Chapter - 5: Random Vectors

Aveek Dutta
Assistant Professor
Department of Electrical and Computer Engineering University at Albany
Fall 2019

PDF/CDF

- Groups of RVs are studied in form of vectors called random vectors
- Bold Uppercase letters denote random vectors and matrices
- Bold Lowercase letters denote deterministic vectors, e.g., values a random vector assumes
- Event ζ is mapped to the real line by multiple $\mathrm{RVs}, X_{1}, X_{2}, \ldots ., X_{N}$, which forms and N -dimensional vector $X(\zeta) \triangleq\left[X_{1}(\zeta), X_{2}(\zeta), \ldots ., X_{N}(\zeta)\right] \in R^{n}$
- X can be real or imaginary.
- Therefore, the CDF of a random vector is

$$
F_{\mathbf{X}}(\mathbf{x}) \triangleq P\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right]
$$

- By defining $\{\mathbf{X} \leq \mathbf{x}\} \triangleq\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right\}$, we can write $F_{\mathbf{X}}(\mathbf{x}) \triangleq P[\mathbf{X} \leq \mathbf{x}]$
- Also, certain and impossible event and the pdf can be written as

$$
\begin{aligned}
F_{\mathbf{X}}(\infty) & =1 \\
F_{\mathbf{X}}(-\infty) & =0
\end{aligned} \quad f_{\mathbf{X}}(\mathbf{x}) \triangleq \frac{\partial^{n} F_{\mathbf{X}}(\mathbf{x})}{\partial x_{1} \ldots \partial x_{n}}
$$

- Also observe that
$f_{\mathbf{X}}(\mathbf{x}) \Delta x_{1} \ldots \Delta x_{n} \simeq P\left[x_{1}<X_{1} \leq x_{1}+\Delta x_{1}, \ldots, x_{n}<X_{n} \leq x_{n}+\Delta x_{n}\right] \longrightarrow$

$$
\left\{\begin{array}{l}
F_{\mathbf{X}}(\mathbf{x})=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{n}} f_{\mathbf{X}}\left(\mathbf{x}^{\prime}\right) d x_{1}^{\prime} \ldots d x_{n}^{\prime} \\
F_{\mathbf{X}}(\mathbf{x})=\int_{-\infty}^{\mathbf{x}} f_{\mathbf{X}}\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime} \\
\text { More generally, with } B \subset R^{N} \\
P[B]=\int_{\mathbf{x} \in B} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
\end{array}\right.
$$

Conditional and marginals

- Conditional CDF of \mathbf{X} given B

$$
\begin{aligned}
F_{\mathbf{X} \mid B}(\mathbf{x} \mid B) & \triangleq P[\mathbf{X} \leq \mathbf{x} \mid B] \\
& =\frac{P[\mathbf{X} \leq \mathbf{x}, B]}{P[B]} \quad(P[B] \neq 0) \quad \longleftrightarrow \quad F_{\mathbf{X}}(\mathbf{x})=\sum_{i=1}^{n} F_{\mathbf{X} \mid B_{i}}\left(\mathbf{x} \mid B_{i}\right) P\left[B_{i}\right]
\end{aligned}
$$

- Conditional densities are given by

$$
f_{\mathrm{X} \mid B}(\mathbf{x} \mid B) \triangleq \frac{\partial^{n} F_{\mathrm{X} \mid B}(\mathrm{x} \mid B)}{\partial x_{1} \ldots \partial x_{n}} \longrightarrow f_{\mathrm{X}}(\mathbf{x})=\sum_{i=1}^{n} f_{\mathbf{X} \mid B}\left(\mathbf{x} \mid B_{i}\right) P\left[B_{i}\right]
$$

- Joint distribution and densities -

$$
F_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=P[\mathrm{X} \leq \mathrm{x}, \mathrm{Y} \leq \mathrm{y}] \longrightarrow f_{\mathrm{XY}}(\mathbf{x}, \mathrm{y})=\frac{\partial^{(n+m)} F_{\mathbf{X Y}}(\mathbf{x}, \mathrm{y})}{\partial x_{1} \ldots \partial x_{n} \partial y_{1} \ldots \partial y_{m}}
$$

- Marginal pdf by integrating joint pdf

$$
f_{\mathbf{X}}(\mathrm{x})=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}) d y_{1} \ldots d y_{m}
$$

- Marginals for $\mathbf{X}^{\prime} \triangleq\left(X_{1}, \ldots, X_{n-1}\right)^{T}$

$$
f_{\mathbf{X}^{\prime}}\left(\mathbf{x}^{\prime}\right) \triangleq \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) d x_{n} \text { where } \mathbf{x}^{\prime} \triangleq\left(x_{1}, \ldots, x_{n-1}\right)^{T}
$$

Multiple Transformation of RV

- If $\boldsymbol{X} \triangleq\left[X_{1}, X_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{N}}\right]$ is a random vector and define n functionally independent real functions as another $\mathrm{rv} \boldsymbol{Y} \triangleq\left[\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots ., \boldsymbol{Y}_{\boldsymbol{N}}\right]$,

$$
\begin{gathered}
y_{1}=g_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
y_{2}=g_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
\vdots \\
y_{n}=g_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \quad \\
\vdots \\
\vdots \\
x_{n}=\phi_{1}\left(y_{1}, y_{2}, \cdots, y_{n}\right) \\
x_{2}=\phi_{2}\left(y_{1}, y_{2}, \cdots, y_{2}, \cdots, y_{n}\right)
\end{gathered}
$$

- Following the discussion in case of transformation of two rv in chap - 3, except the infinitesimal hypervolume is defined in n-dimensional space,

$$
A \triangleq\left\{\zeta: y_{i} \leq Y_{i} \leq y_{i}+d y_{i}, i=1, \ldots, n\right\}
$$

- Jacobian determinant is given by

$$
\begin{gathered}
\left.\tilde{J}=\left|\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial y_{1}} & \cdots & \frac{\partial \phi_{1}}{\partial y_{n}} \\
\vdots & & \vdots \\
\frac{\partial \phi_{n}}{\partial y_{1}} & \cdots & \frac{\partial \phi_{n}}{\partial y_{n}}
\end{array}\right|=\left\lvert\, \begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial g_{n}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}}
\end{array}\right.\right)^{-1}=J^{-1} \\
f_{\mathbf{X}(\mathbf{y})=f_{\mathbf{X}}(\mathbf{x})|\tilde{J}|=f_{\mathbf{X}}(\mathbf{x}) /|J|}
\end{gathered}
$$

If \boldsymbol{r} roots exists for $\mathbf{Y}=\mathrm{g}(\mathbf{X})$, then multiple Jacobians define the ratio of disjoint hypervolumes,

$$
f_{\mathrm{Y}}(\mathbf{y})=\sum_{i=1}^{r} f_{\mathrm{X}}\left(\mathbf{x}^{(i)}\right)\left|\tilde{J}_{i}\right|=\sum_{i=1}^{r} f_{\mathrm{X}}\left(\mathbf{x}^{(i)}\right) /\left|J_{i}\right|
$$

where, $\left|\tilde{J}_{i}\right| \triangleq \mathrm{V}_{x}^{(i)} / \mathrm{V}_{y}$

Example 5.2-1

It has four solutions, with four disjoint hypervolumes

- We are given three functions

$$
\begin{aligned}
& g_{1}(\mathrm{x})=x_{1}^{2}-x_{2}^{2} \quad \text { OR } \quad \begin{array}{l}
y_{1}=x_{1}^{2}-x_{2}^{2} \\
g_{2}(\mathrm{x})=x_{1}^{2}+x_{2}^{2} \\
g_{3}(\mathrm{x})=x_{3}
\end{array} \quad \longrightarrow \quad y_{2}=x_{1}^{2}+x_{2}^{2} \\
& y_{3}=x_{3}
\end{aligned}
$$

