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Basic Concepts

Definition 6.1-1 Let ({2, #, P) be a probability space. Let ¢ € 2. Let X|n, (] be a

mapping of the sample space €2 into a space of complex-valued sequences on some index set
Z. If, for each fixed integer n € Z, X[n, (] is a random variable, then X[n, (] is a random
(stochastic) sequence. The index set Z is usually all the integers, — co < n < +o00, but can
be just a subset of the integers.

e For each outcome () in the sample space (2 ={1...10}), X[n,] is a
deterministic (nonrandom) function of the discrete parameter n.’

o Each sequence is referred to as a realization or sample sequence. XIn,¢] £ A(¢)sin(mn/10 + 8(¢))

o But, for afixed n, X[n,L] is a random variable 50

X(n, Q)
o

e If X[n] has finite support then we can
model this sequence as a random vector X

e Def: Independent random sequence is one
whose random variables at any time n are
independent for all positive integer N.

100
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20 56 index n

Each sequence is called a sample
sequence or realization (x[n]) of the
random sequence for the outcome T = 10




Axiom 4: Continuity of Prob. Measure

e Axiom 3 of probability states that P[A U B] = P[A] + P[B] if AB = ¢
o Butit does not allow us to define probabilities for events like N> {X[n] < 5}

e Axiom 4 extends it to define “Countable Additivity”. For infinite collection of
events satisfying A4;A; = ¢ fori # j

® Theorem: Consider an increasing sequence of events B,,, that is, B,, C B, 11

for alln > 1 as shown in Figure below. Define By, = U | B, then lim, ., P[B,] =
PB.].

p

e Proof: PBy= P[LNJ B 1 - P[LNJ An] =y Pla,

n=1

N
Yo Rl = Jig ) FlAd

+00
The theorem provides a way to = Z P[A,] by definition of the limit of a sum,
calculate events involving infinite et
random variables by just taking o
the limit of the probability :
involving finite number of random | — p U Ay by Axiom 4
variable. n=1

= P[Bs] by definition of the A,




Statistical Representation of Random Sequences

e Nt order distribution and density, for all times, n, n+1..., N+n-1.
o Infinite set of pdfs for each order N because we must know pdf at all times

Fx(@ny Tns1s Tasase -y @eN-1i0, 1+ Ly yn b N = 1) 2 P{X[n] < 20, X[n+ 1) < @iny- o, Xln+ N~ 1] < @1}
o Low-order distributions must agree with higher orders. E.g., N=2and 3
FX(mnamn+2;’n’)n + 2) = FX(mn, 00, Tpt2; My, + 1,n + 2)
e Nt order density is given by

O Fx(zn,Zni1ye - sZnin—_1;0n+1,.. . ,n+N—1
fX(mn,mrH-l,---,mn+N—1;n,n+1,---,n+N_1): X( nyln+lye - -sn+N-1,74 LR )

3:I:n3zn+1 o .3:1:n+N_1

e Mean function of a random sequence -
yxln] 2 B{X[n]} = / " e fy(win)de = / " (@) pxln] = B{X[n]} = Y zxP[X[n] = z]

k=—00

e Autocorrelation - mean of the product of the random seq. at two times
+00  p+oo
Ruxlk, 1] 2 E{X[K X[} = /_ /_ 202} Fx (s 2 by 1) dopda

e Auto-covariance

Kxx[k, 1] = B{(X[k] — px[k])(X[]] — px[1])"} Rxx[k,!l] = Rxx[l,k] | Hermitian
Kxxl[k, ] = Kyl k] | symmetry
Kxx[k,l] = Rxx[k,l] — px[klpx][l]

