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● Groups of RVs are studied in form of vectors called random vectors

○ Bold Uppercase letters denote random vectors and matrices

○ Bold Lowercase letters denote deterministic vectors, e.g., values a random vector assumes

● Event 𝜁 is mapped to the real line by multiple RVs, X1, X2, .... ,XN , which forms 
and N-dimensional vector  X(𝜁) ≜ [X1(𝜁), X2(𝜁), .... ,XN(𝜁)] 𝝐  Rn

○ X can be real or imaginary.

● Therefore, the CDF of a random vector is 

● By defining                                                      , we can write 

○ Also, certain and impossible event and the pdf can be written as

● Also observe that More generally, with  



Conditional and marginals
● Conditional CDF of X given B 

● Conditional densities are given by 

● Joint distribution and densities - 

● Marginal pdf by integrating joint pdf

● Marginals for 
Integration over xn gives 
marginal density of x’



Multiple Transformation of RV
● If X ≜ [X1, X2, .... ,XN] is a random vector and define n functionally 

independent real functions as another rv Y ≜ [Y1, Y2, .... ,YN],

● Following the discussion in case of transformation of two rv in chap - 3, 
except the infinitesimal hypervolume is defined in n-dimensional space, 

● Jacobian determinant is given by 

Recall: Two variable case Elementary event that 
defines the hypervolume Vy 

Ratio is defined by the 
determinant of the Jacobian

If r roots exists for Y=g(X), then multiple 
Jacobians define the ratio of disjoint 
hypervolumes,

where,



● We are given three functions

● The Jacobian is given by

● Note, |J1|= |J2|=|J3|=|J4|

● Also note, for roots to be real, 

● Therefore,

Example 5.2-1

OR

It has four solutions, with four disjoint hypervolumes

Given



Expectation Vectors
● Definition: The expected value of the column vector X = [X1, X2, .... ,XN]T is 

a vector 𝝁 whose elements 𝜇1, 𝜇2, …..,𝜇N, are given by

● Alternately, using marginal density of Xi

● Definition: Covariance matrix K is the vector outer product

● Define 

Integrate over all 
indices except for i

● Def: Correlation matrix 

○ Expanding the covariance matrix

● Def: Vectors X and Y Uncorrelated if

● Def: Orthogonal if  



Example 5.4-1
● Given                                       .                                 , Compute 

Solution: We know, 

By Definition:

The diagonals of the covariance matrix is given by 



General example: 
And for a r.s matrix M
Any vector z = [a b c]T

This is a sum of squares of real numbers, 
whis is always ≥ 0

● Covariance matrix is at least positive semi-definite

○ For any column vector z and real symmetric matrix M is p.s.d. if, 

● For any covariance matrix KXX and any vector z, define Y = zTX (a scalar),

● Eigenvalues and eigenvectors of M can also be calculated for K. 

○ Eigenvalues (λ) are solutions to 

○ Corresponding eigenvectors are obtained by solving (M- λI)ɸ = 0

○ See example 5.4-1 

Properties of Covariance Matrix

A scalar Positive 
definite if >0



● A & B are similar matrices if there exists a n x n matrix T with det(T) ≠ 0, s.t.

● Theorem: An n x n matrix M is similar to a diagonal matrix iff M has linearly independent 
eigenvectors.

● Theorem: If M is a r.s matrix with eigenvalues λ1, λ2, …, then M has n mutually orthogonal 
unit eigenvectors 𝝓1, 𝝓2, ….𝝓N. 

● From the two Theorems, if M is r.s and has orthogonal (and therefore 
linearly independent) eigenvectors then it is similar to a diagonal 
matrix 𝝠 under some transformation T.

○ So under the transformation U-1MU = 𝝠, with U = [𝝓1, 𝝓2, ….𝝓N] and 

○ Since UTU = 1 and UT = U-1 (unitary matrices), we can write UTMU = 𝝠

● Distance preserving property under the transformation y=Ux 

● Key Takeaway - K can be diagonalized if eigenvectors (U) are known. 
○ Why is it useful to diagonalize?

Definitions 



Properties of KXX

● Theorem: Iff all eigenvalues are positive then a r.s matrix M is positive 
definite

● Proof: Let λi>0, then for any column vector and transformation x=Uy we 
can write,

● Conversely, replace x by 𝝓i , if M is p.d. then λi>0,

Λ is the diagonal matrix

Unless y=0, in that case x= 0

If M is p.d then eigenvalues 
are also positive. 