Given

$$
f_{\mathbf{X}}(\mathbf{x})=(2 \pi)^{-3 / 2} \exp \left[-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right]
$$

$$
\begin{array}{ll}
x_{1}^{(1)}=\left(\left(y_{1}+y_{2}\right) / 2\right)^{1 / 2} & x_{1}^{(2)}=\left(\left(y_{1}+y_{2}\right) / 2\right)^{1 / 2} \\
x_{2}^{(1)}=\left(\left(y_{2}-y_{1}\right) / 2\right)^{1 / 2} & x_{2}^{(2)}=-\left(\left(y_{2}-y_{1}\right) / 2\right)^{1 / 2} \\
x_{3}^{(1)}=y_{3} & x_{3}^{(2)}=y_{3} \\
& \\
x_{1}^{(3)}=-\left(\left(y_{1}+y_{2}\right) / 2\right)^{1 / 2} & x_{1}^{(4)}=-\left(\left(y_{1}+y_{2}\right) / 2\right)^{1 / 2} \\
x_{2}^{(3)}=\left(\left(y_{2}-y_{1}\right) / 2\right)^{1 / 2} & x_{2}^{(4)}=-\left(\left(y_{2}-y_{1}\right) / 2\right)^{1 / 2} \\
x_{3}^{(3)}=y_{3} & x_{3}^{(4)}=y_{3}
\end{array}
$$

- The Jacobian is given by $J=\left|\begin{array}{ccc}2 x_{1} & -2 x_{1} & 0 \\ 2 x_{1} & 2 x_{2} & 0 \\ 0 & 0 & 1\end{array}\right|=8 x_{1} x_{2}$
- Note, $\left|J_{1}\right|=\left|J_{2}\right|=\left|J_{3}\right|=\left|J_{4}\right|=4\left(y_{2}^{2}-y_{1}^{2}\right)^{1 / 2}$
- Also note, for roots to be real,

$$
y_{2} \geq 0, y_{1}+y_{2} \geq 0, \text { and } y_{2}-y_{1} \geq 0 . \text { Hence } y_{2} \geq\left|y_{1}\right|
$$

- Therefore,

$$
f_{\mathbf{Y}}(\mathbf{y})=\frac{1}{4\left(y_{2}^{2}-y_{1}^{2}\right)^{1 / 2}} \sum_{i=1}^{4} f_{\mathbf{X}}\left(\mathbf{x}_{i}\right)=\frac{(2 \pi)^{-3 / 2}}{\left(y_{2}^{2}-y_{1}^{2}\right)^{1 / 2}} \exp \left[-\frac{1}{2}\left(y_{2}+y_{3}^{2}\right)\right] \times u\left(y_{2}\right) u\left(y_{2}-\left|y_{1}\right|\right)
$$

Expectation Vectors

- Definition: The expected value of the column vector $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{N}\right]^{\top}$ is a vector $\boldsymbol{\mu}$ whose elements $\mu_{1}, \mu_{2^{2}}, \ldots ., \mu_{N^{\prime}}$ are given by

$$
\mu_{i} \triangleq \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{i} f_{\mathrm{X}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

- Alternately, using marginal density of $\mathbf{X}_{\mathbf{i}}$

$$
\mu_{i}=\int_{-\infty}^{\infty} x_{i} f_{X_{i}}\left(x_{i}\right) d x_{i} \quad i=1, \ldots, n \quad \quad f_{x_{i}}\left(x_{i}\right) \triangleq \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{n}
$$

- Definition: Covariance matrix \mathbf{K} is the vector outer product

$$
\begin{aligned}
\mathbf{K} \triangleq E\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right] \longrightarrow K_{i j} & \triangleq E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right] \\
& =E\left[\left(X_{j}-\mu_{j}\right)\left(X_{i}-\mu_{i}\right)\right] \\
& =K_{j i} \quad i, j=1, \ldots, n
\end{aligned}
$$

- Define $\sigma_{i}^{2} \triangleq K_{i i}$
$\mathbf{K}=\left[\begin{array}{ccccc}\sigma_{1}^{2} & & \cdots & & K_{1 n} \\ & \ddots & & & \\ \vdots & & \sigma_{i}^{2} & & \vdots \\ & & & \ddots & \\ K_{n 1} & & \cdots & & \sigma_{n}^{2}\end{array}\right]$
- Def: Correlation matrix $\mathbf{R} \triangleq E\left[\mathbf{X X}^{T}\right]$
- Expanding the covariance matrix $\mathbf{K}=\mathbf{R}-\boldsymbol{\mu} \boldsymbol{\mu}^{T}$
- Def: Vectors \mathbf{X} and \mathbf{Y} Uncorrelated if $E\left\{\mathbf{X Y}^{T}\right\}=\mu_{\mathbf{x}} \mu_{\mathbf{Y}}^{T}$
- Def: Orthogonal if $E\left\{\mathrm{XY}^{T}\right\}=0$

Example 5.4-1

- Given $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ for $0<x_{1} \leq 1,0<x_{2} \leq 1$, Compute $\mathbf{K} \triangleq E\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right]$

Solution: We know, $K_{12}=K_{21}=R_{21}-\mu_{2} \mu_{1}$

By Definition:

$$
\begin{array}{ll}
\mu_{1}=\mu_{2}=\iint_{S} x(x+y) d x d y=0.583 & R_{12}=R_{21} \triangleq \iint_{S} x y(x+y) d x d y=0.333 \\
& \text { where } S=\left\{\left(x_{1}, x_{2}\right): 0<x_{1} \leq 1,0<x_{2} \leq 1\right\}
\end{array}
$$

$$
\text { Hence } K_{12}=K_{21}=0.333-(0.583)^{2}=-0.007
$$

The diagonals of the covariance matrix is given by $\sigma^{2}=E\left[X^{2}\right]-\mu^{2}$

$$
\sigma_{1}^{2}=\sigma_{2}^{2}=\int_{0}^{1} x^{2}(x+1 / 2) d x-(0.583)^{2}=0.077
$$

$$
\mathbf{K}=\left[\begin{array}{rr}
0.077 & -0.007 \\
-0.007 & 0.077
\end{array}\right]=0.077\left[\begin{array}{rr}
1 & -0.09 \\
-0.09 & 1
\end{array}\right]
$$

Properties of Covariance Matrix

- Covariance matrix is at least positive semi-definite
- For any column vector \mathbf{z} and real symmetric matrix \mathbf{M} is p.s.d. if,


```
General example:
*}Mz=(\mp@subsup{z}{}{\top}M)z=[\begin{array}{lll}{(2a-b)}&{(-a+2b-c)}&{(-b+2c)}\end{array}][\begin{array}{l}{a}\\{b}\\{c}\end{array}
    =(2a-b)a+(-a+2b-c)b+(-b+2c)c
    =2\mp@subsup{a}{}{2}-ba-ab+2\mp@subsup{b}{}{2}-cb-bc+2\mp@subsup{c}{}{2}
    =2\mp@subsup{a}{}{2}-2ab+2\mp@subsup{b}{}{2}-2bc+2\mp@subsup{c}{}{2}
    = a'2}+\mp@subsup{a}{}{2}-2ab+\mp@subsup{b}{}{2}+\mp@subsup{b}{}{2}-2bc+\mp@subsup{c}{}{2}+\mp@subsup{c}{}{2
    = a}\mp@subsup{a}{}{2}+(a-b\mp@subsup{)}{}{2}+(b-c\mp@subsup{)}{}{2}+\mp@subsup{c}{}{2
```

