Chapter - 4:
Expectation and Moments

Aveek Dutta
- Assistant Professor —
Department of Electrical and Computer Engineering
University at Albany
Fall 2019

Images and equations adopted from:
Probability and Random Process for Engineers (4th Edition) - Henry Stark and John W. Woods. Copyright by Pearson Education Inc



Mean - two views

Mean is the the number z that °
minimizes the summed
distance-square distance from all

the points in the set.
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Variance is the square of standard ®
deviation
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If an experiment is repeated N
times with the rv. X taking M
distinct values x., n. times, then for
large N the average is given by
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Definition: The expected value of a
discrete rv X taking on values x;
with PMF P,(x.)

E[X] = Y, #: Py (z:)
For rv with pdf f,(x)
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Expected value of Gaussian

Let X: N(u,0?). The expected value of X is
e 1 1 /z—p\?
Bl X] = / Tl ———=expf{—= ( ) dx.
Let z 2 (z — u)/o. Then

E[X] = %5;/_2 2e" 3 dz + (-\/-15-_7}- Lx e-%zzdz).

The first term is zero because the integrand is odd, and the second term is u because the
term in parentheses is P[Z < oo] for Z: N(0,1). Hence

E[X)=p  for X:N(p,o?).




Riemann Sum approximation of an integral

Theorem f: f(@)dz = limyag -0 Yoiy f (2}) Az

e The expected value of Y=g(x) is given by

¥
0
E[Y] = [, 4(2) fx(z)d
e Proof:if xj(’f) are roots of yj-g(x)=0, then )
{5 <Y <y + Ay} = UL, {off < X <2 + 2} ,,,,
Z}opr)]agrtgi(;l)’l(}ss !—' n 0 XM x4 A X —|Ax@) @ X0 0+ Ax0 X
ElY] = / yfy(y dy = Zyij (yj)Ay;
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(Reunann sum approximation of integrals)
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All .
s g sum |59 (05) Pl < X < 21+ ] variables z=g(X, )
=" gl@)) fx(2;)Ac; _ /
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Linearity of E[ ] operator

e Linear over functions of rv X, g(x)
B(xY (0] = % (XY (X)) fx(2)da
=Y [ a(X) fx (2)de = Y7, Elg:i(X))]
e Linear over addition of multiple variables as well

Bx+Y)= [ [~ @+ oo dedy

=f:x (/: ny(a:,y)dy> dw+[:y<[: fxy(:c,y)dw) dy

— E[X] + E[Y]

e Linear over sum of N rv, X1,X2,X3,....

E [sz\; Xi] - Zz]il E [Xz]




Conditional Expectation (Avg of a subset)

Using Bayes’ rule

’ : A
Consider a continuous r.v. X and the event B = {X > a}.
O /

Fxp(z|X > a) = { I:’x(x) — Fx(a)

|
1 Frla) ' z 2 a. 5
Hence ] :
0, P : o
x| X > a) ={ fx(z) —
1- Fx(a), z2a. X
and _
100
ElX|X > a] = '/; =ix(e) do __ J6d me (CE)dCE 1002652
) R d - rloo d ~ 2x(100—65)
]; fx(2) dw 65 fx(z)dz _ 895




Definition

Conditional Probability that {Y= =y}
occurs given {X=x} has occurred

e IfX, Y arediscrete /

EY|X =] =,y Pyix (yjlz:)

e We can derive a formula for E[Y]

Y] =) uPr(u)

Definition of total probability as a
sum of disjoint conditionals of
{X=x.}. Note the change in index of
the summation

e Similarly, for continuous rv, |[E[Y|X = z] = [*_ yfyvix (y|z)dy

Since, E[Y] = [%_ [* yfxy (z,y)dzdy — Nice trick to add a new rv y into
- - the integrand by using the
definition of marginal density
- [ @) [ / nyyX(ylx)dy] &z
—00 —00

> Alternate method to calculate
= / ElY|X = z|fx(x)dx — —— ElY]lintermsof fix)
s




Properties of Conditional Expectation

1. [EY] = BE[V|X]

We know that, Also, when Y=g(X), we can write
By) = [ EVX @) BlY) = [ lgle)ix(e)do

o Using the similarity between the two, we can write E[Y] = E[E[Y|X]]

o Inner expectation is with respect to Y and outer with respect to X

2. IfXand Y are independent, then [E]Y|X]| = E[Y]
We know, E[Y|X =z] = [* yfyx(ylz)dy
o But, fxy(z,y) = fy|X(y|a:)M) = fy(y).w if X and Y are independent
o Hence E[Y|X =z|= [ yfr(y)dy = E[Y]

3. |E|Z|X]| =E|E|Z|X,Y]|X]

®  frx(z, a:) /‘ st fzxY(Z -C:y)dy f [To, Fz1xv (2], y) Fxv (=, y)dydz

/ / zfzxy zlm,y)fyw(y|m)dZdy f dyfwx(ylﬂ-‘)/ zfzxy (2|2,y)dz = E[E[Z|X,Y]|X = z|

oo -0




Example 4.2-3

Let X and Y be two zero-mean r.v.’s with joint density

1 x? +y? — 2pxy)
z,Y) = ————m==—=exp| - & 1 4.2-16
fXY( y) 271'0'2\/1—:;2— p( 202(1 "‘,02) |P| ( )

