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Example

Input Output
X(t,) 205 | Y=1
X)) <0.5 |Y=0

e IfYisaRV, wecan write,

{vy =0} = {X <05}
{Yy =1} = {X > 05}
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e |f X:N(1,1) then we can calculate the probabilities as

o fr(y) =0.31(y) + 0.695(y — 1)

1 0.5
P[Y =0 = P[X < 0.5] = — e 2V dy




Different Views of Functions of RV

First view (Y : Q@ — Ry) . For every { € 2, we generate a number g[X(¢)] £ Y(¢). The
rule Y, which generates the numbers {Y({)} for random outcomes {{ € Q}, is ar.v. with
domain {2 and range Ry C R. Finally for every Borel set of real numbers By, the set
{¢:Y(¢) € By} is an event. In particular the event {{ : Y({) < y} is equal to the event

(¢ glX(Q)] < 9}

In this view, the stress is on Y as a mapping from {2 to Ry. The intermediate role of

X is suppressed.
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View #2

Second view (input/output systems view). For every value of X(() in the range Rx we
generate a new number Y = g(X) whose range is Ry. The rule Y whose domain is Rx and
range is Ry is a function of the random variable X. In this view the stress is on viewing Y’
as a mapping from one set of real numbers to another. A model for this view is to regard

X as the input to a system with transmittance g(-). For such a system, an input x gets
transformed to an output y = g(z) and an input function X gets transformed to an output

function Y = g(X). (See Figure 3.1 — 4.)

{¢:Y(() <y} ={¢: g[X(Q)] <y}
={¢: X(¢) € Cy}

X —> gle) — Y




Example 3.2-1
"

e LetY=2X+3 and X: U(0,1). Find Fv(y)

ol=a=
- f—_———

e Solution: {Y<y}={2X+3<y}={X<3@y-3)} "
fyin) _ Since X's range is 0<X<1, Y's range
Hence C, is the interval (—oo, (y — 3)) and ~ I5(2x0+3=3)to (2x143 = 5)
3 05 - : i
Fy(y) = Fx (%5°) —t
The pdf of Y is ®
dFy (y ) d y—3
— Fy | 2—2
Frlv) dy dy [ * ( 2

4 [
o [{X'< Ay PH{X>A4}]
e Generalization _ |z
o NOTE: Read the text before ex 3.2-2 on discrete r.v.
Since a is negative, the inequality is flipped.
<y ={ax+b<yp={x<2] B e o o e ety

—>Butfora<0,{Y§y}:{aX+b§y}:{aXSy—b}:{X_y%b}:{Xz—A}

F: =P/ X>-A=PX>-A=1-PX<-Al=1-Fx(-A
Y(y) [ a ] [ ‘\] This isonlyt[ruefc; ] X( )
continuous r.v.



Example for a<0

Y=2X+3,a=2,b=3 Y=-2X+3,a=-2, b =3

x:-1.83999874  y:6.6
x:-11.295597 y:-19.591
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/{x’< 7/2}), X3
Fy(y) = P{Y <10}] = P{X < 7/2}] = Fx(7/2) Fy(y) = P{Y <10}] = P[{-2X <y — 3}

= P{X > (10 -3)/(-2)}] = P{X > —7/2}]

P{X > —7/2}] = P{X z@ —1- P{X < ~7/2}] =1 - Fx(7/2)

This is only true for continuous r.v.
because P[X=7/2] does not exist




Example 3.2-5
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(Transformation of PDF’s.) Let X have a continuous PDF Fx (z), which is a strict monotone

increasing function® of z. Let Y be an r.v. formed from X by the transformation
Y = Fx(X).
To compute Fy (y), we proceed as usual:
{Y Sy} = {Fx(X) <y}
={X < Fx'®)}
Hence
Fy (y) = P[Fx(X) <y
= PIX < Fg'(y)]

= / fx(x)dz.
{e:Fx (2)<y}

1. Let y < 0. Then since 0 < Fx(z) < 1 for all ¢ € [~00, 0], the set {z: Fx ()

¢ and Fy (y) = 0.
2. Let y > 1. Then {z: Fx(z) < y} = [~00,00] and Fy(y) = 1.
3. Let 0 <y < 1. Then {z: Fx(z) < y} = {z:2z < Fg*(y)}

and

F;l(y)
Fe(y) = / fx(@)dz = Fx(F5'(y)) = .

-0

0, y<0
Fy(yy=qy, 0<y<1
1, y>1.

(3.2-12)

<y} =

(3.2-13)

Equation 3.2-13 says that whatever probability law X obeys, Y £ Fy(X) will be a uniform

r.v. Conversely, given a uniform r.v. Y, the transformation X 2 FZ*(Y) will generate a r.v.
with PDF Fx (x) (Figure 3.2-5). This technique is sometimes used in simulation to generate
r.v.’s with specified distributions from a uniform r.v.




