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e Groups of RVs are studied in form of vectors called random vectors

o Bold Uppercase letters denote random vectors and matrices

o Bold Lowercase letters denote deterministic vectors, e.g., values a random vector assumes

e Event{is mapped to the real line by multiple RVs, X, X,, .... X, , which forms
and N-dimensional vector X(¢) = [X.(Z), X,(©), .... X,(©)] € R”

o Xcan be real orimaginary.
e Therefore, the CDF of a random vector is
Fx(x)2 P[X; <a1,..., X, < 2]
e Bydefining {X <x} 2 {X; <a,...,X, <z,}, we can write Fx(x) 2 P[X < x]

o Also, certain and impossible event and the pdf can be written as

Fx(00) =1 fx (x) & ZFxX) (Fx(x) = [", - [T, fx (x') da} ... do,
FX(_OO) =0 0xy...0x, Fx (X) _ ficoo fX (X,)dX,
e Also observe that < More generally, with B ¢ RY
fx(x)Azy ... Az, ~ Pz < X3 <z1 + Azy,... 2, < X, < 2, + Az,| —> P[B] = fxEB fx (x)dx



Conditional and marginals

e Conditional CDF of X given B

Fxp(x|B) = P[X < x|B] n
P[X < x, B] ¢==) Fx(x)=)  Fx(x|B)P[B)]
BT (P[B] # 0) i=1

e Conditional densities are given by

aan|B(X|B)
oxy...0x,

fx5(x|B) & > fx(x) = 2_; Fx5(x|B))PBJ

e Joint distribution and densities -
™™ Fxy (x,y)
8331...6$n6y1...8ym

Fxy(x,y) = P[X <x,Y <y] — fxy(xy)=

e Marginal pdf by integrating joint pdf
fx(x) = /_w.../_w fxy(x,y)dy: - .. dym

. Integration over x_ gives
o Marglnals for X/ 2 (Xl, . ,X,ﬁj/ marginal density of x’
fx (x’) = /w fx(x)dz,; where x'é(:cl,...,a:n_l)T




Multiple Transformation of RV

o IfX=2[X, X, ....,X,]is arandom vector and define n functionally

independent real functions as anotherrvY2[Y, Y, ... Y],
Y1 =91(w1,$2,°",wn) I =¢1(y1,yz,---,yn)
Y2 :.92(3317332,"',3%) h L2 =¢2(y1ay2,"'7yn)
yn:gn(wl,wz,..-,xn) mn:¢n(y1,y2,...,yn)

e Following the discussion in case of transformation of two rv in chap - 3,
except the infinitesimal hypervolume is defined in n-dimensional space,

|
P[A / fY(y dy fY Vy—/ fX(x)dCI? — fX(X)V :P[v<V§v+dv,w<W§w+dw] // fow (&, TI)dEdn

= fvw (v, w)A(Z) |
Elementary event that

Recall: Two variable case —
I Fxv (& dédn!
defines the hypervolume V, | // e G m)didn

Ratio is defined by the S e — g - 146 —'
A {C:y; <Y, <y, +dy,i=1,...,n} determinant of the Jacobian
e Jacobian determinant is given by If r roots exists for Y=g(X), then multiple
91 ey 901 dgr |1 Jacobians define the ratio of disjoint
By g o o, hypervolumes,
J=|: Ak | =g N
0, .. O] |oa o0, Fel) = 3 1 (<), fo( )11
= e T &
= where, |7;| 2V /v
— [x®) = &I = xx)/17 A




Example 5.2-1

It has four solutions, with four disjoint hypervolumes

) =(+92)/2)"° o =+ )/
e We are given three functions o (2w = ()2
1 2
g(x) =2i—2; gp Y11= 2 = mg)_y:‘
2 2 2 2 T
@x)=2z1+25 — Y=+
Bt T kT o = (/D o = ()2
_ ) =(-w)/2" 2l = (- w)/2)"
Given 2 = y3 2 =y,
fx(x) = (27:')_3/2 exp [—% (:c% + 22+ wg)
2r7 —2xz1 O
e The Jacobianisgivenby J=|2z;, 2z, 0|=8zz,
0o 0 1