- For any covariance matrix $\mathbf{K}_{\mathbf{x x}}$ and any vector \mathbf{Z}, define $\mathbf{Y}=\mathbf{z}^{\boldsymbol{\top}} \mathbf{X}$ (a scalar),

$$
\begin{aligned}
0 & \leq \operatorname{Var}(Y)=\operatorname{Cov}(Y)=E\left[(Y-\mu)(Y-\mu)^{T^{\prime}}\right] \\
& =E\left[\mathbf{z}^{T}\left(\mathbf{X}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)\left(\mathbf{X}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)^{T} \mathbf{z}\right] \\
& =\mathbf{z}^{T} E\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)\left(\mathbf{X}-\boldsymbol{\mu}_{\boldsymbol{X}}\right)^{T}\right] \mathbf{z} \\
& =\mathbf{z}^{T} \mathbf{K}_{\mathbf{X X} \mathbf{z}} \mathbf{z}, \quad \mathbf{K}_{\mathbf{X X}} \triangleq E\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right]
\end{aligned}
$$

- Eigenvalues and eigenvectors of \mathbf{M} can also be calculated for \mathbf{K}.
- Eigenvalues (λ) are solutions to $\operatorname{det}(\mathbf{M}-\lambda \mathbf{I})=0$
- Corresponding eigenvectors are obtained by solving $(\mathbf{M}-\boldsymbol{\lambda}) \boldsymbol{\Phi}=\mathbf{0}$
- See example 5.4-1

$$
\mathbf{M}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \longrightarrow \operatorname{det}\left[\begin{array}{cc}
4-\lambda & 2 \\
2 & 4-\lambda
\end{array}\right]=(4-\lambda)^{2}-4=0 \quad \longrightarrow \quad(\mathbf{M}-6 \mathbf{I}) \phi=0
$$

Definitions

- $\quad A \& B$ are similar matrices if there exists a $n \times n$ matrix T with $\operatorname{det}(T) \neq 0$, s.t. $\mathbf{T}^{-1} \mathbf{A T}=\mathbf{B}$
- Theorem: An $n \times n$ matrix \mathbf{M} is similar to a diagonal matrix iff \mathbf{M} has linearly independent eigenvectors.
- Theorem: If M is a r.s matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$, then M has n mutually orthogonal unit eigenvectors $\phi_{1}, \phi_{2}, \ldots . \phi_{\mathrm{N}}$.
- From the two Theorems, if \mathbf{M} is r.s and has orthogonal (and therefore linearly independent) eigenvectors then it is similar to a diagonal matrix $\boldsymbol{\Lambda}$ under some transformation \mathbf{T}.
$\begin{array}{llll} & \text { So under the transformation } \mathbf{U}^{-1} \mathbf{M} \mathbf{U}=\boldsymbol{\Lambda} \text {, with } \mathbf{U}=\left[\boldsymbol{\phi}_{1}, \boldsymbol{\phi}_{2}, \ldots . . \boldsymbol{\phi}_{\mathrm{N}}\right] \text { and } \Lambda \triangleq\left[\begin{array}{lll}\lambda_{1} & & \\ & & \\ & \ddots & \\ 0 & & \\ 0 & & \lambda_{n}\end{array}\right]\end{array}$
- Distance preserving property under the transformation $\mathbf{y}=\mathbf{U x}$

$$
\|\mathbf{y}\|^{2}=\mathbf{y}^{T} \mathbf{y}=\mathbf{x}^{T} \mathbf{U}^{T} \mathbf{U} \mathbf{x}=\|\mathbf{x}\|^{2}
$$

- Key Takeaway - K can be diagonalized if eigenvectors (U) are known.
- Why is it useful to diagonalize?

Properties of K_{xx}

- Theorem: Iff all eigenvalues are positive then a r.s matrix M is positive definite
- Proof: Let $\lambda_{i}>0$, then for any column vector and transformation $\mathbf{x}=$ Uy we can write,

$$
\begin{aligned}
& \mathbf{x}^{T^{\prime} \mathbf{M} \mathbf{x}}=(\mathbf{U} \mathbf{y})^{T} \mathbf{M}(\mathbf{U} \mathbf{y}) \\
&=\mathbf{y}^{T} \mathbf{U}^{T} \mathbf{M} \mathbf{U} \mathbf{y} \\
&=\mathbf{y}^{T} \mathbf{\Lambda} \mathbf{y} \\
&=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \geq 0 \\
& \text { Und is the diagonal matrix } \mathbf{y}=0 \text {, in that case } \mathbf{x}=0
\end{aligned}
$$

- Conversely, replace \mathbf{x} by $\boldsymbol{\phi}_{i}$, if M is p.d. then $\lambda_{i}>0$,

$$
\begin{gathered}
0<\mathbf{x}^{T} \mathbf{M} \mathbf{x} \\
0<\phi_{i}^{T} \mathbf{M} \phi_{i}=\widehat{\lambda_{i} \quad i=1, \ldots, n}
\end{gathered}
$$

Whitening Transform

- Given a zero mean $\mathrm{n} \times 1$ random vector \mathbf{X}, with \mathbf{p}.d. Covariance matrix $\mathbf{K}_{\mathbf{x x}}$. Find a transformation $\mathbf{Y}=\mathbf{C X}$ such that $\mathbf{K}_{\mathbf{Y y}}=\mathbf{I}$.
- \mathbf{C} is called the whitening matrix and the transformation is called whitening.
- Solution: The characteristic equation $\left(\mathbf{K}_{\mathrm{xx}}-\lambda_{\mathrm{i}} \mathbf{I}\right) \boldsymbol{\phi}_{\mathrm{i}}=0$ or $\mathbf{K}_{\mathrm{xx}} \phi_{i}=\lambda_{i} \boldsymbol{\phi}_{\mathrm{i}}$ can be written as $\mathbf{K}_{\mathbf{x x}} \mathbf{U}=\mathbf{U \Lambda}$ (\mathbf{U} is the eigenvector matrix, $\boldsymbol{\Lambda}$ is the diagonal eigenvalue matrix.
- Since $K_{x x}$ is p,d́d., $\lambda_{i}>0$ and therefore, $\Lambda^{1 / 2}=\operatorname{diag}\left[1 \sqrt{ } \lambda_{i}, 1 \sqrt{ } \lambda_{2} \ldots . .1 \sqrt{ } \lambda_{n}\right]$ is also well defined.
- Consider thíe transform $\mathbf{Y}=\mathbf{C X}=\boldsymbol{\Lambda}^{-1 / 2} \mathbf{U}^{\boldsymbol{\top}} \mathbf{X}$, we get
$\mathrm{K}_{\mathrm{YY}}=E\left[\mathrm{YY}^{T}\right]=E\left[\mathrm{CXX}^{T} \mathrm{C}^{T}\right]=\Lambda^{-1 / 2} \mathrm{U}^{T} E\left[\mathrm{XX}^{T}\right] \mathrm{U} \Lambda^{-1 / 2}=\Lambda^{-1 / 2} \mathrm{U}^{T} \mathrm{~K}_{\mathrm{XX}} \mathrm{U} \Lambda^{-1 / 2}$
$=\Lambda^{-1 / 2} \mathrm{U}^{T}\left(\mathrm{~K}_{\mathrm{xX}} \mathrm{U}\right) \Lambda^{-1 / 2}=\Lambda^{-1 / 2} \mathrm{U}^{T}(\mathrm{U} \Lambda) \Lambda^{-1 / 2}=\Lambda^{-1 / 2}\left(\mathrm{U}^{T} \mathrm{U}\right) \Lambda \Lambda^{-1 / 2}=\Lambda^{-1 / 2} \Lambda \Lambda^{-1 / 2}=\mathrm{I}$, since $\mathrm{U}^{T} \mathrm{U}=\mathrm{I}$

