Chapter - 8: Random Sequences

Aveek Dutta
Assistant Professor
Department of Electrical and Computer Engineering University at Albany
Fall 2019

Basic Concepts

Definition 6.1-1 Let (Ω, \mathscr{F}, P) be a probability space. Let $\zeta \in \Omega$. Let $X[n, \zeta]$ be a mapping of the sample space Ω into a space of complex-valued sequences on some index set Z. If, for each fixed integer $n \in Z, X[n, \zeta]$ is a random variable, then $X[n, \zeta]$ is a random (stochastic) sequence. The index set Z is usually all the integers, $-\infty<n<+\infty$, but can be just a subset of the integers.

- For each outcome ($\boldsymbol{\zeta}$) in the sample space ($\boldsymbol{\Omega}=\{1 \ldots 10\}$), X[n, $]$ is a deterministic (nonrandom) function of the discrete parameter n.'
- Each sequence is referred to as a realization or sample sequence. $X[n, \zeta] \triangleq A(\zeta) \sin (\pi n / 10+\Theta(\zeta))$
- But, for a fixed $\boldsymbol{n}, \mathrm{X}[\mathrm{n}, \mathrm{\zeta}]$ is a random variable
- If $X[n]$ has finite support then we can model this sequence as a random vector \mathbf{X}
- Def: Independent random sequence is one whose random variables at any time n_{N} are independent for all positive integer N .

Axiom 4: Continuity of Prob. Measure

- Axiom 3 of probability states that $P[A \cup B]=P[A]+P[B]$ if $A B=\phi$
- But it does not allow us to define probabilities for events like $\cap_{n=1}^{+\infty}\{X[n]<5\}$
- Axiom 4 extends it to define "Countable Additivity". For infinite collection of events satisfying $A_{i} A_{j}=\phi$ for $i \neq j$

$$
P\left[\bigcup_{n=1}^{\infty} A_{n}\right]=\sum_{n=1}^{+\infty} P\left[A_{n}\right]
$$

- Theorem: Consider an increasing sequence of events B_{n}, that is, $B_{n} \subset B_{n+1}$ for all $n \geq 1$ as shown in Figure below. Define $B_{\infty} \triangleq \cup_{n=1}^{\infty} B_{n}$, then $\lim _{n \rightarrow \infty} P\left[B_{n}\right]=$ $P\left[B_{\infty}\right]$.
- Proof: $P\left[B_{N}\right]=P\left[\bigcup_{n=1}^{N} \mathcal{B}_{n}\right]=P\left[\bigcup_{n=1}^{N} A_{n}\right]=\sum_{n=1}^{N} P\left[A_{n}\right]$

$$
\lim _{n \rightarrow \infty} P\left[B_{N}\right]=\lim _{n \rightarrow \infty} \sum_{n=1}^{N} P\left[A_{n}\right]
$$

The theorem provides a way to calculate events involving infinite random variables by just taking the limit of the probability involving finite number of random variable.	$=P \sum_{n=1}^{+\infty} P\left[A_{n}\right] \quad$ by definition of the limit of a sum,
	$=P\left[\bigcup_{n=1}^{\infty} A_{n}\right] \quad$ by definition of the A_{n}

Statistical Representation of Random Sequences

- $\mathbf{N}^{\text {th }}$ order distribution and density, for all times, $n, n+1 \ldots, N+n-1$.
- Infinite set of pdfs for each order N because we must know pdf at all times $F_{X}\left(x_{n}, x_{n+1}, x_{n+2}, \ldots, x_{n+N-1} ; n, n+1, \ldots, n+N-1\right) \stackrel{\Delta}{=} P\left\{X[n] \leq x_{n}, X[n+1] \leq x_{n+1}, \ldots, X[n+N-1] \leq x_{n+N-1}\right\}$
- Low-order distributions must agree with higher orders. E.g., $\mathrm{N}=2$ and 3

$$
F_{X}\left(x_{n}, x_{n+2} ; n, n+2\right)=F_{X}\left(x_{n}, \infty, x_{n+2} ; n, n+1, n+2\right)
$$