1/2
o Note, [J,1= 1), 1=10;1=10,1= 4 (a2 — 2)"
e Also note, for roots to be real,

y2 > 0,y1 +y2 >0, and yo —y; > 0. Hencey2>|y1|

~
~
~
~
~
~
~

e Therefore, Tt

- ~
~

(2m)~3/2 1, s s -
fx(y) = 4(y§ 1/2 fo = mexp l—g(yz +y3)T X U(y2) (y2 — [y1])




Expectation Vectors

o Definition: The expected value of the column vector X =[X,, X,, .... X, ]"is
a vector u whose elements u,, u,, ..., are given by

uié/ / 85 Fx (Bs s 6y By JABY o« @By

- - i Integrat I
e Alternately, using marginal density of X. m’;iﬁgga?;‘;ﬁrf@r,
L :/ zifx,(x))dz; i=1,...,n fx. (i) é/ / fx(x)dz; ...dx; 1dziyy ... dz,
— 56 \/’ —00 —00

e Definition: Covariance matrix K is the vector outer product

Kij =S E[(Xz - ,U'i)(Xj - /1'.7')]
= E[(X; — pj)(Xi — pi)]
=Kj; 4,7=1,...,n

K2 E[(X—p)(X—p)]

e Define ¢? £ K;; e Def: Correlation matrix R 2 E[XXT]

- 5 -
o K,

o Expanding the covariance matrix K = R — ppu”

K=| : o : e Def: Vectors X and Y Uncorrelated if E{XYT} = uxp?

| Ko o | e Def: Orthogonal if E{XY"} =0
e



Example 5.4-1

o Given fxx,(z1,22) = a1+ a2 for0 <z <1,0<z, <1, Compute K2 E[(X — p)(X — p)”]
SOIUtion: We knOW, K12 = K21 = R21 — M2 1

By Definition:

1 = g = // z(z + y)dzdy = 0.583 Ry =Ry 2 // zy(z + y)dzdy = 0.333
S S

where S = {(z1,22) : 0 <21 <1,0 < 2y <1}

Hence K1» = Ks; = 0.333 — (0.583)% = —0.007

The diagonals of the covariance matrix is given by ¢* =F X -

1
02 =02 = / z*(z + 1/2)dz — (0.583)* = 0.077
0

K — 0.077 —0.007] _ 0.077[

1 —-0.09
—-0.007  0.077

—0.09 1




Properties of Covariance Matrix

General example: 2 -1 0
And for a r.s matrix M = [1 2 1}
Any vector z={a b c]" 0 -1 2

. . . o o . o o ZTMz=(2"M)z=[(2a~-b) (~a+2b—c) (~b+20)] :
e Covariance matrix is at least positive semi-definite I, -
o For any column vector z and real symmetric matrix M is p.s.d. if, B S

=+ (a-b?+(b-c’+c
This is a sum of squares of real numbers,

s,T his is al 20
Ei> q(z) =z Mz > Oﬁ Positive AL s

definite if >0

e For any covariance matrix K, and any vector z, define Y = z'X (a scalar),

0 < Var(Y) = Cov(Y) = E[(Y — p)(Y — )"
= E[z" (X — px)(X — px)"z]
ZZTE[(X —px)(X - MX)T] %
ZZTKxe, Kxx é E[(X == p,) (X = [L)T]

e Eigenvalues and eigenvectors of M can also be calculated for K.