$$
\begin{gathered}
\mathbf{K}_{\mathbf{X X}}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \quad \mathbf{U}=\left[\begin{array}{ccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / 2 & 1 / 2 \\
1 / \sqrt{2} & 1 / 2 & -1 / 2
\end{array}\right]=\mathbf{U}^{T} \\
\mathbf{\Lambda}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2+\sqrt{2} & 0 \\
0 & 0 & 2-\sqrt{2}
\end{array}\right] \\
\mathbf{Y}=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 0 \\
0 & (2+\sqrt{2})^{-1 / 2} & 0 \\
0 & 0 & (2-\sqrt{2})^{-1 / 2}
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 /-2 & 1 / 2 \\
1 / \sqrt{2} & 1 / 2 & -1 / 2
\end{array}\right] \mathbf{X}
\end{gathered}
$$

Example 5.5-2

- Given $\mathbf{K}_{\mathbf{X}}=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$. Find transform \mathbf{U} to form \mathbf{Y} with diagonal $\mathbf{K}_{\mathbf{Y Y}}$
- Start with eigenvalues by solving $\operatorname{det}\left(\mathbf{K}_{\mathrm{xx}}-\lambda_{\mathbf{I}}\right)=0$
- yields $\lambda_{1}=2, \lambda_{2}=2+\sqrt{ } 2, \lambda_{3}=2-\sqrt{ } 2$
- Compute the the three (normalized) orthogonal eigenvectors $\left(K_{x x} \lambda_{i} \mathbf{l}\right) \phi_{i}=0$

$$
\phi_{1}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{T} \quad \phi_{2}=\left(\frac{1}{\sqrt{2}},-\frac{1}{2}, \frac{1}{2}\right)^{T} \quad \phi_{3}=\left(\frac{1}{\sqrt{2}}, \frac{1}{2},-\frac{1}{2}\right)^{T}
$$

- Create eigenvector matrix $\mathbf{U}^{\top}=\left[\boldsymbol{\phi}_{1} \boldsymbol{\phi}_{2} \boldsymbol{\phi}_{3}\right]^{\top}$

$$
\mathbf{A}=\mathbf{U}^{T}=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

- Now, the transformation $\mathbf{Y}=\mathbf{A X}$ yields

$$
\begin{aligned}
& Y_{1}=\frac{1}{\sqrt{2}}\left(X_{2}+X_{3}\right) \\
& Y_{2}=\frac{1}{\sqrt{2}} X_{1}-\frac{1}{2} X_{2}+\frac{1}{2} X_{3} \\
& Y_{3}=\frac{1}{\sqrt{2}} X_{1}+\frac{1}{2} X_{2}-\frac{1}{2} X_{3}
\end{aligned} \quad \text { And } \mathbf{K}_{\mathbf{Y Y}}=\mathbf{U}^{-\mathbf{T}} \mathbf{M U} \quad \mathbf{K}_{\mathbf{Y}}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2+\sqrt{2} & 0 \\
0 & 0 & 2-\sqrt{2}
\end{array}\right]
$$

Multidimensional Gaussian

Scalar RV X

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \\
& f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma_{1} \ldots \sigma_{n}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}\right] \\
& f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{K}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] \\
& \mathbf{K} \triangleq\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \ddots
\end{array}\right] \quad \mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}, \text { and } \operatorname{det}(\mathbf{K})=\prod_{i=1}^{n} \sigma_{i}^{2}
\end{aligned}
$$

- Is $f_{x}(\mathbf{x})$ a pdf for any arbitrary p.d matrix K_{xx}. We have to prove $\int_{-\infty}^{\infty} f_{x}(\mathbf{x}) d \mathrm{dx}=1$
- Define $z=x-\mu$, then the pdf can be written as

$$
\begin{aligned}
& \phi(\mathbf{z}) \triangleq \exp \left(-\frac{1}{2} \mathbf{z}^{T} \mathbf{K}^{-1} \mathbf{z}\right) \quad \text { Under } \mathbf{z}=\mathbf{C y} \text { transform } \\
& \alpha \triangleq \int_{-\infty}^{\infty} \phi(\mathbf{z}) d \mathbf{z} \quad \longrightarrow \text { and noting } \mathbf{K}_{\mathrm{Xx}}=\mathrm{CC}^{\top} \\
& \int_{-\infty}^{\infty} f \mathbf{x}(\mathbf{x}) d \mathbf{x}=\frac{\alpha}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2}} \\
& \mathbf{z}^{T} \mathbf{K}_{\mathbf{X X}}{ }^{-1}=\mathbf{y}^{T} \mathbf{C}^{T} \mathbf{K}_{\mathbf{X} \mathbf{X}}{ }^{-1} \mathbf{C y}=\|\mathbf{y}\|^{2}=\sum_{i=1}^{n} y_{i}^{2} \\
& \text { so that } \phi(\mathbf{z}) \text { is given by } \\
& \phi(\mathbf{z})=\prod_{i=1}^{n} \exp \left[-\frac{1}{2} y_{i}^{2}\right]
\end{aligned}
$$

Proof for $\mathrm{K}_{\mathrm{xx}}=\mathrm{CC}^{\top}$ and $\mathrm{C}^{\top} \mathrm{K}_{\mathrm{xx}}{ }^{-1} \mathrm{C}=\mathrm{I}$

From whitening discussion we have

$$
\begin{gathered}
\mathbf{K}_{\mathbf{Y Y}}=\boldsymbol{\Lambda}^{-1 / 2} \mathbf{U}^{T} \mathbf{K}_{\mathbf{X X}} \mathbf{U} \boldsymbol{\Lambda}^{-1 / 2}=\mathbf{I} \\
\\
\quad \operatorname{let} \boldsymbol{\Lambda}^{-1 / 2}=\mathbf{Z}=\left[\boldsymbol{\Lambda}^{-1 / 2}\right]^{T} \\
\\
=(\mathbf{U Z})^{T} \mathbf{K}_{\mathbf{X X}}(\mathbf{U Z})=\mathbf{I}
\end{gathered}
$$

NOTE:
(i) $\mathrm{U}^{\top}=\mathrm{U}^{-1}$
(ii) $Z^{\top}=Z->\left[Z^{-1}\right]^{\top}=Z^{-1}$
(iii) $\left[\mathrm{A}^{\top}\right]^{-1}=\left[\mathrm{A}^{-1}\right]^{\top}$