- $\mathbf{N}^{\text {th }}$ order density is given by

$$
f_{X}\left(x_{n}, x_{n+1}, \ldots, x_{n+N-1} ; n, n+1, \ldots, n+N-1\right)=\frac{\partial^{N} F_{X}\left(x_{n}, x_{n+1}, \ldots, x_{n+N-1} ; n, n+1, \ldots, n+N-1\right)}{\partial x_{n} \partial x_{n+1} \ldots \partial x_{n+N-1}}
$$

- Mean function of a random sequence

$$
\mu_{X}[n] \triangleq E\{X[n]\}=\int_{-\infty}^{+\infty} x f_{X}(x ; n) d x=\int_{-\infty}^{+\infty} x_{n} f_{X}\left(x_{n}\right) d x_{n} \quad \mu_{X}[n]=E\{X[n]\}=\sum_{k=-\infty}^{+\infty} x_{k} P\left[X[n]=x_{k}\right]
$$

- Autocorrelation - mean of the product of the random seq. at two times

$$
R_{X X}[k, l] \triangleq E\left\{X[k] X^{*}[l]\right\}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{k} x_{l}^{*} f_{X}\left(x_{k}, x_{l} ; k, l\right) d x_{k} d x_{l}
$$

- Auto-covariance

$$
\begin{array}{ll}
K_{X X}[k, l] \triangleq E\left\{\left(X[k]-\mu_{X}[k]\right)\left(X[l]-\mu_{X}[l]\right)^{*}\right\} & \begin{array}{l}
R_{X X}[k, l]=R_{X X}^{*}[l, k] \\
K_{X X}[k, l]=R_{X X}[k, l]-\mu_{X}[k] \mu_{X}^{*}[l]
\end{array} \\
K_{X X}[k, l]=K_{X X}[l, k]
\end{array}
$$

Examples of Random Sequences

- Ex 8.1-11: Convolving multiple exponential rv. is a Erlang (Gamma) PDF $f_{\tau}(t ; n)=f_{\tau}(t)=\lambda \exp (-\lambda t) u(t) \longrightarrow T[n] \triangleq \sum_{k=1}^{n} \tau[k] \longrightarrow f_{T}(t ; 2)=f_{\tau}(t) * f_{\tau}(t)=\lambda^{2} t \exp (-\lambda t) u(t)$
- Ex 8.1-12: Autocorrelation of sum of iid sequences

$$
R_{W}[k, l]=\sigma^{2} \delta[k-l], \sigma>0 \longrightarrow X[n] \triangleq W[n]+W[n-1] \longrightarrow R_{X X}[k, l]=\sigma^{2}(\delta[k-l]+\delta[k-l+1]+\delta[k-l-1]+\delta[k-l])
$$

- Ex 8.1-13: Random Walk - running sum of no. of heads minus tails

$$
X[n]=\sum_{k=1}^{n} W[k] \quad \text { with } \quad X[0]=0
$$

$$
\text { where we redefine } W[k]=+s \text { for } \zeta=H \text { and } W[k]=-s \text { for } \zeta=T
$$

- The sequence models a random walk with a unit step size \boldsymbol{s} taken either to the right or left
- After n steps the position is $\mathbf{r s}$ for some integer \mathbf{r}. For \mathbf{k} successes and ($\mathbf{n}-\mathbf{k}$) failures

$$
\left.\left.\left.\begin{array}{rl}
r s & =k s-(n-k) s \longrightarrow P\{X \mid n\rfloor=r \cdot s\}
\end{array}=P \right\rvert\,(n+r) / 2 \text { successes }\right\rfloor\right\}
$$

0 , else.