o Eigenvalues (A) are solutions to det(M — AI) = 0
o Corresponding eigenvectors are obtained by solving (M-Al)¢ =0

o See example 5.4-1

4-x 2] —
: 4_)\]_(44\)—4_0

M =6, X=2

4 2

M:l2 4

. (M-6D)$=0



Definitions

e A &B are similar matrices if there exists a n x n matrix T with det(T) # 0, s.t. T'!AT =B

e Theorem: An n x n matrix M is similar to a diagonal matrix iff M has linearly independent
eigenvectors.

e Theorem:If Mis ar.s matrix with eigenvalues A, A, ..., then M has n mutually orthogonal
unit eigenvectors ¢, ¢, ....¢ .

e From the two Theorems, if M is r.s and has orthogonal (and therefore
linearly independent) eigenvectors then it is similar to a diagonal
matrix A under some transformation T. A 0

o So under the transformation UTMU = A, with U = 9, ¢, ... ] and A =
o Since UTU =1 and UT = U (unitary matrices), we can write UTMU = A 0 An
e Distance preserving property under the transformation y=Ux

ly I’=y"y =x"U"Ux =|| x|*

e Key Takeaway - K can be diagonalized if eigenvectors (U) are known.
o  Why is it useful to diagonalize?




Properties of K, ,

e Theorem: Iff all eigenvalues are positive then a r.s matrix M is positive
definite
e Proof: Let A>0, then for any column vector and transformation x=Uy we
can write, <M — (Uy)*M(Uy)
=y"UTMU
=§TAy & J A is the diagonal matrix

=1

| Unless y=0, in that case x=0

e Conversely, replace x by ¢, if M is p.d. then A>0,

T If M is p.d then eigenvalues
0<x 1\% are also positive.

0<¢pIMeps =N i=1,...,n




Whitening Transform

e Given a zero mean n x 1 random vector X, with p.d. Covariance matrix
K, Find a transformation Y=CX such that K= I.

o Cis called the whitening matrix and the transformation is called whitening.
e Solution: The characteristic equation (K,,- Al)¢.=0 or K,,¢.= A¢. can be

written as K,,U = UA (U is the eigenvector matrix, A is the diagonal
eigenvalue matrix.

o SinceK,, is pd A>0 and therefore, A2 = diag[1vA, 1VA, .... 1VA 1is also well defined.
o Consider thie transform Y = CX = A2UT X, we get

Kyy= E[YY"] =/E[CXXTCT] = A"V2UTE[XXT]UA V2 = A 1/2UTKxx UA 1/
= A 12UT (Kxx U)A 12 = A-12UT(UA)A Y2 = A-V2(UTU)AAY/2 = A12AAY2= T, since UTU =1

2 -1 1 0 1/v/2 1/42 ) 0 0
Kxx= |—-1 2 0] U= [1/vy/2 -1/2 1/2 | =U" A=|0 2++v2 0
1 0 2 1/v/2 1/2 -1/2 0 0 2-42
1//2 0 0 0 1/V/2 1/V2
Y= 0 (2+v2)712 0 1/v2 1/-2 1/2 |X
0 0 (2—v2)712] [1/vV2 1/2 -1/2




Example 5.5-2

N O =

2 —1

e Given Kx= l—l 2 ] . Find transform U to form Y with diagonal K,
1 0

Start with eigenvalues by solving det(K,,- Al) = 0

o yieldsA\,=2,A,=2+V2, A\,;=2-V2
Compute the the three (normalized) orthogonal eigenvectors (K,,- Al)¢ =0

1 1% 11 1\% 1 1 1\%
¢1=<0,E,E) ¢2=(E,—§,§> ¢3=(—2,§,—5)
o Create eigenvector matrix U'=[¢p. ¢, ¢.]"
o L L
V2 2
A=U"= |5 -7 3
11 _1
V2 2 2
e Now, the transformation Y = AX yields

Y1=%(X2+X3) 2 0 0
Y, ==X - 1 X, + 3 X3 And K,=U™MU Ky= [0 2+v2 0
0 0 % — /2

Y; = %X1+%X2_ 3 X3
s



Multidimensional Gaussian

1 1/z—u\>
Scalar RV X fX(w)=manP<—§(mau)>

Random Vector
X=[X, ,Xz,....Xn]T with

independent components  fx(x) :