Pre-multiply by $\left[(\mathbf{U Z})^{\top}\right]^{-1}$ and post-multiply by $(\mathbf{U Z})^{-1}$ to isolate $\mathbf{K}_{\mathbf{x x}}$, we get

$$
\begin{aligned}
& K_{x x}=\left[(\mathbf{U Z})^{\top}\right]^{-1} \cdot[\mathbf{U Z}]^{-1}=\left(\mathbf{Z}^{\top} \mathbf{U}^{\mathbf{T}}\right)^{-\mathbf{1}} \cdot \mathbf{Z}^{-1} \mathbf{U}^{-1} \\
& =\left(U^{\top}\right)^{-1} \cdot\left(\mathbf{Z}^{\top}\right)^{-1} \cdot \mathbf{Z}^{-1} \mathbf{U}^{-1}=\left(\mathbf{U}^{-1}\right)^{-1} \cdot\left(\mathbf{Z}^{-1}\right)^{\top} \cdot \mathbf{Z}^{-1} \mathbf{U}^{-1}=\mathbf{U} Z^{-1} \cdot \mathbf{Z}^{-1} \mathbf{U}^{-1} \\
& =\mathbf{U Z} \mathbf{Z}^{-1} \cdot\left[\mathbf{Z}^{-1}\right]^{\boldsymbol{\top}} \mathbf{U}^{\boldsymbol{\top}}=\mathbf{U} \mathbf{Z}^{-1} \cdot\left[\mathbf{U Z} \mathbf{Z}^{-1}\right]^{\boldsymbol{\top}}=\mathbf{C C}^{\boldsymbol{\top}}\left(\text { where, } \mathbf{C}=\mathbf{U} \mathbf{Z}^{-1}\right)
\end{aligned}
$$

- Also, $\mathbf{C}^{\boldsymbol{\top}} \mathbf{K}_{\mathrm{xx}}{ }^{-1} \mathbf{C}=\mathbf{C}^{\boldsymbol{\top}}\left[\mathbf{C C}^{\top}\right]^{-1} \mathbf{C}=\mathbf{C}^{\boldsymbol{\top}}\left[\mathbf{C}^{\top}\right]^{-1} \mathbf{C}^{-1} \mathbf{C}=\left(\mathbf{C}^{-1} \mathbf{C}\right)^{\boldsymbol{\top}}\left(\mathbf{C}^{-1} \mathbf{C}\right)=\mathbf{I}$
- For any p.d. matrix \mathbf{P}, there exists \mathbf{C} such that $\mathbf{P}=\mathbf{C C ^ { \top }}$ and $\mathbf{C}^{\top} \mathbf{K}_{\mathrm{xx}}{ }^{-1} \mathbf{C}=\mathbf{I}$

contd

Volume elements are related as below for a linear transformation $\mathbf{z}=\mathbf{C y}$

$$
d \mathbf{z}=|\operatorname{det}(\mathbf{C})| d \mathbf{y} \quad \text { where } d \mathbf{z} \triangleq d z_{1} \ldots d z_{n} \text { and } d \mathbf{y}=d y_{1} \ldots d y_{n}
$$

Therefore, the integral reduces to

$$
\begin{aligned}
\alpha & =\int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right) d y_{1} \ldots d y_{n}|\operatorname{det}(\mathbf{C})| \\
& =\left[\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y\right]^{n}|\operatorname{det}(\mathbf{C})| \\
& =[2 \pi]^{n / 2}|\operatorname{det}(\mathbf{C})|
\end{aligned}
$$

Theorem (Determinants and volumes). Let $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in \mathbf{R}^{n}, let P be the parallelepiped determined by these vectors, and let A be the matrix with rows $v_{1}, v_{2}, \ldots, v_{n}$. Then the absolute value of the determinant of A is the volume of P :

$$
|\operatorname{det}(A)|=\operatorname{vol}(P) .
$$

Reference: https://textbooks.math.gatech.edu/ila/determinants-volumes.html

$$
\begin{aligned}
\text { But since } \mathbf{K} & =\mathbf{C C}^{T}, \operatorname{det}(\mathbf{K})=\operatorname{det}(\mathbf{C}) \operatorname{det}\left(\mathbf{C}^{T}\right)=[\operatorname{det}(\mathbf{C})]^{2} \longrightarrow \text { Since, } \operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B) \\
|\operatorname{det}(\mathbf{C})| & =|\operatorname{det}(\mathbf{K})|^{1 / 2}=(\operatorname{det}(\mathbf{K}))^{1 / 2}
\end{aligned} \quad \text { and } \operatorname{det}(A)=\operatorname{det}\left(\mathrm{A}^{\top}\right) \text { and }
$$

Therefore, we obtain,

$$
\begin{gathered}
\alpha=(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2} \\
\Rightarrow \int_{-\infty}^{\infty} f \mathbf{x}(\mathbf{x}) d \mathbf{x}=\frac{\alpha}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2}}=1
\end{gathered}
$$

Hence the multidimensional Gaussian pdf integrates to 1 . This proves that it is a valid pdf.

Transformation of Gaussian pdf

Theorem: Let \mathbf{X} be an n-dimensional Normal random vector with positive definite cov. Matrix \mathbf{K}_{xx} and mean vector μ. Let \mathbf{A} be a nonsingular linear transformation in n dimensions. Then $\mathbf{Y}=\mathbf{A X}$ is an n-dimensional Normal random vector with covariance matrix $\mathbf{K}_{\mathrm{Yy}}=\mathbf{A K} \mathbf{X X}^{\mathbf{A}}$ and mean vector $\boldsymbol{\beta}=\mathbf{A} \mu$.
Proof: Start with the Jacobian $f_{\mathbf{Y}}(\mathbf{y})=\sum_{i=1}^{r} \frac{f_{\mathbf{X}}\left(\mathbf{x}_{i}\right)}{\left|J_{i}\right|}$ where, $\mathbf{Y}=\mathbf{g}(\mathbf{X}) \triangleq\left(g_{1}(\mathbf{X}), \ldots, g_{n}(\mathbf{X})\right)^{T}$
The $i^{\text {th }}$ Jacobian is

$$
J_{i}=\left.\operatorname{det}\left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}}\right)\right|_{\mathrm{x}=\mathrm{x}_{i}}=\left.\begin{array}{ccc}
\frac{\partial q_{1}}{\frac{\partial q_{1}}{\partial x_{1}}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\frac{\partial_{n}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}}
\end{array}\right|_{\mathrm{x}=\mathrm{x}_{i}}
$$

Since \mathbf{A} is a non-singular linear transformation, the only solution of

$$
\mathbf{A x}-\mathbf{y}=0 \quad \text { is } \quad \mathbf{x}=\mathbf{A}^{-1} \mathbf{y} \longrightarrow J_{i}=\operatorname{det}\left(\frac{\partial(\mathbf{A x})}{\partial \mathbf{x}}\right)=\operatorname{det}(\mathbf{A})
$$

which leads to

$$
f_{\mathbf{Y}}(\mathbf{y})=\frac{1}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2}|\operatorname{det}(\mathbf{A})|} \exp \left(-\frac{1}{2}\left(\mathbf{A}^{-1} \mathbf{y}-\boldsymbol{\mu}\right)^{T} \mathbf{K}^{-1}\left(\mathbf{A}^{-1} \mathbf{y}-\boldsymbol{\mu}\right)\right)
$$