Example 3.2-2 - Multiple roots of Y = g(X)

e DefineY =X?
e We can write the set of outcomes for the RV Y

{Y<y}={X* <y} ={-m<X< 7}
={-VI<X < gru{X=—-7}

CDF — FY(y) = FX(\/@ - FX(—\/y) + P[X —\/ﬂ] (Continuous RV)

PDF = fy(y) = diy[FY(y)]
_ %ﬁfx(\/:t_/) + %ﬁfx(—\/?)
e IfX:N(0,1)
fr(y) = \/;ﬁe“%yuw%— WHY?




Example 3.2-8 - Multiple roots of Y = g(X)

for 0 <y < 1, the event {Y < y} satisfies
y
{Y <y} ={sinX <y}
={7r——sin"1y<X57r}U{——7r<X§s‘m“1y}. A : \
1 ' i | sin" "y ﬂ—sin_ly
Since the two events on the last line are disjoint, we obtain
Fy(y) = Fx(n) = Fx(m —sin™' y) + Fx(sin™' y) — Fx(-n).
Hence
dFy (y) o —1 1
= = fx(m —sin
1
1 +fx(sin~ y)

fX (m) —~ 9r 1-—y? \ \

' 11 0<y<L \\ oy wnty

T1—y? \y
for—1<y<O0 : .
Yy The red line defines the sety < y)
—m—sin"'y  sinly
A N
y
<

P PN | — | . - | S | _ l 1

{—m—sin' <X <sin '} = Fx(sin 'y) — Fx(—m — sin"'y) — > fr(y) = p . for —1<y<0

1-y




Generalization for roots of Y=g(X)

e Theevent {y<Y <y+dy}can be

written as union disjoint events of ik
r.v. X. y

glx)

e If x; are unique roots of y = g(x)
then the events of X, has the form

fx(x)
o E;={z; <X <z + |dz;|} for ¢ () +ve\\>‘<\ \XL
>

o E;={x; —|dz;| < X < x;}for ¢ (x) — ve —=232ZZ 7
@) And P [EZ] == fX (xl) |d$2| x1 _ |dx1| _x2 + 'dX2|

Py<Y dy| =
e Ply<Y <y+dy fz(y)ldyl /P[UE'Z-]
- fo (z;) |de; |

d.l‘,'

dy

dy

o | fr(y) =0, fx (@) I S N VAL ACH

= >y Ix (xi)

Note the
modulus for ¢’ ()




Example 3.2-9

e Theroots in example 3.2-8 were, | fory > 0are z; =sin 'y, 2y =7 —sin "' y

At z; = sin~! y we get dg/dzx|,_, = cos(sin™ y)

@ = cos(7r —gin~ ! ) = in~ ! i in (sin "~

e — y) = cos 7 cos(sin y) + sin 7 sin(sin y) .

=T
2 y
= — COS (sin“1 y) 9
V1 — y?
dg dg . — 2

[ % - % - - ]- y

Practice - Find pdf of Y = cos(X) using the same principle?




Example 3.2-11

g(x)
o Weknow fy(y) = Sty fx (@) /19 (z:) 4
-1 i
e Find roots of y=g(x) i : %
o Thus, ¢(xz)=0for|z|>1,andg (z) =1for —1<2z<1 77777 1
g(z) =0, |a|2=1
o Fory>1landy < —1thereare norealrootstoy — g(z) =0 — fy(y) =0 P —

o For -1<y<1, |¢()=1— fr(y) = fx(y)

o If X:.4(0,1)

B 0, yl > 1
fY(y) - (2#)‘1/2 exp{_%yz} + 0.3175(3/), -1l<y<l1

Justification: This adjustment is required

PlY =0|=P[X > 1]+ P[X < —-1] because when g'(x) =0 it is a flat region in
=(1-P[X <1]))+ P[X < —1]] y=g(x). So, for any x in that flat region the y
= (1 —{1/2+erf(1)}) + (1/2 + erf(-1)) values are identical. This will create a
—1/2 —erf(1) +1/2 — erf(1) probability mass at that value of y. The
—1—2.erf(1) mass is equal to the probability of the

event X falls in the flat area. In this case

=1—2 x 0.34134 (From Table 2.4-1 in text) X>1 and X<-1




Infinite roots - Example 3.2-12

e The excursions of y = g(z) suggests the same roots as before for [y > 1

glx)

e Butinfinite roots for -1 <y <1 e ol I Y B S S ly
o x, =y+2n With |¢(z)] =1 at each root j/{i /21 /i /E /i//i !
e SO, fy(y)=>," . fx(y+ 2n)rect [%] %=y