$$
\begin{aligned}
& E\{X[n]\}=\sum_{k=1}^{n} E\{W[k]\}=\sum_{k=1}^{n} 0=0 \\
& E\left\{X^{2}[n]\right\}=\sum_{k=1}^{n} E\left\{W^{2}[k]\right\} \quad \longrightarrow \tilde{X}[n] \triangleq \frac{1}{\sqrt{n}} X[n] \\
& =\sum_{k=1}^{n} 0.5\left[(+s)^{2}+(-s)^{2}\right] \\
& \text { Normalizing } \\
& \text { the sequence } \\
& \begin{aligned}
& X[n] \sim N(0, s) \\
& \text { From CLT } \\
& P[a<\tilde{X}[n] \leq b]=P[a \sqrt{n}<X[n] \leq b \sqrt{n}] \simeq \operatorname{erf}(b / s)-\operatorname{erf}(a / s) \\
& P[(r-2) s<X[n] \leq r s]=P\left[\frac{(r-2) s}{\sqrt{n}}<\tilde{X}[n] \leq \frac{r s}{\sqrt{n}}\right] \\
&=\frac{1}{\sqrt{2 \pi}} \int_{(r-2) / \sqrt{n}}^{r / \sqrt{n}} \exp \left(-0.5 v^{2}\right) d v
\end{aligned}
\end{aligned}
$$

Stationarity and WSS

Definition: A random sequence is said to have independent increments if for all integer parameters $n_{1}<n_{2}<\ldots<n_{N}$, the increments $X\left[n_{1}\right], X\left[n_{2}\right]-X\left[n_{1}\right], X\left[n_{3}\right]-$ $X\left[n_{2}\right], \ldots, X\left[n_{N}\right]-X\left[n_{N-1}\right]$ are jointly independent for all integers $N>1$

Definition: If for all orders N and for all shift parameters k, the joint PDFs of $(X[n], X[n+1], \ldots, X[n+N-1])$ and $(X[n+k], X[n+k+1], \ldots, X[n+k+N-1])$ are the same functions, then the random sequence is said to be stationary, i.e., for all $N \geq 1$

$$
\begin{aligned}
& F_{X}\left(x_{n}, x_{n+1}, \ldots, x_{n+N-1} ; n, n+1, \ldots, n+N-1\right) \\
& \quad=F_{X}\left(x_{n}, x_{n+1}, \ldots, x_{n+N-1} ; n+k, n+1+k, \ldots, n+N-1+k\right)
\end{aligned}
$$

for all $-\infty<k<+\infty$ and for all x_{n} through x_{n+N-1}. This definition also holds for pdf's when they exist and PMFs in the discrete amplitude case.

Definition: A random sequence $X[n\rfloor$ defined for $-\infty<n<+\infty$, is called wide-sense stationary (WSS) if
(1) The mean function of $X[n]$ is constant for all integers $n,-\infty<n<+\infty$

$$
\mu_{X}[n]=\mu_{X}[0] \text { and }
$$

(2) For all times $k, l,-\infty<k, l<+\infty$, and integers $n,-\infty<n<+\infty$
(correlation) function is independent of the shift n,

- All stationary random sequences are wide-sense stationary
- Proof: First show that mean is constant for a stationary random sequence. Since f_{X} does not depend on n.

$$
\mu_{X}[n]=E\{X[n]\}=\int_{-\infty}^{+\infty} x f_{X}(x ; n) d x=\int_{-\infty}^{+\infty}{ }_{x f_{X}(x ; 0) d x=\mu_{X}[0]}
$$

- Next show covariance function is shift invariant using $\mathrm{R}_{x x}$

$$
\begin{aligned}
R_{X X}[k, l] & =E\left\{X[k] X^{*}[l]\right\} \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{k} x_{l}^{*} f_{X}\left(x_{k}, x_{l}\right) d x_{k} d x_{l} \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{n+k} x_{n+l}^{*} f_{X}\left(x_{n+k}, x_{n+l}\right) d x_{n+k} d x_{n+l}^{\dagger} \\
& =R_{X X}[n+k, n+l]
\end{aligned}
$$

- Covariance is also shift invariant, hence use one shift parameter

$$
\begin{aligned}
K_{X X}[m] & \triangleq E\left\{X_{c}[k+m] X_{c}^{*}[k]\right\}=K_{X X}[k+m, k] & R_{X X}[m]=R_{X X}[k+m, k]=R_{X X}[m, 0] \\
& =K_{X X}[m, 0] &
\end{aligned}
$$