T (2m)"2[det(K)

e |3 b K )
o7 0
K= 5, =1, ..., pn)", and det(K) = Ha?.
i=1
0 o

o Isf (x)a pdf for any arbitrary p.d matrix K,, . We have to prove/_w fx(x)dx =1
o Definez=x-u, then the pdf can be written as

¢(z) = eXp(—%ZTK_lz) Under z=Cy transform ‘i -1 T T -1 2N~ 2

K —yTCTK Cy = ) "y

as [% ¢(z)dz —and noting K, = CC s R oGy i=1 v
and C'K,,'C=1 so that ¢(z) is given by

f—oo fx(x)dx = (27{')"/2[(;):31:(K)]1/2

¢(z) = 11—y exp[—57]

But this transformer matrix C matrix will have
to be a special matrix (see next page)




Proof for K, = CC" and CTKXX'1C = |

From whitening discussion we have NOTE:
Kyy =AY?UTKxxUAY?=1 (i) UuT=U"
let A7V2=Z =[A'?)T (i ZT=2->[Z2"T=2"
= (UZ)"Kxx(UZ) =1 (i) [AT] " = [A']T

Pre-multiply by [(UZ)']" and post-multiply by (UZ)" to isolate K, , we get
K, = [(UZ)"]". [UZ]" =(ZTUTy". ZTU"
= (UTY'. @) 20 = (UYL (2. 2 U = Uzt Z U

= UZ1.[Z"]TU" = UZ". [UZ"]" = €CT (where, C = UZ")

e Also, CT KXX'1 C=CT[CCT'c=CT[CT'C'Cc=(Cc'C)' (Cc"'C)=1
e For any p.d. matrix P, there exists C such that P = CC' and C'K,,'C =1




...contd

Volume elements are related as below for a linear transformation z = Cy
dz = | det(C)|dy where dz = dz; ...dz, and dy = dy; .. . dy,

Theorem (Determinants and volumes). Let v, V,,...,V, be vectors in R", let P be
H hy llelepiped de ined by th , and let A be th ix with
Therefore, the integral reduces to . o s e o e st St v
| det(4)] = vol(P).
= 1 L 2 Reference: https://textbooks.math.qgatech.edu/ila/determinants-volumes.html
o= exp| —5 E y; |dyi ... dy,| det(C)|

—o0 =1

o0 n

—y°/2
= l/ e v/ dy] | det(C)| | Integral of the standard

—00 ] —— normal multiplied by V21

= [27]"/2| det(C)|

Since, det(AB) = det(A).det(B)
and det(A) = det(AT)

But since K =CC7, det(K) = det(C) det (CT) — [det(C)]?
|det(C)| = | det(K)["? = (det(K))"/2

Therefore, we obtain,

a = (21)V2[det(K)] Y2

= o0 _ Qa —
Joo Fx(x)dx = smrirgmm =1

Hence the multidimensional Gaussian pdf integrates to 1. This proves that it is a valid pdf.


https://textbooks.math.gatech.edu/ila/determinants-volumes.html

Transformation of Gaussian pdf

Theorem: Let X be an n-dimensional Normal random vector with positive
definite cov. Matrix K,, and mean vector u. Let A be a nonsingular linear
transformation in n dimensions. Then Y = AX is an n-dimensional Normal
random vector with covariance matrix K, = AK,, AT and mean vector p=Ag.