We shall soon find out (Section 4.3) that the pdf in Equation 4.2-16 is a special case of
the general joint Gaussian law for two r.v.’s. First we see that when p # 0, f xy(2,y) #
Fx(z)fy (y); hence X and Y are not independent when p # 0. When p = 0, we can indeed
write fxy(z,y) = fx(2)fy(y) so that p = 0 implies independence. For the present, however,
our unfamiliarity with the meaning of p (p is called the normalized covariance or correlation
coefficient) is not important. From Equations 2.6-34 and 2.6-35 it is easy to show that X
and Y are zero-mean Gaussian r.v.’s, that is,

(o) = fo @) = —mge™27"

However, the conditional expectation of ¥ given X = x is not zero even though Y is a
zero-mean r.v.! In fact from Equation 4.2-9:

frix(ylz) =

1 (y — pz)?
Nl ("m) | gl

Hence fy)x(ylz) is Gaussian with mean pz. Thus
o0

E[Y|X = 1] = ] yfyix(vl) da

-0

= pz. (4.2-18)




Example 4.2-5

( I%ontmuatlon of Example 4.2-4.) Let X, X3, X3 denote mult1nom1al random variables.
en

n!
£1,.82, 23
531!172!(1}3!1)1 P2 P

where n = z1 + x3 + x3 and py + pa + p3 = 1. We wish to compute E[X;|X; + X2 =y]. <€——

PX[Xl =12, Xe = 22,X3 = 1133] =

Solution As in the previous example, we need to compute P[X; = z1|X; + Xz = y]. We
write

PXy =z, X1 + Xs = 9]
PXi+Xp=y]

Note‘that for the multinomial, the event {{: X1(¢) + X2(¢) = y} N {{: X1(¢) = =1} is
identical to the event {¢: X1(¢) = x1, X2(¢) = y — 21, X3({) = n — y}. Hence

PXi=z1|X1 + Xa =y] =

P[X1=:1:1,X2=y—361,X3=n"?/]
P[X3=n—y

Py =z|X) + Xo =y] =

n!
s Y-
= zp)itn —g)i°L 72

Ps

n/ ”
NG

= (:;’ )pf‘p’é'“‘ (p1+p2)7".
1
Finally, using
EXi| X+ Xo =y] = Za‘1P[X1 =21|X1 + X2 = 9

zy

we obtain that m
EXi|Xi+Xo=yl= 1
1l 2= p+p2
We leave it to the reader to compute that
P2
EBlXo| X1+ Xo =9y = A
[Xo] X1+ X2 =y] =y e



Moments

e The r' Moments of a RV X is defined as,,

m, = E[X"| = [7._ 2" fx(z)dz, wherer =0,1,2,3,...

m, =), z; Px ()

e The rt"Central Moments are defined as,

¢, = E[(X—p)"] wherer=0,1,2,3,...

¢, = Zz (wz B ,u)rPX (wz) Generalizatiorl  — Z;':O (:) (—1)i,uimr—i
e Animportant derivation

o> = E|[X — u?| = E | X?| — E2uX]| + E |?]
E [X?] — 2uE[X] + 12
E :XZ] o ,LL2
e




Joint Moments

e The ij" moments of RV X and Y is defined as,

=F XZY]

/ / Z y]fXY z,y)dzdy

— Zl Zm w,liy]mPX,Y (xla ym)
e The ij*" central moments of RV X and Y is defined as,

o The order of the moment is i+j
cij = E [(X X)i(Y — Y)J’]
Mo = E [Yz] Cp2 = E [(Y - Y)z]
moy = F [Xz] coo = FE [(X - X)2]
my = E[XY] ¢y = E[(X — X)(Y - V)] = E[XY] — XY £ Cov[X,Y]

A C
e Correlation coefficient is defined by P — \/C;Ol—c(m




Example 4.3-4 - Self Study

e Application of Cov(X)Y) in Linear regression




Chebyshev Inequality

e Theorem: Let X a rv with mean X and variance o>. Then for any 9

PIX - X| 8<%

e Proof:

azé/_w(m—X)zfX(m)de/ (= X)fx(z)dz

00 |z—X|>d

> § / fx (z)dz
|z—X|>6
> §*P[|X — X| > §]

Since, {|[X - X|>8U{|X-X| <=0

Thus, it follows,

0.2

P[\X—X|<5]z1—5—2




Markov Inequality

e Theorem: Consider a rv X with non-negative pdf, f,(x) = 0, for x<0, the
Markov inequality applies as

pix > 5 < 2

e Proof:

E[X]| = /0*00 zfx(x)dr > ‘/500 zfx(x)dx > 5/500 fx(z)dx
> §P[X > 4]




Schwarz Inequality

e Theorem:ForrvXandY |Cov’(X,Y)<E[(X - X)?|E[(Y -Y)?]