...contd

Now, $[\operatorname{det}(\mathbf{K})]^{1 / 2}|\operatorname{det}(\mathbf{A})|=\left[\operatorname{det}\left(\mathbf{A K} \mathbf{A}^{T}\right)\right]^{1 / 2} \triangleq[\operatorname{det}(\mathbf{Q})]^{1 / 2}$
Since, $\operatorname{det}\left(A^{\top}\right)-\operatorname{det}(A)$ we get, $\operatorname{det}(K) \cdot|\operatorname{det}(A)|^{2}=\operatorname{det}(A) \cdot \operatorname{det}(K) \cdot \operatorname{det}(A)$
$=\operatorname{det}(A) \cdot \operatorname{det}(K) \cdot \operatorname{det}\left(A^{\top}\right)=\operatorname{det}\left(A K A^{\top}\right)$
Also, factoring out \mathbf{A}^{-1} we get,

$$
\begin{array}{rlrl}
\left(\mathbf{A}^{-1} \mathbf{y}-\boldsymbol{\mu}\right)^{T} \mathbf{K}^{-1}\left(\mathbf{A}^{-1} \mathbf{y}-\boldsymbol{\mu}\right) & =\left[\mathbf{A}^{-1}(\mathbf{y}-\mathbf{A} \boldsymbol{\mu})\right]^{T} \mathbf{K}^{-1} \mathbf{A}^{-1}(\mathbf{y}-\mathbf{A} \boldsymbol{\mu}) & \text { Since, }(\mathrm{ABC}) \\
& =(\mathbf{y}-\mathbf{A} \boldsymbol{\mu})^{T}\left[\mathbf{A}^{-1}\right]^{T} \mathbf{K}^{-1} \mathbf{A}^{-1}\left(\mathbf{y}-\mathbf{A} \boldsymbol{B} A^{-1} \text { and }\left[\mathrm{A}^{\top}\right]^{-1}=\left[\mathrm{A}^{-1}\right]^{\top}\right. \\
& =(\mathbf{y}-\mathbf{A} \boldsymbol{\mu})^{T}\left[\mathbf{A}^{T}\right]^{-1} \mathbf{K}^{-1} \mathbf{A}^{-1}(\mathbf{y}-\mathbf{A} \boldsymbol{\mu}) & \text { We get } \left.\left[\mathrm{A}^{-1}\right]^{\top} K_{x x^{-1} A^{-1}=\left[A^{-T}\right]^{-1} \mathrm{~K}_{x x^{-1}} \mathrm{~A}^{-1}=\left[A K_{x x}\right.} \quad \mathrm{A}^{\top}\right]^{-1} \\
& =(\mathbf{y}-\mathbf{A} \boldsymbol{\mu})^{T}\left(\mathbf{A K} \mathbf{A}^{T}\right)^{-1}(\mathbf{y}-\mathbf{A} \boldsymbol{\mu}) &
\end{array}
$$

Therefore, since, $\boldsymbol{\beta}=\mathbf{A} \boldsymbol{\mu}$ and $\mathbf{Q}=\mathrm{E}\left[(\mathrm{Y}-\boldsymbol{\beta})(\mathrm{Y}-\boldsymbol{\beta})^{\mathbf{\top}}\right]$, we can write

$$
f_{\mathbf{Y}}(\mathbf{y})=\frac{1}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{Q})]^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{y}-\boldsymbol{\beta})^{T} \mathbf{Q}^{-1}(\mathbf{y}-\boldsymbol{\beta})\right]
$$

Theorem: The above holds for $\mathbf{A}_{\mathbf{m x n}}$ transformations as well

$$
\begin{aligned}
& \mathrm{Q} \triangleq \mathrm{~A}_{m n} \mathrm{KA}_{m n}^{T} \\
& \beta=\mathrm{A}_{m n} \mu
\end{aligned}
$$

Example 5.6-1

- Random vector $\mathbf{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)^{\top}$ with covariance matrix $\mathrm{k}=\left[\begin{array}{ll}3-1 ;-1 & 3\end{array}\right]$. Find transformation $\mathbf{Y}=\mathbf{D X}$ such that $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\top}$ is a Normal random vector with uncorrelated (and therefore independent) components of unity variance
- Solution: We seek \mathbf{D} such that $E\left[\mathbf{Y} \mathbf{Y}^{T}\right]=E\left[\mathbf{D X X} \mathbf{X}^{T} \mathbf{D}^{T}\right]=\mathbf{D} \mathbf{K D}^{T}=\mathbf{I}$
- We know that such a transformation is $\mathbf{D}=\boldsymbol{\Lambda}^{-1 / 2} \mathbf{U}^{\top}$
- Next, calculate Eigenvalues and Eigenvectors
- Solving $\operatorname{det}\left(\mathrm{K}_{\mathrm{xx}}-\boldsymbol{\lambda l}\right)=0$ gets, $\boldsymbol{\lambda}_{1}=4, \lambda_{1}=2 \rightarrow \boldsymbol{\Lambda}^{-1 / 2}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right]$
- Eigenvectors are $\left(\mathrm{K}_{\mathrm{xx}}-\lambda_{\mathrm{i}} \mathrm{I}\right) \phi_{i}=0$,

$$
\mathbf{U}=\left(\phi_{1}, \phi_{2}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

- Therefore, we get, $\mathbf{D}=\boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
- Generate correlated vectors \mathbf{X} from uncorrelated vector $\mathbf{Y}\left(\mathbf{K}_{\mathrm{YY}}\right.$ is not diagonal) using the transformation $\mathbf{X}=\mathbf{D}^{-1} \mathbf{Y}$, where $\mathbf{D}=\boldsymbol{\Lambda}^{-1 / 2} \mathbf{U}^{\top}$

Example 5.6-2

 and $\varrho=-0.5$. Find two r.v.'s Y_{1} and Y_{2} such that they are independent.

- Find K_{xx} in the standard form $\mathbf{x}^{\top} \mathbf{K}_{\mathrm{xx}}{ }^{-1} \mathbf{x}$ to diagonalize the cov. Matrix $x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}=\mathbf{x}^{T}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mathbf{x}=a x_{1}^{2}+(b+c) x_{1} x_{2}+d x_{2}^{2} \longrightarrow \mathrm{a}=\mathrm{d}=1$ and $\mathrm{b}=\mathrm{c}=0.5 \longrightarrow \mathrm{~K}^{-1}=\frac{1}{\sigma^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\frac{4}{3 \sigma^{2}}\left[\begin{array}{ll}1 & 0.5 \\ 0.5 & 1\end{array}\right]$
- Since the constant $4 / 3 \sigma^{2}$ only affects the eigenvalues and not the eigenvectors. Also we do not need to whiten K_{xx} in this problem. Define
- The pdf is given by $f_{\mathbf{Y}}(\mathbf{y})=\sum_{i=1}^{n} f_{\mathbf{X}}\left(\mathbf{x}_{\mathbf{i}}\right) /\left|J_{i}\right|$
- Using direct method

$$
J=\operatorname{det}\left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}}\right)=\operatorname{det}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=-2 \longrightarrow \begin{aligned}
f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right) & =\frac{1}{2} f_{X_{1} X_{2}}\left(\frac{y_{1}+y_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{y_{1}^{2}}{2 \sigma^{2}}\right] \cdot \frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left[-\frac{y_{2}^{2}}{2 \sigma_{1}^{2}}\right] \longrightarrow \sigma_{1} \triangleq \sqrt{3} \sigma
\end{aligned}
$$