Proof: Start with the Jacobian fy(y) = i Fx (i) where, Y =g(X) £(a:1(X),. .-, 9.(X))"
=1

|Jil
The /™ Jacobian is .. %
o0g ' "
Ji —det<§> x_x‘—
- an 6gn
Wl Wn X=X;

Since A is a non-singular linear transformation, the only solution of

Ax—y=0 is x=Aly —> J,= det(%) = det(A)

which leads to

1 L1 Tor1(pa-1y _
fr(y) = (27r)n/2[det(K)]1/2|det(A)|exp(_E(A Y- u) KAy —p ))



...contd

Since, det(A") - det(A) we get,

1/2 _
Now, - [det(R)]*?|det(A)] = [det(AKAT)]*2 [der(@)V?  ct: ety cers deri. ey

Also, factoring out A™' we get,

- T, o - T, _
(Aly —p) KAy —p) =[A7(y — Ap)] KA (y — Ap) Since, (ABC)" = C'BA™ and [AT]" = [A"]T
=(y—Ap)T[A KAy — Ap) We get [ATTK AT = [ATT'K TAT=[AK,,
=(y—Ap)'ATT'K AT (y — Ap) AT

= (y — Ap)T(AKAT) '(y — Ap)
Therefore, since, p=Au and Q = E[(Y-B)(Y-B)"], we can write

1

) = e

o3 -8y -

Theorem: The above holds for Amxn transformations as well

B =Annp




Example 5.6-1

e Random vector X = (X,, Xz)T with covariance matrix k =[3-1;-1 3]. Find
transformation Y=DX such that Y=(Y, Yz)T is a Normal random vector with
uncorrelated (and therefore independent) components of unity variance

e Solution: We seek D such that E[YY"] = E[DXX"D’] =DKD"=1

o We know that such a transformation is D = A"/2UT
o Next, calculate Eigenvalues and Eigenvectors
1
= 0
s Solving det(K,,-A)=0gets, A\, =4, A, =2 — A7Y= [(2) L]

m Eigenvectors are (K,, - A1) ¢=0,

111
U= (¢1,¢2) = 7|1 1]
1L -1
o Therefore, we get, D =AY?UT= — | } 12]
212

e Generate correlated vectors X from uncorrelated vector Y (K., is not
diagonal) using the transformation X = DY, where D = A2UT



Example 5.6-2

L 1 ~1 5 3
X, and X, are Normal r.v.s with joint pdf fxx(@,z2) = 2ﬂgzmexp(za2(1_p2) (G —2pm1x2+w2))
and ¢ =-0.5. Find two r.v.'s Y, and Y, such that they are independent.

e Find K, in the standard form x'K,, 'x to diagonalize the cov. Matrix

a b _ 1 a b 41 05
w%+w1w2+$§=xT[c d]x:(zw%-l‘(b-l-C)iBlazz-l-dw%—Va=d=1andb=c=0-5QKIZWL d]:§[0.5 1]

0.2

e Since the constant 4/3¢% only affects the eigenvalues and not the
eigenvectors. Also we do not need to whiten K,, in this problem. Define

< In Slide 14, we derived C'K_,"'C = |, where C
_ J=3/2 o e —1 2 ’ ’
K 'a 105 _1—/> U2 [1 1] —» U K U =diag(1,3 = UZ''= UA'™2. If we don't want to normalize
0.5 1 ]%=1/ 1 -1 K,y , then K, = UT[K, U = diag( )

. . i=Xi+X
e Hence UTis a good transformation. Y =UX — ., _ 3 3
Y =X - Xo

e The pdfis given by fr(y) = >, fx(xi)/|Ji]

e Using direct method

J:det(%> = det [1 1] = -2 —p

1 Y1+Y2 Y1 — Y2
inYz(yl’y2) = 5fX1X2( D) 3 D)

ox 1 -1




Bivariate Gaussian Using Standard Normal

o Let Z1 and Zzare standard normal r.v.

o We want to find the joint pdf of Y.,Y, with parameters o,, 0., U, U, and p.