g(x) = >t oo (T — 2n)rect [“’—22”}

o IfX:.#(0,1), integrate to check if equal to 1

/_: fr(y)dy = % f: /_1 exp{—%(y+2n)2}dy

27 n=—00

1 00 /1+2n { 1 2}
= — expy — Y rdy

V2T n;oo ~1+2n 2

— i {erf(1 + 2n) — erf(—1 + 2n)}

n=—oo

® All terms cancels, except the second term of the first sum and the first term of the last sum

ffooo fr (y)dy = — erf(—o0) + erf(oo) = 2 x erf(co) =1




Two variable functions Z = g(X,Y)

e Definition
{¢:Z(¢) < z}and {¢: X((),Y(¢) € C.}

Noise Y
e Using shorter notations l
{Z <2 ={(X,Y)eC.} SlgnalX D ATraang el e
Fz(z) = ff(w,y)ecz fxy (z,y)dzdy amry

e Other functions include " /

o Z=max(XY), v

o Z=X+Y, aX+bY X

o Z=X+Y? X

o 7 = (X2+Y2)1/2




Note: the limits on the second term
Exam ple 3 . 3 - 1 : Z:XY for the integral over x, is also from a

smaller (-ve) number z/y to +e

—

e Forz>0 Fz(z)= [ (fff;Z fxy (%y)dw) dy + ffoo (f;oy fXY(iL’,y)dm) dy

’
)
%

/////// ‘ / .

777

e The CDF is given by

%47
v
7

Fy(z) /0 " (Cxr (2/9,y) — Gy (—00,)) dy

Gxvtz [ fXY(‘””’y)dm//io [Gxy (00,y) — Gxy (2/y,y)] dy %////%
_dFg(2) (™1

fz02) b /_OO meY(Z/y, y)dy

e The integral is same for z<0 as well, only the range of z is different

e Calculate fz(2)if Xand Y are iid Cauchy variables,

fx(@) = fr(z) = 22




Sum of two variable: Z = X+Y y

e Proceeding as per definition 7k % y=z-x
vy e

= /_oo ( _;nyY(x y)dm) dy //

= [ 1xr(e—9) - Gxr (ool dy

\ny(w,w 2 / Fxy(z,y)dz

b4 X

e Differentiating w.r.t z

fz(2) = dF;z(z) = /oo d —|[Gxy (2 —y,9)] dy

. / fxy(z—y,y)dy = / fx(z—1vy)fy(y)dy (if X and Y are independent)

_—7_

This is called the convolution equation. Flipped image of
fly) and shifted to the left by z units gives, f,(-y+2)




Example 5.3-4

e XandyY arer.v. with

- 1
fx(z) = e "u(z) fr(y) = slu(y +1) —u(y — 1)] Z=X+Y
| Region1: z < 1
1 fx(y, : :fx(Z"Y)
: ! fuly) : No overlap between f,(x) and f(y).
1 S fyly) i_, i i 2 Hence f(z) =0
I i 2 = 1 y
i 0.368 | \ X
- i L ! ion2: —1<z2<1

o | \>/ My Region 2: z =
| 7 Ly 12 f2(2) = [2, fx(z—v)- fr (¥)dy
\ ! 1 ! 1 2 (a1 1 (2

! ok -1 z 1 y —5f_1e( y)dy—§[1—6(+1)]

| ! (b)

| Flipped image of

=~ 17 shiftedto !  Folzyh

i the left by z units | : fyly) ! Region 3: z>1

I | 2 :

i i : LT 2@ =L fx(z ) fr(dy

z 0 y i -1 B 1 75 S %f—ll e—(z—y)dy _ %[e—(z—l) _ e—(z—i—l)]

Sanity check: f,(z) is continuous since there are no delta functions involved
in the integration. Check with z= 1 in region 1 and region 2 to confirm
equality, which should be the case for continuous functions.




What about Z = aX+bY

ax

e Leta>0,b>0, y= % 5

TN

\
/17 %

QIN

)
Differentiating, w.r.t z /

=L (2 ) ey

e Another way to solve this is to define new r.v.,

V=aX,W =bY

7

Then apply Z = V + W and convolve as before.

— fooof z —w) fw (w)dw fW(w):%fY >

fz(2) = = [ fx (55°

Substitute w = by to get the integral as above




Z=X2+Y2and Z = (X2+Y?) 2

e IfX)Y areiid with #(0,0?), proceed as before,

Fz(z) = // fxv(z,y)dedy for 2z2>0
(z,y)eC.