0%([’"4] = KXX[’n, ’n] Variance function or average
power in the sequence




Examples of Random Sequences

e Ex8.1-11: Convolving multiple exponential rv. is a Erlang (Gamma) PDF

n

Fo(tsm) = £r(8) = Aexp(—Atyu(t) — Tl = Y 7Kl fr(t;2) = £(t) * £,(t) = Nt exp(~A)u(?)
k=1

e EXx 8.1-12: Autocorrelation of sum of iid sequences
Rw[k,1] = 0*8[k —I],0 > 0 — X[n] 2 W[n] + Win — 1] — Rxxlk,{|= 0>(6]k — ] + 6k — 1 + 1] + 8[k — 1 — 1] + [k — 1))

e Ex 8.1-13: Random Walk - running sum of no. of heads minus tails
X[n] =", W[k] with X[0]=0
where we redefine W[k| = +s for ( = H and W[k] = —sfor (=T
o The sequence models a random walk with a unit step size s taken either to the right or left
o After n steps the position is rs for some integer r. For k successes and (n-k) failures

rs = ks — (n — k)s —p P{X|n|=r-s} = P|(n+r)/2 successes |

=(2k—n)s _ n -n ;
( ) _{<(n+r)/2)2 ,  (n+7)/2aninteger,” <n
0, else.
n n = 2
B{X[n]} =Y E{WK}=>0=0 X[n] ~ N(0, s%)
=L = £ 2 L xi From CLT piy < %[n] < b] = Play/m < X[n] < byf] ~ erf(b/s) — erf(a/s)
BxXm} =Y B{wiwy > T T -2 s
k=1 Pl(r—2)s < X[n] grs]:P[ 7 < X[n] < %]
. io 5[(+s)2 " (_8)2] Normalizing 1 i )
= the sequence S E/(T_z)/ﬁexp(—O-Sv )dv
= ns? ~ 1/,/m(n/2) exp(—r*/2n)



Stationarity and WSS

Definition: A random sequence is said to have independent increments if for
all integer parameters n; < ny < ... < ny, the increments X[n;|, X[ns] — X[n1], X[ns]—
X[na],...,X[ny] — X[ny_1] are jointly independent for all integers N > 1

Definition: If for all orders IV and for all shift parameters k, the joint PDFs of
(X[n],X[n+1],...,X[n+ N —1]) and (X[n + k], X[n+ k+1],...,X[n+k+ N —1]) are
the same functions, then the random sequence is said to be stationary, i.e., for all N > 1
Fx(zn,Tni1y.--sTpnen-1;7n+1,...,n+ N —1)
= Fx(pn, Tnt1y-- -y Tnen-1;n+ E,n+1+k,...,n+ N —1+k)

for all — 00 < k < +o00 and for all x,, through z,,. ;1. This definition also holds for pdf’s
when they exist and PMF's in the discrete amplitude case.

Definition: A random sequence X |n| defined for — oo < n < +o00, is called
wide-sense stationary (WSS) if

(1) The mean function of X[n] is constant for all integers n,—oo < n < +o0
px[n] = px|0] and

(2) For all times k, [, —oo0 < k,l < 400, and integers n, —o0o < n < 400

(correlation) function is independent of the shift n,

Kxxlk,l] = Kxx[k +n,l + n] Shift

Invariant




WSS

e All stationary random sequences are wide-sense stationary
e Proof: First show that mean is constant for a stationary random
sequence. Since f, does not depend on n.

—+00

pxn] = B(X0ol} = [ :° ofx(mn)de = [ afla;0)ds = pxlo

—00

e Next show covariance function is shift invariant using R,

Rxx[k,1] = E{;X [k]-’f: 1]}
:/_ /_ zrx) fx(zg, ) dzrdz

+00 +00 ;
*
= / / mn+kwn+le(mn+k7 mn+l)dmn+kdwn+l
—00 J—o0

= Rxx[n-f- k,n+l]

e Covariance is also shift invariant, hence use one shift parameter

Kxx[m] = E{X«[:[k +]m]X2 [k]} = Kxx[k +m, k| Rxx[m| = Rxx|k +m, k] = Rxx|m, 0]
= KXX m, 0




Random sequences and Linear Systems

e Self Study: Section 8.2 - Discrete-time linear systems, Linearity,
Impulse response, Discrete time Fourier transform, Convolution
theorem, z-transform

