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Basic Concepts

● For each outcome (𝝵) in the sample space (𝛀 = {1...10}), X[n,𝝵] is a 
deterministic (nonrandom) function of the discrete parameter n.’

○ Each sequence is referred to as a realization or sample sequence.

○ But, for a fixed n, X[n,𝝵] is a random variable 

● If X[n] has finite support then we can 
model this sequence as a random vector X

● Def: Independent random sequence is one  
whose random variables at any time nN are  
independent for all positive integer N.

Each sequence is called a sample 
sequence or realization (x[n]) of the 
random sequence for the outcome 𝝵 = 10



Axiom 4: Continuity of Prob. Measure
● Axiom 3 of probability states that P[A U B] = P[A] + P[B] if AB = 𝝓

○ But it does not allow us to define probabilities for events like 

● Axiom 4 extends it to define “Countable Additivity”. For infinite collection of 
events satisfying

● S

● Proof: 

The theorem provides a way to 
calculate events involving infinite 
random variables by just taking 
the limit of the probability 
involving finite number of random 
variable.



● Nth order distribution and density, for all times, n, n+1…, N+n-1.
○ Infinite set of pdfs for each order N because we must know pdf at all times

○ Low-order distributions must agree with higher orders. E.g., N = 2 and 3

● Nth order density is given by

●  Mean function of a random sequence

● Autocorrelation - mean of the product of the random seq. at two times

● Auto-covariance

Statistical Representation of Random Sequences

Hermitian 
symmetry

Variance function or average 
power in the sequence



● Ex 8.1-11: Convolving multiple exponential rv. is a Erlang (Gamma) PDF

● Ex 8.1-12: Autocorrelation of sum of iid sequences

● Ex 8.1-13: Random Walk - running sum of no. of heads minus tails

○ The sequence models a random walk with a unit step size s taken either to the right or left
○ After n steps the position is rs for some integer r. For k successes and (n-k) failures

Examples of Random Sequences

Normalizing 
the sequence

From CLT



Stationarity and WSS

Shift 
Invariant



WSS 
● All stationary random sequences are wide-sense stationary
● Proof: First show that mean is constant for a stationary random 

sequence. Since fX does not depend on n.

● Next show covariance function is shift invariant using RXX

● Covariance is also shift invariant, hence use one shift parameter 



Random sequences and Linear Systems
● Self Study: Section 8.2 - Discrete-time linear systems, Linearity, 

Impulse response, Discrete time Fourier transform, Convolution 
theorem, z-transform

● S

● S

● Impulse response
Time-variant impulse response: The 
response at time n to an impulse at time k In LTI systems, convolution is an important property



● Since L is a linear operator we can write and taking Expectation 

● Assuming we can bring the E[ ] inside the sum (not always possible)

○ A necessary and sufficient condition is h(k) has to be absolutely summable

● If the input is WSS and if,             exists, we can write

● Also, cross-correlation between input and output

● The covariance functions for zero mean sequences is given by 

Operator L*n has impulse response h*(n,k) and Lm is the linear operator with time index m that treat n as a constant

Statistics of Linear Systems



Example 8.3-2 
● A linear system with 

● The output correlation function is 

● If the input sequence were WSS with autocorrelation 

● Then

●  Note: RYY only depends on the shifts (m-n) and hence is WSS



● For WSS sequences, we have 

● Properties of WSS
○
○ A
○ S
○ For all n and complex ai we must have 

■ This property is the positive semidefinite property for autocorrelation function

● Few derivations for LTI systems

Using the single shift parameter for WSS (if input is WSS then RXX is shift invariant)

WSS random sequences

Similarly, 

Use the Cauchy-Schwarz inequality to prove



Power Spectral Density 
● PSD is the Fourier transform of RXX(m) of a WSS random sequence X[n]

● Interpretation of psd
○ Since RXX(0), which is the average power, is constant, Fourier transform may not be 

computed for some sequences, so a truncated sequence is used and PSD is defined 
under limit.

● Under such an assumption, PSD represents the ensemble average power at frequency ω

Window function that limits the 
sequence to ± N timesteps

(From previous slide)

Integral of PSD over [-𝝅,𝝅] is the ensemble average power 



Markov Random Sequences
● A continuous valued Markov random sequence X[n] satisfies the 

conditional pdf expression (for all k>0, but sufficient for K=1)

● The Nth order pdf can be written using using the chain rule 

○ Substituting the basic one-step (k=1) version of Markov definition

● Markov-p  random sequence satisfies the conditional pdf expressions as

● Therefore, the unconditional pdf can be approximated as 



Markov Chains
● Discrete-time Markov sequences are called Markov chains with PMF

● The value of X[n] at time n is called “the state”, because current value 
determines future value taken on by X[n]

○ If X[n] takes finite set of values {0, M-1}, it is a finite state Markov chain (finite state-space)

○ The state transition information is represented as a state transition matrix P

○ Each row adds up to 1 and initial probabilities at n=0  is vector p[0] with elements

● 2-state markov chain (ex - 8.5-5) 

Solving these two equations 
provide the steady state 
probabilities p



Ex 8.5-6 Trellis for Markov Chain
● Each node denote the state at time [n]

● The links are possible transitions with transition 
probabilities (it is symmetric in this case) 

● The probability of a path through the trellis is the 
product of the corresponding transition probabilities.

● If we know that the chain is in state “1” at n=0, then 
the trellis will be conditioned on this initial state

● Then we can find 

● The steady state autocorrelation function 
(Asymptotically Stationary Autocorrelation (ASA)) is 



Ex 8.5-7 Buffer Fullness Problem
● M+1 States of a buffer. Transitions occur only between neighboring states

The transition matrix is related by a simultaneous difference equation

● The solution has the form                                             , leads to the following

● Since, (1 - p00) = p01 at least one solution is z=1. The combined solution is

● Example: 

Steady-state probabilities

(See example 8.2-1 on 
difference equations)

Invoking initial condition p[0]



Convergence

● If the limit x does not exist or is difficult to ascertain, use Cauchy criterion

● Convergence of functions
○ The Cauchy criterion applies for pointwise convergence of functions if the set of functions 

is considered complete

● Example convergence
of sequence and functions



Sure Convergence

● Most of the time we may not be interested in defining random variables 
for sets in Ω of probability zero. So we use almost-sure convergence

○ Also called probability-1 convergence and sometimes written as

● There is a set A, with P[A]=1 and X[n] converges to X for all 𝝵 𝝐 A or

● Notation as 

● Depends only on the second order properties of X[n]



… contd

● Also called p-convergence
○ Convergence in mean-square implies convergence in probability

■ Use Chebyshev inequality

○ Convergence in a.s (probability-1) implies convergence in probability
○ So, conv. in probability is weaker than mean square and even weaker than probability 1
○ Key difference - Limit of probability vs probability of limit

Consider the conditional distribution

P-convergence means seq. X[n] 
converges to rv X, as n -> ∞ therefore,  

Using definition of conditional 
distribution for continuous r.v 
(see (2.6-4) in text)



Law of Large Numbers
● LLN deals with the convergence of a sequence of estimates of the mean 

of a random variable to a constant value

○ Weak law obtain convergence in probability 

○ Strong law yield convergence with probability -1


