Chapter - 3: Functions of Random Variables

Aveek Dutta
Assistant Professor
Department of Electrical and Computer Engineering University at Albany
Fall 2019

Example

Input	Output
$X\left(t_{0}\right) \geq 0.5$	$Y=1$
$X\left(t_{0}\right)<0.5$	$Y=0$

- If Y is a RV , we can write,

$$
\begin{aligned}
& \{Y=0\}=\{X<0.5\} \\
& \{Y=1\}=\{X \geq 0.5\}
\end{aligned}
$$

- If $\boldsymbol{X}: \mathbf{N}(\mathbf{1}, 1)$ then we can calculate the probabilities as

$$
P[Y=0]=P[X<0.5]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0.5} e^{-\frac{1}{2}(x-1)^{2}} d x
$$

$$
\simeq 0.31
$$

- $f_{Y}(y)=0.31 \delta(y)+0.69 \delta(y-1)$

Different Views of Functions of RV

First view $\left(Y: \Omega \rightarrow R_{Y}\right)$. For every $\zeta \in \Omega$, we generate a number $g[X(\zeta)] \triangleq Y(\zeta)$. The rule Y, which generates the numbers $\{Y(\zeta)\}$ for random outcomes $\{\zeta \in \Omega\}$, is a r.v. with domain Ω and range $R_{Y} \subset R$. Finally for every Borel set of real numbers B_{Y}, the set $\left\{\zeta: Y(\zeta) \in B_{Y}\right\}$ is an event. In particular the event $\{\zeta: Y(\zeta) \leq y\}$ is equal to the event $\{\zeta: g[X(\zeta)] \leq y\}$.
In this view, the stress is on Y as a mapping from Ω to R_{Y}. The intermediate role of X is suppressed.

View \#2

Second view (input/output systems view). For every value of $X(\zeta)$ in the range R_{X} we generate a new number $Y=g(X)$ whose range is R_{Y}. The rule Y whose domain is R_{X} and range is R_{Y} is a function of the random variable X. In this view the stress is on viewing Y as a mapping from one set of real numbers to another. A model for this view is to regard X as the input to a system with transmittance $g(\cdot)$. For such a system, an input x gets transformed to an output $y=g(x)$ and an input function X gets transformed to an output function $Y=g(X)$. (See Figure 3.1-4.)

$$
\begin{aligned}
\{\zeta: Y(\zeta) \leq y\} & =\{\zeta: g[X(\zeta)] \leq y\} \\
& =\left\{\zeta: X(\zeta) \in C_{y}\right\}
\end{aligned}
$$

Example 3.2-1

- Let $\boldsymbol{Y}=\mathbf{2 X + 3}$ and $\boldsymbol{X}: \mathbf{U}(\mathbf{0}, \mathbf{1})$. Find $F_{Y}(y)$
- Solution: $\{Y \leq y\}=\{2 X+3 \leq y\}=\left\{X \leq \frac{1}{2}(y-3)\right\}$

(a)

Hence C_{y} is the interval $\left(-\infty, \frac{1}{2}(y-3)\right)$ and

$$
F_{Y}(y)=F_{X}\left(\frac{y-3}{2}\right)
$$

The pdf of Y is

$$
\begin{aligned}
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y}=\frac{d}{d y}\left[F_{X}\left(\frac{y-3}{2}\right)\right] \\
& =\frac{1}{2} f_{X}\left(\frac{y-3}{2}\right)
\end{aligned}
$$

(b)

$A=\left|\frac{y-b}{a}\right|$

- Generalization
- NOTE: Read the text before ex 3.2-2 on discrete r.v.

$$
\{Y \leq y\}=\{a X+b \leq y\}=\left\{X \leq \frac{y-b}{a}\right\}
$$

Since \boldsymbol{a} is negative, the inequality is flipped. Whenever you multiply or divide an inequality by a negative number, you must flip the inequality sign.
\longrightarrow But for $a<0,\{Y \leq y\}=\{a X+b \leq y\}=\{a X \leq y-b\}=\left\{X \geq \frac{y-b}{a}\right\}=\{X \geq-A\}$