Whitening Transform
● Given a zero mean n x 1 random vector X, with p.d. Covariance matrix 

KXX. Find a transformation Y=CX such that KYY= I. 

○ C is called the whitening matrix and the transformation is called whitening.

● Solution: The characteristic equation (KXX- λiI)𝝓i=0 or KXX𝝓i = λi𝝓i can be 
written as KXXU = U𝝠 (U is the eigenvector matrix, 𝝠 is the diagonal 
eigenvalue matrix. 

○ Since KXX is p.d., λi>0 and therefore, 𝝠1/2 = diag[1√λi, 1√λ2 …. 1√λn] is also well defined.

○ Consider the transform Y = CX = 𝝠-1/2UT X, we get



● Given                                . Find transform U to form Y with diagonal KYY

● Start with eigenvalues by solving det(KXX- λI) = 0 

○ yields λ1= 2 , λ2=2+√2,  λ3= 2-√2

● Compute the the three (normalized) orthogonal eigenvectors (KXX- λiI)𝝓i=0

● Create eigenvector matrix UT=[𝝓1 𝝓2 𝝓3]T

● Now, the transformation Y = AX yields 

Example 5.5-2

And KYY=U-TMU



Multidimensional Gaussian

Scalar RV X

Random Vector  
X=[X1,X2,....Xn]T

 with 
independent components 

● Is fX(x) a pdf for any arbitrary p.d matrix KXX . We have to prove  
○ Define z = x - 𝜇, then the pdf can be written as

Under z=Cy transform 
and noting KXX = CCT 
and CTKXX

-1C = I

But this transformer matrix C matrix will have 
to be a special matrix (see next page)



From whitening discussion we have

Pre-multiply by [(UZ)T]-1 and post-multiply by (UZ)-1 to isolate KXX , we get

KXX = [(UZ)T]-1 . [UZ]-1   = (ZT UT)-1 . Z-1U-1 

= (UT)-1. (ZT)-1. Z-1U-1 = (U-1)-1. (Z-1)T. Z-1 U-1 =  UZ-1. Z-1U-1 

= UZ-1. [Z-1]T UT = UZ-1. [UZ-1]T = CCT (where, C = UZ-1)

● Also, CT KXX
-1 C= CT [CCT]-1C = CT [CT]-1C-1C = (C-1C)T (C-1C) = I

● For any p.d. matrix P, there exists C such that P = CCT   and CTKXX
-1C = I

Proof for KXX = CCT and CTKXX
-1C = I

NOTE:
(i)   UT = U-1                              

(ii)  ZT = Z -> [Z-1]T = Z-1

(iii) [AT]-1 = [A-1]T



Volume elements are related as below for a linear transformation z = Cy

Therefore, the integral reduces to 

                                 Reference:  https://textbooks.math.gatech.edu/ila/determinants-volumes.html

Therefore, we obtain, 

⇒

...contd

Integral of the standard 
normal multiplied by √2π

Since, det(AB) = det(A).det(B) 
and det(A) = det(AT)

Hence the multidimensional Gaussian pdf integrates to 1. This proves that it is a valid pdf.

https://textbooks.math.gatech.edu/ila/determinants-volumes.html


Transformation of Gaussian pdf
Theorem: Let X be an n-dimensional Normal random vector with positive 
definite cov. Matrix KXX and mean vector 𝜇. Let A be a nonsingular linear 
transformation in n dimensions. Then Y = AX is an n-dimensional Normal 
random vector with covariance matrix KYY = AKXXAT

 and mean vector 𝛃=A𝜇.

Proof: Start with the Jacobian                                where, 

The ith Jacobian is

Since A is a non-singular linear transformation, the only solution of 

which leads to 



...contd
Now,

Also, factoring out A-1 we get,  

Therefore, since, 𝛃=A𝜇 and Q = E[(Y-𝛃)(Y-𝛃)T], we can write

Theorem: The above holds for Amxn transformations as well

 

Since, (ABC)-1 = C-1BA-1 and [AT]-1 = [A-1]T

We get [A-1]TKXX
-1A-1

 = [A-T]-1KXX
-1A-1 = [AKXX 

AT]-1

Since, det(AT) - det(A) we get, 
det(K).|det(A)|2= det(A).det(K) .det(A)  