Random sequences and Linear Systems

- Self Study: Section 8.2 - Discrete-time linear systems, Linearity, Impulse response, Discrete time Fourier transform, Convolution theorem, z-transform
- Definition: We say a system with operator L is linear if for all permissible input sequences $x_{1}[n]$ and $x_{2}[n]$, and for all permissible pairs of scalar gains a_{1} and a_{2} we have

$$
L\left\{a_{1} x_{1}[n]+a_{2} x_{2}[n]\right\}=a_{1} L\left\{x_{1}[n]\right\}+a_{2} L\left\{x_{2}[n]\right\}
$$

- Definition: When we write $Y[n]=L\{X[n]\}$ for a random sequence $X[n]$ and a linear system L, we mean that for each $\zeta \in \Omega$ we have

$$
Y[n, \zeta]=L\{X[n, \zeta]\}
$$

Equivalently, for each sample function $x[n]$ taken on by the input random sequence $X[n]$, we set $y[n]$ as the corresponding sample sequence of the output random sequence $Y[n]$, i.e., $y[n]=L\{x[n]\}$.

- Impulse response

Time-variant impulse response: The
response at time n to an impulse at time k

$$
\begin{aligned}
h[n, k] & \triangleq L\{\delta[n-k]\} \\
y[n] & =L\left\{\sum_{k=-\infty}^{+\infty} x[k] \delta[n-k]\right\} \\
& =\sum_{k=-\infty}^{+\infty} x[k] L\{\delta[n-k]\} \\
& =\sum_{k=-\infty}^{+\infty} x[k] h[n, k]
\end{aligned}
$$

In LTI systems, convolution is an important property

$$
\begin{gathered}
h[n] \triangleq L\{\delta[n]\} \\
y[n]=h[n] * x[n]=x[n] * h[n] \\
h[n] * x[n] \triangleq \sum_{k=-\infty}^{+\infty} h[k] x[n-k]
\end{gathered}
$$

Statistics of Linear Systems

Theorem: For a linear system L and a random sequence $X[n\rfloor$, the mean of the output random sequence $Y[n]$ is $E\{Y[n]\}=L\{E\{X[n]\}\}$ as long as both sides are well defined.

- Since L is a linear operator we can write and taking Expectation

$$
y[n]=\sum_{k=-\infty}^{+\infty} h[n, k] x[k] \quad E\{Y[n]\}=E\left\{\sum_{k=-\infty}^{+\infty} h[n, k] X[k]\right\}
$$

- Assuming we can bring the $\mathrm{E}[$] inside the sum (not always possible)
- A necessary and sufficient condition is $\mathrm{h}(\mathrm{k})$ has to be absolutely summable
- If the input is WSS and if, $\sum_{k=-\infty}^{+\infty}|h[k]|$ exists, we can write $E\{Y[n]\}=\left[\sum_{k=-\infty}^{+\infty} h[k]\right] \mu_{X}$
- Also, cross-correlation between input and output

$$
\begin{aligned}
& R_{X Y}[m, n] \triangleq E\left\{X[m] Y^{*}[n]\right\}=E\left\{X[m](L\{X[n]\})^{*}\right\}=E\left\{X[m] L_{n}^{*}\left\{X^{*}[n]\right\}\right\}=L_{n}^{*}\left\{E\left\{X[m] X^{*}[n]\right\}\right\}=L_{n}^{*}\left\{R_{X X}[m, n]\right\} \\
& R_{Y Y}[m, n]=E\left\{Y[m] Y^{*}[n]\right\}=E\left\{L_{m}\left\{X[m] Y^{*}[n]\right\}=L_{m}\left\{E\left\{X[m] Y^{*}[n]\right\}\right\}=L_{m}\left\{R_{X Y}[m, n]\right\}=L_{m}\left\{L_{n}^{*}\left\{R_{X X}[m, n]\right\}\right\}\right.
\end{aligned}
$$