Example for $\mathrm{a}<0$

$$
Y=2 X+3, a=2, b=3
$$

$F_{Y}(y)=P[\{Y \leq 10\}]=P[\{X \leq 7 / 2\}]=F_{X}(7 / 2)$

$$
\begin{aligned}
& F_{Y}(y)=P[\{Y \leq 10\}]=P[\{-2 X \leq y-3\}] \\
& \quad=P[\{X \geq(10-3) /(-2)\}]=P[\{X \geq-7 / 2\}]
\end{aligned}
$$

$$
P[\{X \geq-7 / 2\}]=P[\{X \geq-7 / 2\}]=1-P[\{X \leq-7 / 2\}]=1-F_{X}(-7 / 2)
$$

Example 3.2-5

(a)

(b)
(Transformation of PDF's.) Let X have a continuous PDF $F_{X}(x)$, which is a strict monotone increasing function ${ }^{\dagger}$ of x. Let Y be an r.v. formed from X by the transformation

$$
\begin{equation*}
Y=F_{X}(X) \tag{3.2-12}
\end{equation*}
$$

To compute $F_{Y}(y)$, we proceed as usual:

$$
\begin{aligned}
\{Y \leq y\} & =\left\{F_{X}(X) \leq y\right\} \\
& =\left\{X \leq F_{X}^{-1}(y)\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
F_{Y}(y) & =P\left[F_{X}(X) \leq y\right] \\
& =P\left[X \leq F_{X}^{-1}(y)\right] \\
& =\int_{\left\{x: F_{X}(x) \leq y\right\}} f_{X}(x) d x .
\end{aligned}
$$

1. Let $y<0$. Then since $0 \leq F_{X}(x) \leq 1$ for all $x \in[-\infty, \infty]$, the set $\left\{x: F_{X}(x) \leq y\right\}=$ ϕ and $F_{Y}(y)=0$.
2. Let $y>1$. Then $\left\{x: F_{X}(x) \leq y\right\}=[-\infty, \infty]$ and $F_{Y}(y)=1$.
3. Let $0 \leq y \leq 1$. Then $\left\{x: F_{X}(x) \leq y\right\}=\left\{x: x \leq F_{X}^{-1}(y)\right\}$
and

$$
F_{Y}(y)=\int_{-\infty}^{F_{X}^{-1}(y)} f_{X}(x) d x=F_{X}\left(F_{X}^{-1}(y)\right)=y
$$

Hence

$$
F_{Y}(y)= \begin{cases}0, & y<0 \tag{3.2-13}\\ y, & 0 \leq y \leq 1 \\ 1, & y>1\end{cases}
$$

Equation 3.2-13 says that whatever probability law X obeys, $Y \triangleq F_{X}(X)$ will be a uniform r.v. Conversely, given a uniform r.v. Y, the transformation $X \triangleq F_{X}^{-1}(Y)$ will generate a r.v. with PDF $F_{X}(x)$ (Figure 3.2-5). This technique is sometimes used in simulation to generate r.v.'s with specified distributions from a uniform r.v.

Example 3.2-2 - Multiple roots of $\mathrm{Y}=\mathrm{g}(\mathrm{X})$

- Define $Y=X^{2}$
- We can write the set of outcomes for the RV Y

$$
\begin{aligned}
&\{Y \leq y\}=\left\{X^{2} \leq y\right\}=\{-\sqrt{y} \leq X \leq \sqrt{y}\} \\
&=\{-\sqrt{y}<X \leq \sqrt{y}\} \cup\{X=-\sqrt{y}\} \\
& \mathrm{CDF} \rightarrow F_{Y}(y)= F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})+P[X \quad-\sqrt{y}] \quad \text { (Continuous RV) } \\
& \mathrm{PDF} \rightarrow f_{Y}(y)=\frac{d}{d y}\left[F_{Y}(y)\right] \\
&=\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})
\end{aligned}
$$