Bivariate Gaussian Using Standard Normal

- Let Z_{1} and Z_{2} are standard normal r.v.
- We want to find the joint pdf of Y_{1}, Y_{2} with parameters $\sigma_{X^{\prime}} \sigma_{Y^{\prime}} \mu_{X^{\prime}} \mu_{Y}$ and ρ.
- The transformation for this is $\left\{\begin{array}{l}X=\sigma_{X} Z_{1}+\mu_{X} \\ Y=\sigma_{Y}\left[\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right]+\mu_{Y}\end{array}\right.$
- To check if this is a correct, check marginals are Gaussian

$$
\begin{aligned}
& \left\{\begin{aligned}
X & =\sigma_{X} Z_{1}+\mu_{X} \\
& =\sigma_{X} \mathcal{N}(0,1)+\mu_{X} \\
& =\mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right) \\
Y & =\sigma_{Y}\left[\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right]+\mu_{Y} \\
& =\sigma_{Y}\left[\rho \mathcal{N}(0,1)+\sqrt{1-\rho^{2}} \mathcal{N}(0,1)\right]+\mu_{Y} \\
& =\sigma_{Y}\left[\mathcal{N}\left(0, \rho^{2}\right)+\mathcal{N}\left(0,1-\rho^{2}\right)\right]+\mu_{Y} \\
& =\sigma_{Y} \mathcal{N}(0,1)+\mu_{Y} \\
& =\mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)
\end{aligned}\right. \\
& \text { Use } Y=A X+B \text { transformation. } \\
& \text { We know, } f_{Y}=(1 /|a|) f_{X}[(y-b) / a] \\
& =\sigma_{X} \sigma_{Y} \rho \\
& \rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\rho \\
& \text { Use sum of uncorrelated Gaussians } \\
& f_{Z}(z)=\left(f_{X} * f_{Y}\right)(z) \\
& =\mathcal{F}^{-1}\left\{\mathcal{F}\left\{f_{X}\right\} \cdot \mathcal{F}\left\{f_{Y}\right\}\right\} \\
& =\mathcal{F}^{-1}\left\{\exp \left[-j \omega \mu_{X}\right] \exp \left[-\frac{\sigma_{X}^{2} \omega^{2}}{2}\right] \exp \left[-j \omega \mu_{Y}\right] \exp \left[-\frac{\sigma_{Y}^{2} \omega^{2}}{2}\right]\right\} \\
& =\mathcal{F}^{-1}\left\{\exp \left[-j \omega\left(\mu_{X}+\mu_{Y}\right)\right] \exp \left[-\frac{\left(\sigma_{X}^{2}+\sigma_{Y}^{2}\right) \omega^{2}}{2}\right]\right\} \\
& =\mathcal{N}\left(z ; \mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)
\end{aligned}
$$

- Then compute $\operatorname{Cov}(X, Y)$ and ρ

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =E\left[\left(\sigma_{X} Z_{1}+\mu_{X}-\mu_{X}\right)\left(\sigma_{Y}\left[\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right]+\mu_{Y}-\mu_{Y}\right)\right] \\
& =E\left[\left(\sigma_{X} Z_{1}\right)\left(\sigma_{Y}\left[\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right]\right)\right] \\
& =\sigma_{X} \sigma_{Y} E\left[\rho Z_{1}^{2}+\sqrt{1-\rho^{2}} Z_{1} Z_{2}\right] \\
& =\sigma_{X} \sigma_{Y} \rho E\left[Z_{1}^{2}\right] \\
& =\sigma_{X} \sigma_{Y} \rho
\end{aligned}
$$

Joint Density of Bivariate Gaussian

- (Jacobian Method) Find are the inverses of the transformation
- If $X=g\left(Z_{1}, Z_{2}\right)$ and $Y=h\left(Z_{1}, Z_{2}\right)$, find functions φ and ψ such that $Z_{1}=\varphi(X, Y)$ and $Z_{2}=\psi(X, Y)$

$$
\begin{aligned}
X & =\sigma_{X} Z_{1}+\mu_{X} \\
Z_{1} & =\frac{X-\mu_{X}}{\sigma_{X}} \\
Y & =\sigma_{Y}\left[\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right]+\mu_{Y} \\
\frac{Y-\mu_{Y}}{\sigma_{Y}} & =\rho \frac{X-\mu_{X}}{\sigma_{X}}+\sqrt{1-\rho^{2}} Z_{2} \\
Z_{2} & =\frac{1}{\sqrt{1-\rho^{2}}}\left[\frac{Y-\mu_{Y}}{\sigma_{Y}}-\rho \frac{X-\mu_{X}}{\sigma_{X}}\right]
\end{aligned}
$$

Jacobian
$\tilde{J}=\operatorname{det}\left[\begin{array}{cc}\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} \\ \frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y}\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}\frac{1}{\sigma_{X}} & 0 \\ \frac{-\rho}{\sigma_{X} \sqrt{1-\rho^{2}}} & \frac{1}{\sigma_{Y} \sqrt{1-\rho^{2}}}\end{array}\right]=\frac{1}{\sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}$

- The joint density of X and Y is then given by

$$
\begin{aligned}
f(x, y) & =f\left(z_{1}, z_{2}\right)|J| \\
& =\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right] \left\lvert\, \jmath=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right]\right. \\
& =\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\frac{1}{1-\rho^{2}}\left(\frac{y-\mu_{Y}}{\sigma_{Y}}-\rho \frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right]\right] \\
& =\frac{1}{2 \pi \underbrace{}_{(\operatorname{det} \mathbf{K})^{1 / 2}}} \begin{aligned}
(\mathrm{X}-\mu)^{\top} \mathbf{K}^{-1}(\mathrm{X}-\mu)
\end{aligned}
\end{aligned}
$$

Compare with the Matrix Notation

- From the previous slides we write in matrix form

$$
\mathbf{x}=\binom{x}{y} \quad \boldsymbol{\mu}=\binom{\mu_{X}}{\mu_{Y}} \quad \mathbf{K}=\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right) \longrightarrow f(\mathbf{x})=\frac{1}{2 \pi(\operatorname{det} \mathbf{K})^{-1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{K}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

- Check if (det $\mathbf{K})^{1 / 2}$ and $(\mathrm{x}-\mu)^{\top} \mathbf{K}^{-1}(\mathrm{x}-\mu)$ matches the regular form above

- AlSO recall $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad \mathbf{A}^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
- Then the exponent of the bivariate Gaussian is given by

$$
\begin{aligned}
&(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
&= \frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\binom{x-\mu_{x}}{y-\mu_{y}}^{T}\left(\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right)\binom{x-\mu_{x}}{y-\mu_{y}} \\
&=\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\binom{\sigma_{Y}^{2}\left(x-\mu_{X}\right)-\rho \sigma_{X} \sigma_{Y}\left(y-\mu_{Y}\right)}{-\rho \sigma_{X} \sigma_{Y}\left(x-\mu_{X}\right)+\sigma_{X}^{2}\left(y-\mu_{Y}\right)}^{T}\binom{x-\mu_{x}}{y-\mu_{y}} \\
&=\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left(\sigma_{Y}^{2}\left(x-\mu_{X}\right)^{2}-2 \rho \sigma_{X} \sigma_{Y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)+\sigma_{X}^{2}\left(y-\mu_{Y}\right)^{2}\right) \\
& \longrightarrow=\frac{1}{1-\rho^{2}}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}-2 \rho \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right)
\end{aligned}
$$

Characteristic Function

- Similar to scalar r.v. we have the c.f. for $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{N}\right]^{\top}$

$$
\Phi_{\mathbf{X}}(\omega) \triangleq E\left[e^{j \omega^{T} \mathbf{X}}\right]=\int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) e^{j \omega^{T} \mathbf{x}} d \mathbf{x} \stackrel{\text { Inverse }}{\longleftrightarrow} f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n}} \int_{-\infty}^{\infty} \Phi_{\mathbf{X}}(\omega) e^{-j \omega^{T} \mathbf{x}} d \omega
$$

- Similar to scalar r.v. moments (if they exist) can be found using the c.f.
- Example 5.7-1: For $\mathbf{X}=\left[X_{1}, X_{2}, X_{3}\right]^{\top}$ and $\omega=\left[\omega_{1}, \omega_{2}, \omega_{3}\right]$, we write

$$
\Phi_{\mathbf{X}}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\mathbf{x}}\left(x_{1}, x_{2}, x_{3}\right) e^{j\left[\omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{3} x_{3}\right]} d x_{1} d x_{2} d x_{3}
$$