® |Definition: We say a system with operator L is linear if for all permissible input
sequences z1[n] and z[n], and for all permissible pairs of scalar gains a; and as we have
L{aiz1[n] 4+ asza[n]} = a1 L{z1[n]|} + asL{za[n]}

® |Definition: When we write Y[n] = L{X|n|} for a random sequence X[n| and
a linear system L, we mean that for each ¢ € {2 we have
Y[n, C] = L{X[n’ C]}
Equivalently, for each sample function z[n] taken on by the input random sequence X|[n] ,
we set y[n] as the corresponding sample sequence of the output random sequence Y|n|, i.e.,

yln] = L{z[n]}.

e Impulse response

Time-variant impulse response: The

response at time n to an impulse at time k In LTI systems, convolution is an important property
hn, k] 2 L{s[n — K]} hln] £ L{s[n]}
gl = L{ 32 ol - k]} vln] = hin] » aln] = aln) « i

k=o0 hin] x z[n] = 372 _ hlklz[n — k|

= f [k L{6n — K]}
k=—00

= i z[k]h[n, k]

k=—o00



Statistics of Linear Systems

Theorem: For a linear system L and a random sequence X|n|, the mean of the
output random sequence Y[n] is E{Y [n]} = L{E{X|n]|}} as long as both sides are well defined.

e Since Lis alinear operator we can write and taking Expectation

“+o00

sl = 3 A Kl  — & E{Y[n]}=E{ 3 h[n,kqu]}
k=—00

k=—00

e Assuming we can bring the E[ ] inside the sum (not always possible)
Y} = Y hln, HEX[E)

k=—00

= L{E{X[n]}}
o A necessary and sufficient condition is h(k) has to be absolutely summable

; Z h[k]

_H( )lz—l.u’X

—_— uyn] = Z hln, k|px[k]

-
— -
——___
-
__

e |[ftheinputis WSS and if, 5* kI Exists, we can write E(inl} =

k=—00

e Also, cross-correlation between input and output
Rxy[m,n] = E{X[m]Y"[n]} = E{X[m](L{X[n]})*}= B{X[m|L;{X"[n]}} = Ly {E{X[m]X"[n]}} = L;{Rxx[m,n]}
Ryy[m,n] = E{Y[m]Y"[n]} = E{Ln{X[m]Y"[n]} = Lp{E{X[m]Y*[n]}} = Lm{Rxy[m,n|}= L, {L;{Rxx[m,n|}}
e The covariance functions for zero mean sequences is given by
Kxy[m,n| = L) {Kxx[m,n]}
Kyy[m,n] = Ln{Kxy[m,n|}}
Kyy[m,n] = Ln{L,{Kxx[m,n|}}

Oﬁerator L* has imﬁulse reSﬁonse h*in,k‘ and L_is the linear Oﬁerator with time index m that treat n as a constant



Example 8.3-2

e Alinear system with Y[n] £ X[n] — X[n — 1] = L{X[n]}

e The output correlation function is

Ryy|m,n| = L,{Rxy|m,n|}
= Rxy[m,n] — Rxy[m — 1,n|
= Rxx[m, n] — Rxx[m — l,n] — Rxx[m,n — 1] + Rxx[m —1,n-— 1]

e |f the input sequence were WSS with autocorrelation
Rxx[m,n]=d™ " 0<a<1
e Then

Rxy[m,n] = alm "l — gIm—n+1]
RYY[m, ’n] = 2a|m—n| _ alm—l—n| . a|m_n+1|

e Note: R, only depends on the shifts (m-n) and hence is WSS




WSS random sequences

e For WSS sequences, we have (1) E{X[a]}  =pux, aconstant,
(2) Rxx[k+m, k] = E{X[k+m|X*[k]}

e Properties of WSS = Bl = E[X(m+ (X m]]:

