\infty}^\infty dx f(x,\eta)
ightarrow f_Y(y) = rac{dF_Y(y)}{dy} \end{aligned}$$

Marginal densities are also integrals of the joint density function

$$egin{aligned} f_X(x) &= \int_{-\infty}^{\infty} f_{XY}(x,y) dy \ f_Y(y) &= \int_{-\infty}^{\infty} f_{XY}(x,y) dx \end{aligned}$$

$$egin{aligned} f_X(x) &= \int_{-\infty}^\infty f_{XY}(x,y) dy \ f_Y(y) &= \int_{-\infty}^\infty f_{XY}(x,y) dx \end{aligned} \qquad egin{aligned} P_X\left(x_i
ight) &= \sum_{ ext{all } y_k} P_{XY}\left(x_i,y_k
ight) \ P_Y\left(y_i
ight) &= \sum_{ ext{all } x_i} P_{XY}\left(x_i,y_k
ight) \end{aligned}$$

Independence

$$egin{aligned} F_{XY}(x,y) &= F_X(x).\,F_Y(y) \ f_{XY}(x,y) &= rac{\partial^2 F_{XY}(x,y)}{\partial x \partial y} \ &= rac{\partial F_X(x)}{\partial x} \cdot rac{\partial F_Y(y)}{\partial y} \ &= f_X(x) f_Y(y) \end{aligned}$$

$$F_X(x|Y\leq y)=rac{F_{XY}(x,y)}{F_Y(y)}$$
 Conditionals really doesn't mean anything if the RVs are independent $F_X(x|Y\leq y)=f_X(x)$ Differentiating $f_X(x|Y\leq y)=f_X(x)$

A certain restaurant has been found to have the following joint distribution for the waiting time for the service for a newly arriving customer and the total number of customers including the new arrival. Let **W** be a RV **representing the continuous waiting time for a newly arriving customer** & Let **N** be a discrete RV **representing the total number of customers**. Find the joint density function?

$$F_{W,N}(w,n) = egin{cases} 0,n < 0 ext{ or } w < 0 \ \left(1 - e^{-w/\mu_0}
ight)rac{n}{10}, 0 \le n < 5, w \ge 0 \ \left(1 - e^{-w/\mu_0}
ight)rac{5}{10} + \left(1 - e^{-w/\mu_1}
ight)\left(rac{n-5}{10}
ight), 5 \le n < 10, w \ge 0 \ \left(1 - e^{-w/\mu_0}
ight)rac{5}{10} + \left(1 - e^{-w/\mu_1}
ight)\left(rac{5}{10}
ight), 10 \le n, w \ge 0 \end{cases}$$

The mixed pdf is given by,

$$egin{aligned} f_{W,N}(w,n) & riangleq rac{\partial}{\partial w}
abla_n F_{W,N}(w,n) \ &= rac{\partial}{\partial w} \{F_{W,N}(w,n) - F_{W,N}(w,n-1)\} \ &= rac{\partial}{\partial w} F_{W,N}(w,n) - rac{\partial}{\partial w} F_{W,N}(w,n-1) \end{aligned}$$

$$abla_n F_{W,N}(w,n) = F_{W,N}(w,n) - F_{W,N}(w,n-1) = u(w) egin{cases} \left(1 - e^{-w/\mu_0}
ight)rac{1}{10}, & 0 < n \leq 5 \ \left(1 - e^{-w/\mu_1}
ight)rac{1}{10}, & 5 < n \leq 10 \ 0, & ext{else}. \end{cases}$$

$$egin{aligned} f_{XY}(x,y) &= A(x+y) \quad 0 < x \leq 1, \quad 0 < y \leq 1 \ &= 0, \quad Otherwise \end{aligned}$$

What is A?

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dx dy = 1$$

What are the marginal pdfs?

$$egin{align} f_X(x) &= \int_{-\infty}^\infty f_{XY}(x,y) dy = \int_0^1 (x+y) dy = \left(xy+y^2/2
ight)igg|_0^1 \ &= egin{cases} x+rac{1}{2} & 0 < x \leq 1 \ 0, & ext{otherwise} \end{cases} \end{split}$$

What is the cdf?

Since, $F_{XY} = P[X \le x, Y \le y]$ we will have to integrate over the infinite rectangle with vertices (x,y), $(-\infty,-\infty)$, $(-\infty,y)$, $(x,-\infty)$

Figure 2.6-9 Shaded region in (a) to (e) is the intersection of supp(
$$f_{XY}$$
) with the point set associated with the event $\{-\infty < X \le X, -\infty < Y \le Y\}$. In (f), the shaded region is the intersection of supp(f_{XY}) with $\{X + Y \le 1\}$.

$$F_{XY}(x,y) = \int_0^1 \int_0^1 f_{XY}(x',y') \, dx' dy' = 1$$
 for $x \ge 1, y \ge 1$ Figure (a)

Figure (c)

$$F_{XY}(x,y) = \int_{y'=0}^1 dy' \left(\int_{x'=0}^x dx' \left(x' + y'
ight)
ight) = rac{x}{2} (x+1) \quad ext{ for } 1 < x \leq 1, y \geq 1$$

$$F_{XY}(x,y) = \int_{y'=0}^{y} dx' \left(\int_{x'=0}^{1} dx' \left(x' + y'
ight)
ight) = rac{y}{2} (y+1) \quad ext{ for } x \geq 1, 0 < y \leq 1$$

Tigure (b)

$$egin{split} P[X+Y \leq 1] &= \int_{x'=0}^{1} \int_{y'=0}^{1-x'} \left(x'+y'
ight) dy' dx' \ &= \int_{x'=0}^{1} x' \left(1-x'
ight) dx' + \int_{x'=0}^{1} rac{\left(1-x'
ight)^2}{2} dx' \ &= rac{1}{3} \end{split}$$

Non-independent RVs

$$f_{XY}(x,y) = (2\pi)^{-1} \exp\left[-\frac{1}{2}(x^2 + y^2)\right]$$

$$f_{XY}(x,y) = [2\pi\sqrt{1-
ho^2}]^{-1} \exp\left[-rac{1}{2(1-
ho^2)}ig(x^2+y^2-2
ho xyig)
ight]$$

Conditional pdfs

$$f_{Y|X}(y|x)=rac{f_{XY}(x,y)}{f_X(x)},\quad f_X(x)
eq 0$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx$$

$$f_{X|Y}(x|y) = rac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$

Conditional pdf is the probability of RV X given the event {Y=y}