- If $X: N(0,1)$

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi y}} e^{-\frac{1}{2} y} u(y) \longleftarrow \text { WHY? }
$$

Example 3.2-8 - Multiple roots of $\mathrm{Y}=\mathrm{g}(\mathrm{X})$

for $0 \leq y \leq 1$, the event $\{Y \leq y\}$ satisfies

$$
\begin{aligned}
\{Y \leq y\} & =\{\sin X \leq y\} \\
& =\underbrace{\left\{\pi-\sin ^{-1} y<X \leq \pi\right\}} \cup\{\underbrace{\left\{-\pi<X \leq \sin ^{-1} y\right\}} .
\end{aligned}
$$

Since the two events on the last line are disjoint, we obtain

$$
F_{Y}(y)=F_{X}(\pi)-F_{X}\left(\pi-\sin ^{-1} y\right)+F_{X}\left(\sin ^{-1} y\right)-F_{X}(-\pi)
$$

Hence

$$
\begin{aligned}
f_{Y}(y)= & \frac{d F_{Y}(y)}{d y}=f_{X}\left(\pi-\sin ^{-1} y\right) \frac{1}{\sqrt{1-y^{2}}} \\
f_{X}(\mathscr{C})=\frac{1}{2 \pi} & +f_{X}\left(\sin ^{-1} y\right) \frac{1}{\sqrt{1-y^{2}}} \\
= & \frac{1}{\pi} \frac{1}{\sqrt{1-y^{2}}} \quad 0 \leq y<1
\end{aligned}
$$

$$
\text { for }-1<y<0
$$

$$
P\left[\left\{-\pi-\sin ^{-1}<X \leq \sin ^{-1}\right\}\right]=F_{X}\left(\sin ^{-1} y\right)-F_{X}\left(-\pi-\sin ^{-1} y\right) \longrightarrow f_{Y}(y)=\frac{1}{\pi} \frac{1}{\sqrt{1-y^{2}}} \quad \text { for }-1<y<0
$$

Generalization for roots of $\mathrm{Y}=\mathrm{g}(\mathrm{X})$

- The event $\{y<Y \leq y+d y\}$ can be written as union disjoint events of r.v. \boldsymbol{X}.
- If x_{i} are unique roots of $y=g(x)$ then the events of \boldsymbol{X}, has the form
$E_{i}=\left\{x_{i}<X \leq x_{i}+\left|d x_{i}\right|\right\}$ for $g^{\prime}(x)+v e-$
$E_{i}=\left\{x_{i}-\left|d x_{i}\right|<X \leq x_{i}\right\}$ for $g^{\prime}(x)-v e$
And $P\left[E_{i}\right]=f_{X}\left(x_{i}\right)\left|d x_{i}\right|$

- $P[y<Y \leq y+d y]=f_{Y}(y)|d y|$

$$
=\sum_{i=1}^{n} f_{X}\left(x_{i}\right)\left|d x_{i}\right|
$$

$P\left[\cup E_{i}\right]$
$f_{Y}(y)=\sum_{i=1}^{n} f_{X}\left(x_{i}\right)\left|\frac{d x_{i}}{d y}\right|=\sum_{i=1}^{n} f_{X}\left(x_{i}\right)\left|\frac{d y}{d x_{i}}\right|^{-1}=\sum_{i=1}^{n} f_{X}\left(x_{i}\right) /\left|g^{\prime}\left(x_{i}\right)\right|$

Example 3.2-9

- The roots in example 3.2-8 were, for $y>0$ are $x_{1}=\sin ^{-1} y, x_{2}=\pi-\sin ^{-1} y$

$$
\begin{aligned}
& \text { At } x_{1}=\sin ^{-1} y \text { we get } d g /\left.d x\right|_{x=x_{1}}=\cos \left(\sin ^{-1} y\right) \\
& \begin{aligned}
\left.\frac{d g}{d x}\right|_{x=x_{2}}=\cos \left(\pi-\sin ^{-1} y\right) & =\cos \pi \cos \left(\sin ^{-1} y\right)+\sin \pi \sin \left(\sin ^{-1} y\right) \\
& =-\cos \left(\sin ^{-1} y\right)
\end{aligned}
\end{aligned}
$$

- $\left|\frac{d g}{d x}\right|_{x_{1}}=\left|\frac{d g}{d x}\right|_{x_{2}}=\sqrt{1-y^{2}}$

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{\sqrt{1-y^{2}}} \quad 0 \leq y<1
$$

Practice - Find pdf of $\boldsymbol{Y}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{X})$ using the same principle?