O  |Rxx[m]| < Rxx[0] >0 Use the Cauchy-Schwarz inequality to prove

O |Rxy[m]| < {/Rxx[0]Ryy|[0] |E[R(X)g(X)]l S(E[hQ(X)])l/z (E[g2(X)])1/2

O Rxx[m] = Ryx[-m] N N

o Forallnand complex a, we must have 22 @aiRxxn—H 20

m This property is the positive semidefinite property for autocorrelation function

e Few derivations for LTI systems
- Similarly,
Y[n] = Y hin— kXK .
— Ryy[n +m,n] = E{Y[n + m]Y*[n|}

Ryy|m,n| = E{X|m|Y"|n|} = iof h[k|E{X[n + m — K]Y*[n]}

+00
= Y Wn— kB{Xm]X"[k]} e
= = Y hlk|Rxy[m — k|
_ * o m — k=—00
= 2 i MR —H  hm] » Ray ]
- f R —Rxx|(m —n)—1], withi2k—n Ryy[m] = hlm] * Rxy[m]
k=—
Using the single shift parameter for WSS (if input is WSS then R, is shift invariant) l
+00
Rxy[m] = ) W[~ Rxx[m -] Ryy|m| = hjm| % h*|—m| * Rxx|m)
= > — (h[m] * *[-m)]) * Rxx[m]

= h*[-m] * Rxx[m] = glm] x Rxx[m], with g[m] £ h[m]  h*[-m)]



Power Spectral Density

e PSD is the Fourier transform of R, (m) of a WSS random sequence X/n]

+00 +m
Sxx(w) £ E Rxx[m]exp(—jwm), for —m<w<+m <@ Rxx[m]=IFT{Sxx(w)}= % Sxx(w)e™ ™ dw
- +1r_7r

1
Syy(w) = |H(w)[*Sxx(w) = G(w)Sxx(w) (From previous slide) E{IX[n]Iz} = Rxx[0] = py= Sxx(w)dw
+oo _ i
S (w) & Z Rl expil—iinl), for —m LW tr Integral of PSD over [-z,7] is the ensemble average power

m=—0oo

e Interpretation of psd
o Since R,,(0), which is the average power, is constant, Fourier transform may not be
computed for some sequences, so a truncated sequence is used and PSD is defined
under limit.

1 [n| <N | window function that limits th
ry ol iIndow function that limits the
XN(w) o FT{wN [n]X[n]} wN[n] o {0 else sequence to + N timesteps

e Under such an assumption, PSD represents the ensemble average power at frequency w

Sxx(w) = lim

B{|IXx(w)’}

Nooo 2N +1




Markov Random Sequences

e A continuous valued Markov random sequence X[n] satisfies the
conditional pdf expression (for all k>0, but sufficient for K=1)

fX(xn-{-k'xm Lp—1y--- ,wO) = fX(wn+k|wn)

e The Nth order pdf can be written using using the chain rule

fx(xo, @1, ..,2n) = fx(xo0) fx(z1]2o0) fx(@2|21, %0) - - . fx(ZN|ZN-1,...,T0)

o  Substituting the basic one-step (k=1) version of Markov definition

fx(zo,z1,-..,2Nn) = fx(zo) fx(z1|z0) fx(22|21) - . . fx(TN]|ZN-1)

N
= fx(zo) [ [ Fx(@xlar-)
k=1

e Markov-p random sequence satisfies the conditional pdf expressions as
Fx(Eni|on Bais . - . »%0) = F(Tare|®a, Paiye .« Tr—pri)

e Therefore, the unconditional pdf can be approximated as

fx(zo, x1,...,2zNn) =fx(z0) fx(z1]|z0) fx(Z2|T1, 20) - - . fx(TN|ZN-1,--.,%0)
~fx(zo0) fx(z1]|z0) fx(z2|21,20) - - - Fx(Tp|Tp-1,-- ., %0)
N
X H Fx(er|er-1,. .. s Te—py1)
k=p+1