= det(A).det(K) .det(AT) = det(AKAT)



Example 5.6-1
● Random vector X = (X1, X2)T with covariance matrix k = [3 -1;-1 3]. Find 

transformation Y=DX such that Y=(Y1, Y2)T is a Normal random vector with 
uncorrelated (and therefore independent) components of unity variance

● Solution: We seek D such that

○ We know that such a transformation is D = 𝝠-1/2UT

○ Next, calculate Eigenvalues and Eigenvectors

■ Solving det(KXX- λI) = 0 gets, λ1 = 4, λ1 = 2

■ Eigenvectors are (KXX - λi I) 𝝓i=0, 

○ Therefore, we get, 

● Generate correlated vectors X from uncorrelated vector Y (KYY is not 
diagonal) using the transformation X = D-1Y , where D = 𝝠-1/2UT



X1 and X2 are Normal r.v.s with joint pdf                                                            
and 𝝆 = -0.5. Find two r.v.’s Y1 and Y2

 such that they are independent.

● Find KXX in the standard form xTKXX
-1x to diagonalize the cov. Matrix

● Since the constant 4/3𝝈2 only affects the eigenvalues and not the 
eigenvectors. Also we do not need to whiten KXX in this problem. Define

● Hence UT is a good transformation. Y = UTX

● The pdf is given by 

● Using direct method 

Example 5.6-2

a=d = 1 and b=c = 0.5

In Slide 14, we derived CTKXX
-1C = I, where C 

= UZ-1 = UΛ1/2. If we don’t want to normalize 
KYY , then KYY = UT[KXX

-1]U = diag( )



Use sum of uncorrelated Gaussians

Bivariate Gaussian Using Standard Normal 
● Let Z1 and Z2 are standard normal r.v.

○ We want to find the joint pdf of Y1,Y2 with parameters σX, σY, μX, μY and ⍴.

● The transformation for this is 

● To check if this is a correct,                                                         
check marginals are Gaussian

● Then compute Cov(X,Y) and ⍴
                                                        

So, it is a correct 
transformation

Use Y=AX+B transformation. 
We know, fY =(1/|a|)fX[(y-b)/a]



Joint Density of Bivariate Gaussian
● (Jacobian Method) Find are the inverses of the transformation

○ If X = g(Z1, Z2) and Y = h(Z1, Z2) , find functions 𝜑 and 𝜓 such that Z1 = 𝜑(X, Y) and  Z2 = 𝜓(X, Y)

Jacobian

● The joint density of X and Y is then given by

(det K)1/2                          (x-𝜇)T K-1 (x-𝜇)    



Compare with the Matrix Notation
● From the previous slides we write in matrix form

● Check if (det K)1/2  and (x-𝜇)T K-1 (x-𝜇) matches the regular form above

● Also recall

● Then the exponent of the bivariate Gaussian is given by 



● Similar to scalar r.v. we have the c.f. for X=[X1, X2, .... ,XN]T

● Similar to scalar r.v. moments (if they exist) can be found using the c.f.
○ Example 5.7-1: For X=[X1, X2,X3]T  and ⍵ = [⍵1,⍵2,⍵3], we write

○ By partially deriving

● Therefore, generalizing the above expression to n-dimensions,

● We can also write the c.f. as products of exponentials

Characteristic Function

Inverse

Recall for two variables, the joint 
moments are a below



Properties of CF
● Properties : 

● An example of the last property  is 

● Best application of c.f.: Convert convolution of r.v. to multiplication of c.f.

Using CF



Example 5.7-2
● If Xi are iid Poisson random variable Xi .

 Find the pdf of Z = X1 + X2 + ....+ XN ?

● Characteristic function of a Poisson r.v. X is given by 

● The pdf of Z is given by 

● Which is a CF of a Poisson r.v. with parameter 𝛼 = nλ, i.e. 



Characteristic Function of Gaussian
● Let X be a normal random vector with nonsingular covariance matrix K, 

then both K and K-1 can be factored as 

● The CF for the normal r.v. is 

● Under the transformation                        we get

Therefore, the CF after transformation

● Complete the square in the integrand

Swap inverse and 
transpose, since 

(AT)-1 = (A-1)T



● So, the CF reduces to 

● The integral is a n-fold integration of n iid rv with unit variance = 

● Hence the cf of a Gaussian maps onto a Gaussian cf

… contd