Example 3.2-11

- We know $f_{Y}(y)=\sum_{i=1}^{n} f_{X}\left(x_{i}\right) /\left|g^{\prime}\left(x_{i}\right)\right|$
- Find roots of $y=g(x)$
- Thus, $g^{\prime}(x)=0$ for $|x| \geq 1$, and $g^{\prime}(x)=1$ for $-1<x<1$
- For $y \geq 1$ and $y \leq-1$ there are no real roots to $y-g(x)=0 \longrightarrow f_{Y}(y)=0$

- For $-1<y<1,\left|g^{\prime}(x)\right|=1 \longrightarrow f_{Y}(y)=f_{X}(y)$
- If $X: \mathscr{N}(0,1)$

$$
f_{Y}(y)=\left\{\begin{array}{cc}
0, & |y| \geq 1 \\
(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{2} y^{2}\right\}+0.317 \delta(y), & -1<y<1
\end{array}\right.
$$

$$
P[Y=0]=P[X \geq 1]+P[X \leq-1]
$$

$$
=(1-P[X \leq 1])+P[X \leq-1]]
$$

$$
=(1-\{1 / 2+\operatorname{erf}(1)\})+(1 / 2+\operatorname{erf}(-1))
$$

$$
=1 / 2-\operatorname{erf}(1)+1 / 2-\operatorname{erf}(1)
$$

$$
=1-2 . e r f(1)
$$

$$
=1-2 \times 0.34134(\text { From Table } 2.4-1 \text { in text })
$$

Justification: This adjustment is required because when $\boldsymbol{g}^{\prime}(\boldsymbol{x})=\mathbf{0}$ it is a flat region in $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$. So, for any \boldsymbol{x} in that flat region the \boldsymbol{y} values are identical. This will create a probability mass at that value of \boldsymbol{y}. The mass is equal to the probability of the event \boldsymbol{X} falls in the flat area. In this case $X \geq 1$ and $X \leq-1$

Infinite roots - Example 3.2-12

- The excursions of $y=g(x)$ suggests the same roots as before for $|y|>1$
- But infinite roots for $-1<y<1$
- $x_{n}=y+2 n$ With $\left|g^{\prime}(x)\right|=1$ at each root
- So, $f_{Y}(y)=\sum_{n=-\infty}^{\infty} f_{X}(y+2 n)$ rect $\left[\frac{y}{2}\right]$

$$
g(x)=\sum_{n=-\infty}^{\infty}(x-2 n) \operatorname{rect}\left[\frac{x-2 n}{2}\right]
$$

- If $X: \mathscr{N}(0,1)$, integrate to check if equal to 1

$$
\begin{aligned}
\int_{-\infty}^{\infty} f_{Y}(y) d y & =\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \int_{-1}^{1} \exp \left\{-\frac{1}{2}(y+2 n)^{2}\right\} d y \\
& =\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \int_{-1+2 n}^{1+2 n} \exp \left\{-\frac{1}{2} y^{2}\right\} d y \\
& =\sum_{n=-\infty}^{\infty}\{\operatorname{erf}(1+2 n)-\operatorname{erf}(-1+2 n)\}
\end{aligned}
$$

- All terms cancels, except the second term of the first sum and the first term of the last sum

$$
\int_{-\infty}^{\infty} f_{Y}(y) d y=-\operatorname{erf}(-\infty)+\operatorname{erf}(\infty)=2 \times \operatorname{erf}(\infty)=1
$$