Markov Chains

e Discrete-time Markov sequences are called Markov chains with PMF
Px(z[n]|z[n —1],...,z[n — N]) = Px(z[n]|z[n — 1])

e The value of X[n] at time n is called “the state”, because current value
determines future value taken on by X[n]

o If X[n] takes finite set of values {0, M-1}, it is a finite state Markov chain (finite state-space)
o The state transition information is represented as a state transition matrix P
Pij = Px{n)xin—1)(J7)

o Each row adds up to 1 and initial probabilities at n=0 is vector p[0] with elements
(p[0]); = Px(4;0),1<i < M

e 2-state markov chain (ex - 8.5-5)

two-element probability row vector p[n| = (po[n], p1[n])
pl1 = plo/P ~ Do
p[2] = p[1]P = p[0]P*

p[n] = p[0]P"

P[oo] = p[oo]P, where poo] = lim pln]
poo p01] B 09 01

A
p = p[oc], we have p(I - P) = 0} Solving these two equations plo P11

0.2 08

provide the steady state

pl=1
probabilities p




Ex 8.5-6 Trellis for Markov Chain

State 1

&MAQA

e FEach node denote the state at time [n] X[01=1

e Thelinks are possible transitions with transition
probabilities (it is symmetric in this case)

e The probability of a path through the trellis is the ’ 1
product of the corresponding transition probabilities.
e If we know that the chain is in state “1” at n=0, then
the trellis will be conditioned on this initial state
X[0]=1 State 1

e Thenwe canfind P, £ P{X[n] = 1|X][0] = 1}
Pi=p,P=p’+¢,P;=p’ +3pg, etc.

"0"0"0"0'

e The steady state autocorrelation function .

(Asymptotically Stationary Autocorrelation (ASA)) is

Rxx|m| ~ P{X[k] =1,X[m + k] =1} for sufficiently large k
= P{X[k]| = 1} P{X[m + k] = 1| X[k] = 1}
= py[oo]P{X[m] = 1| X[0] = 1}




Ex 8.5-7 Buffer Fullness Problem

o M+1 States of a buffer. Transitions occur only between neighboring states

£080R0BOSO NN AT RS I

Po Pu Pn P2 Pz p,. Pu. The transition matrix is related by a simultaneous difference equation

e The solution has the form po[n] = Coz", pi[n] = C12" , leads to the following

Coz = Cypgo + Cip1o & =G ( Z — Poo ) _ CO( DPo1 ) >(2«’ — pOO)(Z - pll) — P1oPo1 = 0
Ciz = Copor + Cipu1 P10 Z—pu det(2I—-P) =0

e Since, (1-p,,) = p,, at least one solution is z=1. The combined solution is

2 — g — i
pln] = 4, [1, 1 — Poo ] 2+ Ay [1, 2 — Poo ] 2 (See example 8.2-1 on
P1o b1

0 difference equations)

o Example: P=|¢5 gl witholol = 11/2,1/2

_ z—09 —-011Y) o _
det(zI — P) —det< 09 z—0.8> =2z —1724+07=0

z1 =0.7Tand 2o = 1.0

o 11 o 21 . lar £
p[n] = Cy[1,—-1]0.7"+C5[1,0.5]1™ p[n] = 556" + 33 | oF inscalar form

T 5 - Steady-state probabilities
Invoking initial condition p[0] poln] = _g()_wurg — > 5 i
2 1 1 1 po(00] = + and p;[oo] = —
Cy = g Ci= _E pi[n] = E0,7"-}-E ( ] 3 [ ] 3




Convergence

Definition 6.7 — 1 A sequence of complex (or real) numbers z,, converges to the
complex (or real) number z if given any € > 0, there exists an integer ng such that whenever
n > ng, we have |z, —z| <e

—p limz,=2 oras z, +zTasn— oo

n—oo

e If the limit x does not exist or is difficult to ascertain, use Cauchy criterion

Theorem (Cauchy criterion ) — A sequence of complex (or real) numbers
x, converges to a limit if and only if (iff)

|z, — | — 0 as both n and m — oo

e Convergence of functions

o The Cauchy criterion applies for pointwise convergence of functions if the set of functions
is considered complete