e Proof: Consider the non-negative expression
E[(MX-X)-(Y-Y))?| >0
Expanding the expression that is quadratic in A
Q(X) = Ny + coa — 2Aeq; >0
The quadratic equation to have at least one real root, the discriminant satisfies,

Cov(X,Y)
2 2

2
C11 Co2 2
— — =<0 —> ¢y < Cp2.C0 —
C20 C0 —

O'X.O'Y




(Weak) Law of Large Numbers

e LLN defines the conditions under which the sample mean converges to
ensemble mean.

e IfX, X, ...X beiidrv, then the sample mean estimator is given by

~ A1 n
un:ﬁZilei

e Chebyshev inequality is used to show that fiis a perfect estimator of £x

. 1 ¢ A 1 i
Bl = 1 Y BLX: Varl,] = - Var zx]
1 1
= ~(5) s

— KUx = lagf

n
e Therefore, from Chebyshev inequality we get,

Plli, — px| > 8| < o% /nd?

limy o0 P [l — fix] = 9] = 0
s




Moment-Generating Functions

e MGEF is used to completely characterize a PDF (similar to Laplace
transform)

e |Iftisacomplexvariable, the MGF for pdfs is defined as

6(t) £ E [¢X]

o0 0(t) = >_; € Px (x:)
:/ e fx(x)dx
e Expanding the exponent
tX)? tXxX)"
E [e”] :E!1+tX+ ( 2!) A n!) +]
t2 t"

=1+tu+—me+...+ —m, +...
2! n!

e |f the moments M(t) exists, then it can be computed as

k
54y )

my = M (0) = o

fork=1,2,...
=0



Chernoff Bound

e Upper bound on the tail probability P[X > a

e Proof:

PX > a] = /00 fx(z)dx

/ fx(z)u(z — a)dz

Noting that u(z — a) < =) for any t > 0 we can write,

P(X >a] < [T fx(z)e'®"Ddz = e~ Mx(t)

e The tightest bound is found when the above expression wrt t.




Characteristics Functions

e Characteristics functions are analogous to Fourier transform of pdf f,(x)
by replacing t with jo

Py (w) eJ“’X]

/ fx(z)e’* dz

Discrete form  ®x(w) = >, /% Px (z;)

INVERSIOIL fZ(z) _ % f_oooo (I)Z(w)e—jwzdw

e [t can be used to calculate the convolution product for sums of rv Z = X+Y
f fx, (z)fx,(z — z)dz
®z(w) = ffo e | [7 fx (2) fx, (z — x)dx| dz
= f_oo fx, (z f_oo fx,(z— :U)ej“’zda:dz

e Change the variable a = z — xwe obtain

Pz (w) = Px, (w)Px, (w)



Joint Characteristics Functions
e Similar to characteristic functions of single rv, the joint CF is given by

®x,. xy (wi,wa,...,wn) =F [eXp(jZ’]ll wiXi)]

e The pdfis obtained by the inverse transform

(2m)"

X exp (—ijimi> dwidwy . ..dwy

=1

1 00 o0
fX1---XN (:El,...,icN)Z / / ¢X1~~~XN (wl,...,wN)
—00 —00
N

e See example 4.7-8




Central Limit Theorem

e Theorem 1:Let X, X, ...X be n mutually independent (scalar) random

variables with CDF Fx, (z1), Fx, (z2),... Fx, (z,) such that
px, = 0and Var(X;) = 02 and let s, =02 +--- + 2. Then if for given

e > 0, and large n, o, < €s,,, the normalized sum Z, £ (X; +...+ X,.) /sn

converges to the Standard Normal CDF. That is |lim,, ,., Fz (z) = 1/2 + erf(2)

e Proof for a special case: if ux, = 0 and Var(X;) = 1, then Z, 2 1 Yo X;

B

tends to Normal in the sense that its CF, satisfies
2

lim, oo 7 (W) = e v




General Case

A A 7 . .
o Llet Z; = (X; —u)/o and ¢z(v) = E [e¢™% |then Z.has zero mean, unity variance.
oy, (w) := E [¢/"]
w n
=E |exp|j— Z;
[ ( Y= )
B [I o552
I B o (552
= Hz:l Yz (\/ﬁ)
- er(2)
For any complex &, we can write ef =1+ ¢+ 1€ + R(¢) e
Y\ _ g [z Jim (142" = tim ¢
ThUS, Yz (\/ﬁ) =E [BJ ] _ i 1n(1+1)=eli mmmmm %
w 1 w 2 w o
= ) —— 7 — 79— g R 31— Zz |Apply L'Hopital's Rule:
E 1+]\/7_127,+2(J\/5Z) -+ (Jﬁ ) .
The remainder term by seo T limee =
4 . . t f =e n =e T o=
Since, Z,has zero mean, unity variance higher orders of n herfore,
Pz (%):1—%'%+E[R(j%& ] / a+3r-e

e ey, (w) = 902(1)” ~ (1 - wn/2) L e /2

oz () ~1- 5