- The covariance functions for zero mean sequences is given by

$$
\left\{\begin{array}{l}
K_{X Y}[m, n]=L_{n}^{*}\left\{K_{X X}[m, n]\right\} \\
\left.K_{Y Y}[m, n]=L_{m}\left\{K_{X Y}[m, n]\right\}\right\} \\
K_{Y Y}[m, n]=L_{m}\left\{L_{n}^{*}\left\{K_{X X}[m, n]\right\}\right\}
\end{array}\right.
$$

Operator L^{*} has impulse response $h *(n, k)$ and L_{m} is the linear operator with time index m that treat n as a constant

Example 8.3-2

- A linear system with $Y[n] \triangleq X[n]-X[n-1]=L\{X[n]\}$
- The output correlation function is

$$
\begin{aligned}
R_{Y Y}[m, n] & =L_{m}\left\{R_{X Y}[m, n]\right\} \\
& =R_{X Y}[m, n]-R_{X Y}[m-1, n] \\
& =R_{X X}[m, n]-R_{X X}[m-1, n]-R_{X X}[m, n-1]+R_{X X}[m-1, n-1]
\end{aligned}
$$

- If the input sequence were WSS with autocorrelation

$$
R_{X X}[m, n]=a^{|m-n|}, \quad 0<a<1
$$

- Then

$$
\begin{gathered}
R_{X Y}[m, n]=a^{|m-n|}-a^{|m-n+1|} \\
R_{Y Y}[m, n]=2 a^{|m-n|}-a^{|m-1-n|}-a^{|m-n+1|}
\end{gathered}
$$

- Note: R_{ry} only depends on the shifts (m-n) and hence is WSS

WSS random sequences

- For WSS sequences, we have
(1) $E\{X[n]\}=\mu_{X}$, a constant,
- Properties of WSS

$$
\text { (2) } \begin{aligned}
R_{X X}[k+m, k] & =E\left\{X[k+m] X^{*}[k]\right\} \\
& =R_{X X}[m]=E\left[X(m+0) X^{*}(m)\right]:
\end{aligned}
$$

- $\quad\left|R_{X X}[m]\right| \leq R_{X X}[0] \geq 0 \quad\{$ Use the Cauchy-Schwarz inequality to prove

○ $\quad\left|R_{X Y}[m]\right| \leq \sqrt{R_{X X}[0] R_{Y Y}[0]}\left\{\quad|E[h(X) g(X)]| \leq\left(E\left[h^{2}(X)\right]\right)^{1 / 2}\left(E\left[g^{2}(X)\right]\right)^{1 / 2}\right.$
○ $\quad R_{X X}[m]=R_{X X}^{*}[-m]$
$R_{X X}[m]=R_{X X}^{*}[-m]$
For all n and complex a_{i} we must have $\sum_{n=1}^{N} \sum_{k=1}^{N} a_{n} a_{k}^{*} R_{X X}[n-k] \geq 0$

- This property is the positive semidefinite property for autocorrelation function
- Few derivations for LTI systems

$$
\begin{aligned}
& Y[n]=\sum_{k=-\infty}^{+\infty} h[n-k] X[k] \\
& \begin{aligned}
R_{X Y}[m, n] & =E\left\{X[m] Y^{*}[n]\right\} \\
& =\sum_{k=-\infty}^{+\infty} h^{*}[n-k] E\left\{X[m] X^{*}[k]\right\} \\
& =\sum_{k=-\infty}^{+\infty} h^{*}[n-k] R_{X X}[m-k] \\
& =\sum_{k=-\infty}^{+\infty} h^{*}[-l] R_{X X}[(m-n)-l], \quad \text { with } l \triangleq k-n
\end{aligned}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& R_{Y Y}[n+m, n] \triangleq E\left\{Y[n+m] Y^{*}[n]\right\} \\
&=\sum_{k=-\infty}^{+\infty} h[k] E\left\{X[n+m-k] Y^{*}[n]\right\} \\
&=\sum_{k=-\infty}^{+\infty} h[k] R_{X Y}[m-k] \\
&=h[m] * R_{X Y}[m] \\
& R_{Y Y}[m]=h[m] * R_{X Y}[m]
\end{aligned}
$$