- By partially deriving

$$
\left.\frac{1}{j^{3}} \frac{\partial^{3} \Phi_{\mathbf{X}}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)}{\partial \omega_{1} \partial \omega_{2} \partial \omega_{3}}\right|_{\omega_{1}=\omega_{2}=\omega_{3}=0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} x_{3} f_{\mathbf{X}}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3} \triangleq E\left[X_{1} X_{2} X_{3}\right]
$$

- Therefore, generalizing the above expression to n-dimensions,
- We can also write the c.f. as products of exponentials

$$
E\left[\exp \left(j \omega^{T} \mathbf{X}\right)\right]=E\left[\exp \left(j \sum_{i=1}^{n} \omega_{i} X_{i}\right)\right]=E\left[\prod_{i=1}^{n} \exp \left(j \omega_{i} X_{i}\right)\right]
$$

Recall for two variables, the joint moments are a below

$$
\begin{aligned}
& m_{r k} \triangleq E\left[X^{r} Y^{k}\right]=(-j)^{r+k} \Phi_{X Y}^{(r, k)}(0,0) \\
& \left.\Phi_{X Y}^{(r k)}(0,0) \triangleq \frac{\partial^{r+k} \Phi_{X Y}\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{1}^{r} \partial \omega_{2}^{k}}\right|_{\omega_{1}=\omega_{2}=0}
\end{aligned}
$$

Properties of CF

- Properties:

1. $\left|\Phi_{\mathrm{X}}(\omega)\right| \leq \Phi_{\mathrm{X}}(0)=1$ and
2. $\Phi_{\mathrm{X}}^{*}(\omega)=\Phi_{\mathrm{X}}(-\omega)$ (* indicates conjugation).
3. All c.f.'s of subsets of the components of X can be obtained once $\Phi_{\mathrm{X}}(\omega)$ is known.

- An example of the last property is

$$
\begin{aligned}
\Phi_{X_{1} X_{2}}\left(\omega_{1}, \omega_{2}\right) & =\Phi_{X_{1} X_{2} X_{3}}\left(\omega_{1}, \omega_{2}, 0\right) \\
\Phi_{X_{1} X_{3}}\left(\omega_{1}, \omega_{3}\right) & =\Phi_{X_{1} X_{2} X_{3}}\left(\omega_{1}, 0, \omega_{3}\right) \\
\Phi_{X_{1}}\left(\omega_{1}\right) & =\Phi_{X_{1} X_{2} X_{3}}\left(\omega_{1}, 0,0\right)
\end{aligned}
$$

- Best application of c.f.: Convert convolution of r.v. to multiplication of c.f.

$$
\begin{array}{cl}
Z=X_{1}+\ldots+X_{n} \\
f_{Z}(z)=f_{X_{1}}(z) * \ldots * f_{X_{n}}(z)
\end{array} \quad \begin{aligned}
& \text { Using CF }
\end{aligned} \begin{aligned}
\Phi_{\mathbf{X}}(\mathbf{z}) & =E\left[e^{j \omega\left(X_{1}+\ldots+X_{n}\right)}\right] \\
& =E\left[\prod_{i=1}^{n} e^{j \omega X_{i}}\right]=\prod_{i=1}^{n} E\left[e^{j \omega X_{i}}\right]=\prod_{i=1}^{n} \Phi_{X_{i}}(\omega)
\end{aligned}
$$

Example 5.7-2

- If X_{i} are iid Poisson random variable X_{i}. Find the pdf of $Z=X_{1}+X_{2}+\ldots .+X_{N}$?
- Characteristic function of a Poisson r.v. X is given by

$$
\begin{aligned}
\Phi_{X}(\omega) & =E\left[e^{j \omega X}\right]=\sum_{k=0}^{\infty} e^{j \omega k} P_{X}(k) \\
& =\sum_{k=0}^{\infty} e^{j \omega k} \frac{e^{-\lambda} \lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{j \omega}\right)^{k}}{k!} \\
& =e^{-\lambda} e^{\lambda e^{i \omega}}=e^{\lambda\left(e^{i \omega}-1\right)}
\end{aligned}
$$

- The pdf of Z is given by

$$
\begin{aligned}
\Phi_{Z}(\omega) & =\prod_{i=1}^{n} e^{\lambda\left(e^{i \omega}-1\right)} \\
& =e^{n \lambda\left(e^{j \omega}-1\right)}
\end{aligned}
$$

- Which is a CF of a Poisson r.v. with parameter $\alpha=n \lambda$, i.e.

$$
P_{Z}(k)=\frac{\alpha^{k} e^{-\alpha}}{k!}
$$

Characteristic Function of Gaussian

- Let \mathbf{X} be a normal random vector with nonsingular covariance matrix \mathbf{K}, then both \mathbf{K} and \mathbf{K}^{-1} can be factored as $\mathbf{K}=\mathbf{C C}^{T} \longrightarrow \mathbf{K}^{-1}=\mathbf{D D}^{T}, \quad \mathbf{D}=\left[\mathbf{C}^{T}\right]^{-1}$
- The CF for the normal r.v. is

$$
\Phi_{\mathbf{X}}(\omega)=\frac{1}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2}} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{K}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \cdot \exp \left(j \boldsymbol{\omega}^{T} \mathbf{x}\right) d \mathbf{x}
$$

- Under the transformation $\mathbf{z} \triangleq \mathbf{D}^{T}(\mathbf{x}-\mu) \Longrightarrow \mathbf{x}=\left[\mathbf{D}^{T}\right]^{-1} \mathbf{z}+\mu$ we get

$$
\begin{aligned}
\mathbf{z}^{T} \mathbf{z} & =(\mathbf{x}-\boldsymbol{\mu})^{T^{\prime}} \mathbf{D D}^{T}(\mathbf{x}-\boldsymbol{\mu}) & d \mathbf{z}=\left|\operatorname{det}\left(\mathbf{D}^{T}\right)\right| d \mathbf{x} \\
& =(\mathbf{x}-\boldsymbol{\mu})^{T} \mathbf{K}^{-1}(\mathbf{x}-\boldsymbol{\mu}) &
\end{aligned}
$$

Therefore, the CF after transformation

$$
\Phi_{\mathbf{X}}(\omega)=\frac{\exp \left(j \omega^{T} \mu\right)}{(2 \pi)^{n / 2}[\operatorname{det}(\mathbf{K})]^{1 / 2}|\operatorname{det}(\mathbf{D})|} \int_{-\infty}^{\infty} \underbrace{\exp \left(-\frac{1}{2} \mathbf{z}^{T} \mathbf{z}\right) \cdot \exp \left(j \omega^{T}\left(\mathbf{D}^{T}\right)^{-1} \mathbf{z}\right)} d \mathbf{z}
$$

- Complete the square in the integrand

contd

- So, the CF reduces to

$$
\Phi_{\mathbf{X}}(\omega)=\exp \left(j \omega^{T} \mu-\frac{1}{2} \omega^{T} \mathbf{K} \omega\right) \cdot \frac{1}{(2 \pi)^{n / 2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left\|\mathbf{z}-j \mathbf{D}^{-1} \omega\right\|^{2}} d \mathbf{z}
$$

- The integral is a n-fold integration of n iid rv with unit variance $=(2 \pi)^{n / 2}$
- Hence the cf of a Gaussian maps onto a Gaussian cf

$$
\Phi_{\mathbf{X}}(\omega)=\exp \left(j \omega^{T} \mu-\frac{1}{2} \omega^{T} \mathbf{K} \omega\right)
$$