Two variable functions $\mathrm{Z}=\mathrm{g}(\mathrm{X}, \mathrm{Y})$

- Definition

$$
\{\zeta: Z(\zeta) \leq z\} \text { and }\left\{\zeta: X(\zeta), Y(\zeta) \in C_{z}\right\}
$$

- Using shorter notations

$$
\begin{gathered}
\{Z \leq z\}=\left\{(X, Y) \in C_{z}\right\} \\
F_{Z}(z)=\iint_{(x, y) \in C_{z}} f_{X Y}(x, y) d x d y
\end{gathered}
$$

- Other functions include
- $Z=\max (X, Y)$,
- $Z=X+Y, a X+b Y$
- $Z=X^{2}+Y^{2}$
- $Z=\left(X^{2}+Y^{2}\right)^{1 / 2}$

Example 3.3-1: Z=XY

Note: the limits on the second term for the integral over \boldsymbol{x}, is also from a smaller (-ve) number z / y to $+\infty$

- For $\mathbf{z}>0 \quad F_{Z}(z)=\int_{0}^{\infty}\left(\int_{-\infty}^{z / y} f_{X Y}(x, y) d x\right) d y+\int_{-\infty}^{0}\left(\int_{z / y}^{\infty} f_{X Y}(x, y) d x\right) d y$
- The CDF is given by

$$
\begin{array}{r}
F_{Z}(z)=\int_{0}^{\infty}\left[G_{X Y}(z / y, y)-G_{X Y}(-\infty, y)\right] d y \\
+\int_{-\infty}^{0}\left[G_{X Y}(\infty, y)-G_{X Y}(z / y, y)\right] d y \\
\left.G_{X Y}(x, y) \triangleq \int_{Z(z)}=\frac{d F_{Z}(z)}{d z}=\int_{-\infty}^{\infty} \frac{1}{|y|} f_{X Y}(z / y) d x, y\right) d y
\end{array}
$$

- The integral is same for $z<0$ as well, only the range of z is different
- Calculate $f_{Z}(z)$ if X and Y are iid Cauchy variables,

$$
f_{X}(x)=f_{Y}(x)=\frac{\alpha / \pi}{\alpha^{2}+x^{2}}
$$

Sum of two variable: $\mathbf{Z}=\mathbf{X + Y}$

- Proceeding as per definition

$$
\begin{aligned}
F_{Z}(z) & =\iint_{x+y \leq z} f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{z-y} f_{X Y}(x, y) d x\right) d y
\end{aligned}
$$

- Differentiating w.r.t z

$$
=\int_{-\infty}^{\infty}[G_{X Y}(z-y, y)-G_{X Y} \underbrace{(-\infty, y)] d y} G_{X Y}(x, y) \triangleq \int f_{X Y}(x, y) d x
$$

$$
\begin{aligned}
f_{Z}(z) & =\frac{d F_{Z}(z)}{d z}=\int_{-\infty}^{\infty} \frac{d}{d z}\left[G_{X Y}(z-y, y)\right] d y \\
& =\int_{-\infty}^{\infty} f_{X Y}(z-y, y) d y=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y \text { (if } \mathrm{X} \text { and } \mathrm{Y} \text { are independent) }
\end{aligned}
$$

Example 3.3-4

- X and Y are r.v. with

$$
f_{X}(x)=e^{-x} u(x) \quad f_{Y}(y)=\frac{1}{2}[u(y+1)-u(y-1)] \quad Z=X+Y
$$

(a)

(b)
$f_{X}(z-y)=e^{-(z-y)} u(z-y)$

(a)

(b)

Region 2: $\quad-1 \leq z<1$
$f_{Z}(z)=\int_{-1}^{z} f_{X}(z-y) . f_{Y}(y) d y$

$$
=\frac{1}{2} \int_{-1}^{z} e^{-(z-y)} d y=\frac{1}{2}\left[1-e^{-(z+1)}\right]
$$