Using the single shift parameter for WSS (if input is WSS then $R_{x x}$ is shift invariant)

$$
\begin{aligned}
R_{X Y}[m] & =\sum_{\substack{l=-\infty \\
+\infty}} h^{*}[-l] R_{X X}[m-l] \\
& =h^{*}[-m] * R_{X X}[m]
\end{aligned}
$$

$$
\begin{aligned}
\left.R_{Y Y} \mid m\right] & \left.=h|m| * h^{*}|-m| * R_{X X} \mid m\right\rfloor \\
& =\left(h[m] * h^{*}[-m]\right) * R_{X X}[m] \\
& =g[m] * R_{X X}[m], \quad \text { with } g[m] \triangleq h[m] * h^{*}[-m]
\end{aligned}
$$

Power Spectral Density

- PSD is the Fourier transform of $\mathrm{R}_{x x}(m)$ of a WSS random sequence $X[n]$

$$
\begin{array}{lll}
S_{X X}(\omega) \triangleq \sum_{m=-\infty}^{+\infty} R_{X X}[m] \exp (-j \omega m), \quad \text { for }-\pi \leq \omega \leq+\pi & \longleftrightarrow & R_{X X}[m]=\operatorname{IFT}\left\{S_{X X}(\omega)\right\}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} S_{X X}(\omega) e^{j \omega m} d \omega \\
S_{Y Y}(\omega)=|H(\omega)|^{2} S_{X X}(\omega)=G(\omega) S_{X X}(\omega) \quad \text { (From previous slide) } \quad & E\left\{|X[n]|^{2}\right\}=R_{X X}[0]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} S_{X X}(\omega) d \omega
\end{array}
$$

$$
S_{X Y}(\omega) \triangleq \sum_{m=-\infty}^{+\infty} R_{X Y}[m] \exp (-j \omega m), \quad \text { for }-\pi \leq \omega \leq+\pi
$$

Integral of PSD over $[-\pi, \pi]$ is the ensemble average power

- Interpretation of psd
- Since $R_{x x}(0)$, which is the average power, is constant, Fourier transform may not be computed for some sequences, so a truncated sequence is used and PSD is defined under limit.

$$
X_{N}(\omega) \triangleq F T\left\{w_{N}[n] X[n]\right\} \quad w_{N}[n] \triangleq\left\{\begin{array}{ll}
1 & |n| \leq N \\
0 & \text { else }
\end{array} \quad \begin{array}{l}
\text { Window function that limits the } \\
\text { sequence to } \pm N \text { timesteps }
\end{array}\right.
$$

- Under such an assumption, PSD represents the ensemble average power at frequency ω

$$
S_{X X}(\omega)=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} E\left\{\left|X_{N}(\omega)\right|^{2}\right\}
$$

Markov Random Sequences

- A continuous valued Markov random sequence $X[n]$ satisfies the conditional pdf expression (for all $\mathrm{k}>0$, but sufficient for $\mathrm{K}=1$)

$$
f_{X}\left(x_{n+k} \mid x_{n}, x_{n-1}, \ldots, x_{0}\right)=f_{X}\left(x_{n+k} \mid x_{n}\right)
$$

- The Nth order pdf can be written using using the chain rule

$$
f_{X}\left(x_{0}, x_{1}, \ldots, x_{N}\right)=f_{X}\left(x_{0}\right) f_{X}\left(x_{1} \mid x_{0}\right) f_{X}\left(x_{2} \mid x_{1}, x_{0}\right) \ldots f_{X}\left(x_{N} \mid x_{N-1}, \ldots, x_{0}\right)
$$

- Substituting the basic one-step ($\mathrm{k}=1$) version of Markov definition

$$
\begin{aligned}
f_{X}\left(x_{0}, x_{1}, \ldots, x_{N}\right) & =f_{X}\left(x_{0}\right) f_{X}\left(x_{1} \mid x_{0}\right) f_{X}\left(x_{2} \mid x_{1}\right) \ldots f_{X}\left(x_{N} \mid x_{N-1}\right) \\
& =f_{X}\left(x_{0}\right) \prod_{k=1}^{N} f_{X}\left(x_{k} \mid x_{k-1}\right)
\end{aligned}
$$