The transformation for this is

To check if this is a correct,
check marginals are Gaussian

X=0xZ1+ px

Y=0Y[PZ1+ vl—P2zz} + py

e Then compute Cov(X,Y) and p

cov(X,Y) = B[(X — B(X))(Y — BY))]

X =o0xZ1 + px
= UxN(O,l) + ux
= N(/-‘LX, U?X)

= E[(UXZ1 + px — px (UY [PZ1 + 1 — 2Z2] + py — MY)]

Y = UY[PZ1 +4/1 —P2Z2] + py

— 8f(os20) (vt + 7))

= O'XO'yE[pZI 1 — 2Z1Z2]

Use Y=AX+B transformation.
We know, f,, =(1/]a])f,[(y-b)/a]

=oy[pN(0,1) + — P*N(0,1)] + py = oxoypE[Z3]
=oy[N(0,0) + N(0,1—p*)] + py — OX0Yp
7= oyN(0,1) + py \ (X, Y) = Cov(X,Y) _ So, it is a correct
=N (py,0%) ’ oXOy transformation

\

\
Use sum of uncorrelated Gaussians

fz(2) = (fx * fr)(2)
=F YF{fx} Fifr}}

OyW
=F 1 exp[—jwpx] exp | =

exp|

=F! {eXP[_jW(ll'X + py)] exp [—

0'2 w2
—jwpy] exp [— S

(Ugc + O'Y) w?

=N (2 px + py, 0% + o%)

=)




Joint Density of Bivariate Gaussian

e (Jacobian Method) Find are the inverses of the transformation
o IfX=g(Z,Z)andY=h(Z,Z,),findfunctions ¢ and y such thatZ, = ¢(X, ¥)and Z,=y¢(X, Y)

X=o0x2Z1+ px IaCObian

Z_X—NX
1= ox % (?_3;5 crL 0
oo T e R T-as|® B oal T L |
Yoy Xepx Bz oy oxV1-p*  oyy/1-p
_ a2
s e +4/1=p"2;
Zy — 1 [Y—HY_ X—MX]
e The joint density of Xand Y is then given by
f(@,y) = f(z1,22)|J|
=iex [—l(z2+z2)]| = ! ex [—l(zz—i-zz)]
27"p212j27raxaymp212

B 1 ool Ll (z=mx\', 1 (y-py  z—px)’
_27r0Xay\/1—p2 p[ 2[( ox )+1—PZ( oy e ox )”
1 - ((-’B—NX)2 =) _, @=px) (y—uy))]

= +
27raX0y(1 — p2)1/2 P [ 2(1 - pz) o2 o ox oy
\

H_I Y J
(det K)''? (x)" K (x)




Compare with the Matrix Notation

e From the previous slides we write in matrix form
_[(® _ (KX o O'?X POXOYy . _ Ter—1 B
* (y) £= <#Y) B (paxay o3 ) —f(x) = 7(de tK) 1/2 exp[ 2 (x p) K (x N)]

e Checkif (det K)"? and (x-u)" K (x-u) matches the regular form above

— et K) T =(o%od — poked) = —
O'Xa'y(l—pz)
e Alsorecall a- (“ 3) A= detA(_dc _f):adibc (_dc _ab)

e Then the exponent of the bivariate Gaussian is given by

(x — u)TE Hx—p)

(2 )
(ot iy coitoin) (i)
= T (0 (z — ux)~2poxoy(® — px)(y — pr) + 0%y — pr)’)

_ 1 T— MX (z—px) (y—py) (y—HY)
S Iy (c AT

N

&3

1
0}0 (1-p?)