Region 3: $z \geq 1$
$f_{Z}(z)=\int_{-1}^{1} f_{X}(z-y) . f_{Y}(y) d y$ $=\frac{1}{2} \int_{-1}^{1} e^{-(z-y)} d y=\frac{1}{2}\left[e^{-(z-1)}-e^{-(z+1)}\right]$

Region 1: $z<1$
No overlap between $\mathrm{f}_{\mathrm{x}}(\mathrm{x})$ and $f_{\gamma}(\mathrm{y})$. Hence $f_{z}(z)=0$

(c)

Sanity check: $f_{Z}(z)$ is continuous since there are no delta functions involved in the integration. Check with $\boldsymbol{z}=\mathbf{1}$ in region 1 and region 2 to confirm equality, which should be the case for continuous functions.

What about $\mathbf{Z}=\mathrm{aX}+\mathrm{bY}$

- Let $\mathrm{a}>0, \mathrm{~b}>0, y=\frac{z}{b}-\frac{a x}{b}$

$$
\begin{aligned}
F_{Z}(z) & =\iint_{g(x, y) \leq z} f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} f_{Y}(y)\left(\int_{-\infty}^{z / a-b y / a} f_{X}(x) d x\right) d y
\end{aligned}
$$

Differentiating, w.r.t z

$$
f_{Z}(z)=\frac{1}{a} \int_{-\infty}^{\infty} f_{X}\left(\frac{z}{a}-\frac{b y}{a}\right) f_{Y}(y) d y
$$

- Another way to solve this is to define new r.v.,

$$
V=a X, W=b Y
$$

Then apply $Z=V+W$ and convolve as before.

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{V}(z-w) f_{W}(w) d w \cdots \begin{gathered}
f_{V}(v)=\frac{1}{a} f_{X}\left(\frac{v}{a}\right) \\
f_{W}(w)=\frac{1}{b} f_{Y}\left(\frac{w}{b}\right) \\
f_{Z}(z)=\frac{1}{a b} \int_{-\infty}^{\infty} f_{X}\left(\frac{z-w}{a}\right) f_{Y}\left(\frac{w}{b}\right) d w
\end{gathered}
$$

$\mathrm{Z}=\mathrm{X}^{2}+\mathrm{Y}^{2}$ and $\mathrm{Z}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$

- If X, Y are iid with $\mathscr{N}\left(0, \sigma^{2}\right)$, proceed as before,

$$
\begin{aligned}
F_{Z}(z) & =\iint_{(x, y) \in C_{z}} f_{X Y}(x, y) d x d y \quad \text { for } \quad z \geq 0 \\
& =\frac{1}{2 \pi \sigma^{2}} \iint_{x^{2}+y^{2} \leq z} e^{-\left(1 / 2 \sigma^{2}\right)\left(x^{2}+y^{2}\right)} d x d y
\end{aligned}
$$

- Converting to polar coordinates

$$
\begin{aligned}
& x=r \cos \theta \quad y=r \sin \theta \\
& d x d y \rightarrow r d r d \theta
\end{aligned}
$$

Then $x^{2}+y^{2} \leq z \rightarrow r \leq \sqrt{z}$ and the above equation becomes

$$
F_{Z}(z)=\frac{1}{2 \pi \sigma^{2}} \int_{0}^{2 \pi} d \theta \int_{0}^{\sqrt{z}} r \exp \left[-\frac{1}{2 \sigma^{2}} r^{2}\right] d r=\left[1-e^{-z / 2 \sigma^{2}}\right] u(z)
$$

- Differentiating w.r.t z

$$
f_{Z}(z)=\frac{d F_{Z}(z)}{d z}=\frac{1}{2 \sigma^{2}} e^{-z / 2 \sigma^{2}} u(z)
$$

Multiple functions of R.V.s: $V=g(X, Y), W=h(X, Y)$

- Problem: Compute joint distribution $F_{V W}(v, w)$ from $F_{X Y}(x, y)$

$$
\begin{aligned}
P[V \leq v, W \leq w] & =F_{V W}(v, w) \\
& =\iint_{(x, y) \in C_{v w}} f_{X Y}(x, y) d x d y
\end{aligned}
$$