- Markov-p random sequence satisfies the conditional pdf expressions as

$$
f_{X}\left(x_{n+k} \mid x_{n}, x_{n-1}, \ldots, x_{0}\right)=f_{X}\left(x_{n+k} \mid x_{n}, x_{n-1}, \ldots, x_{n-p+1}\right)
$$

- Therefore, the unconditional pdf can be approximated as

$$
\begin{aligned}
f_{X}\left(x_{0}, x_{1}, \ldots, x_{N}\right)= & f_{X}\left(x_{0}\right) f_{X}\left(x_{1} \mid x_{0}\right) f_{X}\left(x_{2} \mid x_{1}, x_{0}\right) \ldots f_{X}\left(x_{N} \mid x_{N-1}, \ldots, x_{0}\right) \\
& \approx f_{X}\left(x_{0}\right) f_{X}\left(x_{1} \mid x_{0}\right) f_{X}\left(x_{2} \mid x_{1}, x_{0}\right) \ldots f_{X}\left(x_{p} \mid x_{p-1}, \ldots, x_{0}\right) \\
& \times \prod_{k=p+1}^{N} f_{X}\left(x_{k} \mid x_{k-1}, \ldots, x_{k-p+1}\right)
\end{aligned}
$$

Markov Chains

- Discrete-time Markov sequences are called Markov chains with PMF

$$
P_{X}(x[n] \mid x[n-1], \ldots, x[n-N])=P_{X}(x[n] \mid x[n-1])
$$

- The value of $X[\mathrm{n}]$ at time n is called "the state", because current value determines future value taken on by $\mathrm{X}[\mathrm{n}]$
- If $\mathrm{X}[\mathrm{n}]$ takes finite set of values $\{0, \mathrm{M}-1\}$, it is a finite state Markov chain (finite state-space)
- The state transition information is represented as a state transition matrix \mathbf{P}

$$
p_{i j}=P_{X[n] \mid X[n-1]}(j \mid i)
$$

- Each row adds up to 1 and initial probabilities at $\mathrm{n}=0$ is vector $\mathrm{p}[0]$ with elements

$$
(\mathbf{p}[0])_{i}=P_{X}(i ; 0), 1 \leq i \leq M
$$

- 2-state markov chain (ex-8.5-5)
two-element probability row vector $\mathbf{p}[n]=\left(p_{0}[n], p_{1}[n]\right)$
$\mathbf{p}\lfloor 1]=\mathbf{p}[0] \mathbf{P}$
$\mathbf{p}[2]=\mathbf{p}[1] \mathbf{P}=\mathbf{p}[0] \mathbf{P}^{2}$
$\mathbf{p}[n]=\mathbf{p}[0] \mathbf{P}^{n}$
$\mathbf{p}[\infty]=\mathbf{p}[\infty] \mathbf{P}$, where $\mathbf{p}[\infty]=\lim _{\mathrm{n} \rightarrow \infty} \mathbf{p}[n]$
$\mathbf{p} \triangleq \mathbf{p}[\infty]$, we have $\mathbf{p}(\mathbf{I}-\mathbf{P})=\mathbf{0}$
p1 $=1$
Solving these two equations provide the steady state probabilities \mathbf{p}

Ex 8.5-6 Trellis for Markov Chain

- Each node denote the state at time [n]
- The links are possible transitions with transition probabilities (it is symmetric in this case)
- The probability of a path through the trellis is the
 product of the corresponding transition probabilities.
- If we know that the chain is in state " 1 " at $\mathrm{n}=0$, then the trellis will be conditioned on this initial state
- Then we can find $P_{n} \triangleq P\{X[n]=1 \mid X[0]=1\}$

$$
P_{1}=p, P_{2}=p^{2}+q^{2}, P_{3}=p^{3}+3 p q^{2}, \text { etc. }
$$

- The steady state autocorrelation function
 (Asymptotically Stationary Autocorrelation (ASA)) is

$$
\begin{aligned}
R_{X X}[m] & \approx P\{X[k]=1, X[m+k]=1\} \quad \text { for sufficiently large } k \\
& =P\{X[k]=1\} P\{X[m+k]=1 \mid X[k]=1\} \\
& =p_{1}[\infty] P\{X[m]=1 \mid X[0]=1\}
\end{aligned}
$$