= 1 // e—(1/202)(m2+y2)dmdy
2702 z2+y2<z

e Converting to polar coordinates

x=rcosf y=rsinf
dxdy — rdrdf
Thenz? +y? <z—r< /7 and the above equation becomes

Fz(2) = =X [ df fo‘/z 7 exp [——ﬁ?j]dr = [1 - 6“2/2"2] u(z)

2o

e Differentiatingw.r.t z

dFy(z
fZ(z) _ iz( ) _ 2(172 e—z/202u(z)




Multiple functions of R.V.s: V=g(X,Y), W = h(X,Y)

e Problem: Compute joint distribution Fyy (v, w) from Fxy (z,y)
Lower limit for
the integration

P[VS v, W < w FVW v w) v over y = x-w

// fXY z,y)dzdy
(z,y)e X—y=w

The region C,,, is given by the points x, y that satisfy /4

Cuw = {(@9)  9(2,1) < v, h(a,) < ) ////7/’ o
e To integrate, express x and y in terms of // R

v and w. (see example 3.4-1) '

Upper limit for
the integration
over y = v-x

Fyw (v, w) f(ww ? (f fxy(z,y dy) dx

2
f W('U ’lU) — 0" Fyw (v,w) Study the integration
4 ’ Ovdw from the text




Simpler Approach

e In the infinitesimal small region, {v <V <v+dv,w < W <w + dw}

o Now, P[{v<V <v+dv,w<W < w+ dw}|is the probability that V. and W
lie in the infinitesimal rectangle of area Jvow.

e Theimage of this area in the X-y' plane [ p, = (z,y)
| /
The change in x (dx) is given by: — T B=(z+ %dv, Y+ a—¢dv)
Rate of change of x= ¢(v,w) along v axis v v
. . . _J 8 8
(dp/av) multiplied by the change in v (dv) P, — (w+ 3¢ dw,y + a_:idw)
The change in x= ¢(v,w) because of P, = (w + %dv + %dw, + 3_¢dv 4+ —¢dw)
change in v plus the change in x= ¢(v,w) _ Ov ow Ov ow
because of change in w. —
v v’ v = Constant
v+ dv=Constant ANy transformation
from v-w’ plane to x"-y’
w+dw X .
\\gz\ w+dw = Constant Plane distorts the
" N\ infinitesimal region
from a rectangle to a
w = Constant parallelogram.

v v+ dv v

V= g(may) _ L = ¢(U7 w)
w=h(z,y) ~~—__— y=1(v,w)




..contd

Recall in single variable case in chapter 2
' Pz < X <z + Az}| ~ fx(z). Ax
e Therefore, we can write,
Po<V <v+dvw<W <w+dw| = // fvw (&, m)dédn
= fVW v w)A(W)

-/ / Py (6, m)dedn

= fxvy(z,y)A(S)

Note: P(B) = [[,, fxv (z,y)dzdy # [[, fxv(¢(v,w), o(v,w))dvdw
— Because the area (or volume), dzdy # dvdw

e The area of the parallelogram P P,P.P,in vector notation is given by

— —
A(S) = |PiP, x P, P

- ](?—afde %jdv) X (f’—ajider %jdw)}

96 %0 _ 99 Ov ‘ dvdw

B Ow ow Ov

e Therefore, theJacobian'yf/functions x=¢(v,w) and y=y(v,w) is

Opi/0v  Op;/Ow

7 = mag|

( = |8¢; /Ov x Bp; |Ow — Byp; [Ov x ;| Ow|




.. contd

e From above we can write

A(S
fyvw (v, w) = ﬁ xy (2, )

Jacobian of the
transformation x=¢
(v,w) and y=y(v,w)

Subscript, i, denotes
multiple values of (x.y.)

fow (v,w) = S0 Fxy (i, y) |/

maps to the same (v,w)

e Using the forward functions v=g(X,Y) and w= H(X,Y)
o9 9
Oz 0 =—1
J=1 o BZ =Ji

9y

Also, Note the definition of

J!




Example 3.5-2

We are given two functions

v 2 g(z,y) = 3z + by

w S h(z,y)=z+2y
and the joint pdf fxy of twor.v.’s X, Y. What is the joint pdf of two new random variables

V = g(X,Y), W = h(X,Y)?

Solution The inverse mappings are computed from Equation 3.4-13 to be

z = ¢(v,w) = 2v — Sw

y = ®(v,w) = —v + 3w.

Then
o 0o 0P 0%
5o w8 T haw =S
and
T 2 -5
|J} = mag 213 l—l.

Assume fxy(z,y) = (27)~! exp[~1(z? + ¢?)]. Then, from Equation 3.4-11

1
—— eXp

frw(v,w) = =

le
= — eX
27rp

-“%[(20 — 5w)® + (v + 3w)2]]

[ 1
--2-(5'u2 ~ 260w + 34w2)} ,



Example 5.5-5

The only root to

sy //7/

and |J| = %. Hence

Practice examples at the end of Chapter 3

\\

2

__aw

TO DO: Compute marginal density
f,(v) to obtain the convolution integral
under independence of v and w