The region $C_{v w}$ is given by the points x, y that satisfy $\mathrm{y}=\frac{v-w}{2}$

$$
C_{v w}=\{(x, y): g(x, y) \leq v, h(x, y) \leq w\}
$$

- To integrate, express \boldsymbol{x} and \boldsymbol{y} in terms of v and w. (see example 3.4-1)

$$
\begin{aligned}
& F_{V W}(v, w)=\int_{-\infty}^{(v+w) / 2}\left(\int_{x-w}^{v-x} f_{X Y}(x, y) d y\right) d x \\
& f_{V W}(v, w)=\frac{\partial^{2} F_{V W}(v, w)}{\partial v \partial w}
\end{aligned}
$$

Simpler Approach

- In the infinitesimal small region, $\{v<V \leq v+d v, w<W \leq w+d w\}$
- Now, $P[\{v<V \leq v+d v, w<W \leq w+d w\}$ is the probability that V and W lie in the infinitesimal rectangle of area $\partial v \partial w$.
- The image of this area in the $x^{\prime}-y^{\prime}$ plane $\left[P_{1}=(x, y)\right.$

The change in $\mathbf{x}(d x)$ is given by: Rate of change of $\mathbf{x}=\boldsymbol{\phi}(\boldsymbol{v}, \boldsymbol{w})$ along \boldsymbol{v} axis $(\partial \phi / \partial v)$ multiplied by the change in $\boldsymbol{v}(d v)$
The change in $\mathbf{x}=\boldsymbol{\phi}(\mathbf{v}, \boldsymbol{w})$ because of change in \boldsymbol{v} plus the change in $\mathbf{x}=\boldsymbol{\phi}(v, w)$

P_{3}=\left(x+\frac{\partial \phi}{\partial w} d w, y+\frac{\partial \psi}{\partial w} d w\right)

P_{4}=\left(x+\frac{\partial \phi}{\partial v} d v+\frac{\partial \phi}{\partial w} d w, y+\frac{\partial \psi}{\partial v} d v+\frac{\partial \psi}{\partial w} d w\right)\end{array}\right.\)
because of change in w.

Any transformation from $\boldsymbol{v}^{\prime}-\boldsymbol{w}^{\prime}$ plane to $\boldsymbol{x}^{\prime}-\boldsymbol{y}^{\prime}$ plane distorts the infinitesimal region from a rectangle to a parallelogram.

..contd

Recall in single variable case in chapter 2

$$
P[\{x<X \leq x+\Delta x\}] \simeq f_{X}(x) . \Delta x
$$

- Therefore, we can write,

$$
\begin{aligned}
P[v<V \leq v+d v, w<W \leq w+d w] & =\iint_{\mathscr{R}} f_{V W}(\xi, \eta) d \xi d \eta \\
& =f_{V W}(v, w) A(\mathscr{R}) \\
& =\iint_{\mathscr{S}} f_{X Y}(\xi, \eta) d \xi d \eta \\
& =f_{X Y}(x, y) A(\mathscr{S})
\end{aligned}
$$

$$
\text { Note: } P(B)=\iint_{\mathscr{R}} f_{X Y}(x, y) d x d y \neq \iint_{\mathscr{R}} f_{X Y}(\phi(v, w), \varphi(v, w)) d v d w
$$

Because the area (or volume), $d x d y \neq d v d w$

- The area of the parallelogram $\boldsymbol{P}_{1} \boldsymbol{P}_{2} \boldsymbol{P}_{3} \boldsymbol{P}_{4}$ in vector notation is given by

$$
\begin{aligned}
A(\mathscr{S})=\left|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right| & =\left|\left(\frac{\partial \phi}{\partial v} d v \mathbf{i}+\frac{\partial \varphi}{\partial d} \mathrm{j} d v\right) \times\left(\frac{\partial \phi}{\partial w} \mathbf{i} d w+\frac{\partial \varphi}{\partial w} \mathrm{j} d w\right)\right| \\
& =\left|\frac{\partial \phi}{\partial v} \frac{\partial \varphi}{\partial w}-\frac{\partial \phi}{\partial w} \frac{\partial}{\partial o}\right| d v v w
\end{aligned}
$$