Definition 6.7 — 2 The sequence of functions f,(z) converges (pointwise) to the func-
tion f(z) if for each z( the sequence of complex numbers f,,(x¢) converges to f(z) .

e Example convergence (2] &SI —Lyfi)a -+ ()b miasn—3 o
. (b) z, =sin(w+e™) - sinwasn — 0o .
of sequence and functions (c) fa(z) = sin[(w + 1/n)z] — sin(wz), as n — oo for any (fixed) z
(d) fu(z) = {el_" z,ffor a:<>00} — u(—=x), asn — oo for any (fixed)
; orr <




Sure Convergence

Definition (Sure convergence.) The random sequence X[n] converges surely to
the random variable X if the sequence of functions X[n, (] converges to the function X(()
asn — oo forall( € ).

e Most of the time we may not be interested in defining random variables
for sets in Q of probability zero. So we use almost-sure convergence

o Also called probability-1 convergence and sometimes written as P{nliif,‘o Xn, ] = X(C)} =1

Definition (Almost-sure convergence.) The random sequence X[n| converges
almost surely to the random variable X if the sequence of functions X[n, (| converges for
all ¢ € () except possibly on a set of probability zero.

e Thereis asetA, with P[A]=1 and X[n] converges to X forall{ e Aor A% {C : 711iﬁrg)X[n, (= X(g)}

e Notationas X[n| - Xa.ss.and Xn]— X pr.l

Definition (Mean-square convergence.) A random sequence X|[n| converges in

the mean-square sense to the random variable X if E{ | X[n] — X |2} — 0asn — 0.

e Depends only on the second order properties of X[n]



... contd

Definition (Convergence in probability.) Given the random sequence X[n| and
the limiting random variable X, we say that X[n] converges in probability to X if for every
e>0, lim, ;o P[|X[n] — X| > €] =0.

e Also called p-convergence

o Convergence in mean-square implies convergence in probability
m Use Chebyshev inequality P[|y| > ¢] < E[|Y|2} /et fore > 0

P[|X[n] — X| > €] < E[|X[n] - X\Z] /&2

o Convergence in a.s (probability-1) implies convergence in probability
o So, conv. in probability is weaker than mean square and even weaker than probability 1
o Key difference - Limit of probability vs probability of limit

Definition: A random sequence X |n| with probability distribution function F,,(x) converges in distribution to the random
variable X with probability distribution function F(z) if lim, ,, F,(z) = F(z) at all z for which F is continuous.

Consider the conditional distribution —  Fyp,)x(y|z) = P{X[n] < y|X = z}

P-convergence means seq. X[n] lL,y>x asn— o0 _
converges to rv X, as n -> « therefore, —>  Fxpx(ylz) — {O,y Z 5 —> Fxp)ix(ylz) = uy - 2) N
Using definition of conditional +o00
distribution for continuous r.v —»  Fyp(y) = P{X[n| <y} = Fxinx(ylz) fx(z)dz N s- surely
(see (2.6-4) in text) —°i Q as- almost surely
© ms- mean square
- / u(y - a:)fx(a;)dw p- probability
—y°° p d- distribution
= / fx(z)dz = Fx(y)
s d




Law of Large Numbers

e LLN deals with the convergence of a sequence of estimates of the mean
of a random variable to a constant value

o Weak law obtain convergence in probability

o Strong law yield convergence with probability -1

Theorem (Weak Law of Large Numbers). Let X[n] be an independent random sequence with mean
wx and variance 0% defined for n > 1. Define another random sequence as  fix[n] = (1/n) > 7_, X[k

for n > 1Then jiy[n| — p, (p) asn — oo .

Theorem (Strong Law of Large Numbers.) Let X|n| be a WSS independent random sequence with mean
1x and variance 0% defined for n > 1. Then as n — oo

fixln) = L0 X[H > px ()