2

2
1 ox 0x0y oy




Characteristic Function

e Similar to scalar r.v. we have the c.f. for X=[X,, X, .... ,XN]T

Inverse 1 /w

q)x(w) A E e.]w / fX x)e]w Xdx *———> fx(x) — (27‘-)71 i’x(w)e_j“’Txdw

e Similar to scalar r.v. moments (if they exist) can be found using the c.f.
o Example 5.7-1: For X=[X,, X, X,]" and o = [0,,0,,0,], we write
Px (w1, w2, w3) = /w /W/w Fx(z1, T2, 3) elrm 2Tl gy dopy dapy

o By partially deriving

1 POx (w1, ws, w3)
j3 Ow1 0wy Ows

= [% [50 [5 mmazs fx (@1, 22, T3)dardwodrs £ B[X) Xy Xs]

w1 —wz—aJ3—O

e Therefore, generalizing the above expression to n-dimensions,

1+ . +kn
E[X’lcl .. .Xﬁn] =j(k1+~--+kn) o* fx(wl’ -+ -1 n) Recall for two variables, the joint
Owyt . .. Bk wi=. . —wy=0 moments are a below
: . me 2 E[ XY = (—5) %305 0, 0)
e We can also write the c.f. as products of exponentials $ 22 aw] @XY(JWI o) |
21 (0,0) £ -

n aw;awZ w1=wy=0
E[exp(JwTX [exp (jzwl )] :E[Hexp(jw,-Xi)]

i=1



Properties of CF

e Properties:

1. |®x(w)| < ®x(0) =1 and
2. % (w) = ®x(—w)(* indicates conjugation ).
3. All c.f.’s of subsets of the components of X can be obtained once ®x(w) is known.

e An example of the last property is

®x, x, (w1, w2) = ®x x,x, (W1, w2, 0)
®x x,(wi,ws) = ®x, x,x; (w1, 0,ws)
Px, (w1) = ®x,x,x,(w1,0,0)

e Best application of c.f.: Convert convolution of r.v. to multiplication of c.f.

=Xt +Xn Using CF ®x(z) = B|ehXit+%0)|

fz2(2) = fx,(2) ... x fx,(2) —— >

n n

=F

Lo ffses - roses
i=1 =1

1=1




Example 5.7-2

e If X areiid Poisson random variable X.. Find the pdfof Z=X, + X, + ...+ X ?

e Characteristic function of a Poisson r.v. X is given by

Px(w) = E[ej“’X] = f: /" Px (k)
k=0

e The pdf of Zis given by

n &
q)Z(W) _ He/\(ew—l)
=1

Jw _
- en)\(e 1)

e Whichis a CF of a Poisson r.v. with parameter a = nA, i.e.




Characteristic Function of Gaussian

e Let X be anormal random vector with nonsingular covariance matrix K,
then both K and K can be factored as Kk =cc? — k' =DD?, D=[C7]""

e The CFfor the normalr.v. is

1 h . TK-1(x— - exp (jw'x)dx

e Under the transformation z£D"(x — ) = x=[D"]"'z+ 1 we get
z'z = (x — p)' DD (x — pn)
=(x—p)K ' (x—p)

Therefore, the CF after transformation
exp jw u . -1
Px(w) = (27r)"/2[det(K)]1/2|det(D | / (——z z) exP(JwT(DT) zj)dz
e Complete the square in the nd
/) [—% [sz — 2jwT (DT)_lz]] =exp [—% [sz — 2j(wT (D_l)T) z]] = exp [—% [sz — 2j(D_1w)TzH
—=ex —le N 'Dlw) - ex = 7z — ;D lw|?
|mTMm—2bTm =(z — M '6)" M(z — M 'b) —bTM—lb| y ) p( 2 == 707 )

(DDT)"' =K and det(K ') = [det(K)]*

dz = |det(D7)|dx

Swap inverse and
transpose, since
(AT)-1 - (A-1)T

= det(D) det(D7) = det[(D)]? = |det(D| = det(K) /2




... contd

e So, the CFreduces to

1 1 0 1 ~—1 |12
F) = ot — B ) - / —3|[z=D7w[" 4
x(w) exp(]w p—w w) 2P _ooe 2 zZ

e Theintegral is a n-fold integration of n iid rv with unit variance = (2r)"/2

e Hence the cf of a Gaussian maps onto a Gaussian cf

1
Px (w) = exp (iju - —wTKw>

2