- Therefore, the Jacobian وffunctions $\mathrm{x}=\boldsymbol{\phi}(v, w)$ and $y=\psi(v, w)$ is

$$
\left|\tilde{J}_{i}\right|=\operatorname{mag}\left|\begin{array}{ll}
\partial \phi_{i} / \partial v & \partial \phi_{i} / \partial w \\
\partial \varphi_{i} / \partial v & \partial \varphi_{i} / \partial w
\end{array}\right|=\left|\partial \phi_{i} / \partial v \times \partial \varphi_{i} / \partial w-\partial \varphi_{i} / \partial v \times \partial \phi_{i} / \partial w\right|
$$

.. contd

- From above we can write

$$
\begin{gathered}
f_{V W}(v, w)=\frac{A(\mathscr{S})}{A(\mathscr{B})} f_{X Y}(x, y) \\
f_{V W}(v, w)=\sum_{i=1}^{n} f_{X Y}\left(x_{i}, y_{i}\right) \mid \tilde{J}_{i}
\end{gathered}
$$

Jacobian of the transformation $\mathrm{x}=\phi$
(v, w) and $y=\psi(v, w)$

Subscript, i, denotes multiple values of $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ maps to the same (v, w)

Also, Note the definition of $\left|\tilde{J}_{i}^{-1}\right|$

- Using the forward functions $v=g(X, Y)$ and $w=H(X, Y)$

$$
J=\left|\begin{array}{ll}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\
\frac{\partial h}{\partial x} & \frac{\partial h}{\partial y}
\end{array}\right|=\tilde{J}_{i}^{-1}
$$

Example 3.5-2

We are given two functions

$$
\begin{aligned}
& v \triangleq g(x, y)=3 x+5 y \\
& w \triangleq h(x, y)=x+2 y
\end{aligned}
$$

and the joint pdf $f_{X Y}$ of two r.v.'s X, Y. What is the joint pdf of two new random variables $V=g(X, Y), W=h(X, Y)$?

Solution The inverse mappings are computed from Equation 3.4-13 to be

$$
\begin{aligned}
& x=\phi(v, w)=2 v-5 w \\
& y=\Phi(v, w)=-v+3 w
\end{aligned}
$$

Then

$$
\frac{\partial \phi}{\partial v}=2, \frac{\partial \phi}{\partial w}=-5, \frac{\partial \Phi}{\partial v}=-1, \frac{\partial \Phi}{\partial w}=3
$$

and

$$
|\tilde{J}|=\operatorname{mag}\left|\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right|=1
$$

Assume $f_{X Y}(x, y)=(2 \pi)^{-1} \exp \left[-\frac{1}{2}\left(x^{2}+y^{2}\right)\right]$. Then, from Equation 3.4-11

$$
\begin{aligned}
f_{V W}(v, w) & =\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left[(2 v-5 w)^{2}+(-v+3 w)^{2}\right]\right] \\
& =\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left(5 v^{2}-26 v w+34 w^{2}\right)\right]
\end{aligned}
$$

Example 3.5-5

$$
\begin{gathered}
V \triangleq X+Y \\
W \triangleq X-Y
\end{gathered}
$$

The only root to

$$
\begin{aligned}
v-(x+y) & =0 \\
w-(x-y) & =0
\end{aligned}
$$

is

$$
\begin{aligned}
& x=\frac{v+w}{2} \\
& y=\frac{v-w}{2}
\end{aligned}
$$

and $|\tilde{J}|=\frac{1}{2}$. Hence

$$
f_{V W}(v, w)=\frac{1}{2} f_{X Y}\left(\frac{v+w}{2}, \frac{v-w}{2}\right)
$$

TO DO: Compute marginal density $f_{v}(v)$ to obtain the convolution integral under independence of v and w