Ex 8.5-7 Buffer Fullness Problem

- M+1 States of a buffer. Transitions occur only between neighboring states

$$
\left[p_{0}[n+1], \quad p_{1}[n+1]\right]=\left[p_{0}[n], \quad p_{1}[n]\right]\left[\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right]
$$

The transition matrix is related by a simultaneous difference equation

- The solution has the form $p_{0}[n]=C_{0} z^{n}, \quad p_{1}[n]=C_{1} z^{n}$, leads to the following

$$
\begin{aligned}
& C_{0} z=C_{0} p_{00}+C_{1} p_{10} \\
& C_{1} z=C_{0} p_{01}+C_{1} p_{11}
\end{aligned} \longrightarrow C_{1}=C_{0}\left(\frac{z-p_{00}}{p_{10}}\right)=C_{0}\left(\frac{p_{01}}{z-p_{11}}\right) \longrightarrow\left(z-p_{00}\right)\left(z-p_{11}\right)-p_{10} p_{01}=0
$$

- Since, $\left(1-p_{00}\right)=p_{01}$ at least one solution is $\mathrm{z}=1$. The combined solution is

$$
\mathbf{p}[n]=A_{1}\left[1, \frac{z_{1}-p_{00}}{p_{10}}\right] z_{1}^{n}+A_{2}\left[1, \frac{z_{2}-p_{00}}{p_{10}}\right] z_{2}^{n} \quad \begin{aligned}
& \text { (See example 8.2-1 on } \\
& \text { difference equations) }
\end{aligned}
$$

- Example: $\mathbf{P}=\left[\begin{array}{ll}0.9 & 0.1 \\ 0.2 & 0.8\end{array}\right]$, with $\mathrm{p}[0]=[1 / 2,1 / 2]$
$\operatorname{det}(z \mathbf{I}-\mathbf{P})=\operatorname{det}\left(\begin{array}{cc}z-0.9 & -0.1 \\ -0.2 & z-0.8\end{array}\right)=z^{2}-1.7 z+0.7=0$
$z_{1}=0.7$ and $z_{2}=1.0$
$\mathbf{p}[n]=C_{1}[1,-1] 0.7^{n}+C_{2}[1,0.5] 1^{n}$

$$
\begin{array}{|lll}
\hline \mathbf{p}[n]=\left[-\frac{1}{6}, \frac{1}{6}\right] 0.7^{n}+\left[\frac{2}{3}, \frac{1}{3}\right], \text { or in scalar form } & \\
\hline p_{0}[n]=-\frac{1}{6} 0.7^{n}+\frac{2}{3} \\
p_{1}[n]=\frac{1}{6} 0.7^{n}+\frac{1}{3} & & \text { Steady-state probabilities } \\
p_{0}(\infty]=\frac{2}{3} \text { and } p_{1}[\infty]=\frac{1}{3}
\end{array}
$$

Convergence

Definition 6.7-1 A sequence of complex (or real) numbers x_{n} converges to the complex (or real) number x if given any $\varepsilon>0$, there exists an integer n_{0} such that whenever $n>n_{0}$, we have $\left|x_{n}-x\right|<\varepsilon$

$$
\longrightarrow \lim _{n \rightarrow \infty} x_{n}=x \quad \text { or as } \quad x_{n} \rightarrow x \text { as } n \rightarrow \infty
$$

- If the limit x does not exist or is difficult to ascertain, use Cauchy criterion

Theorem (Cauchy criterion) - A sequence of complex (or real) numbers x_{n} converges to a limit if and only if (iff)
$\left|x_{n}-x_{m}\right| \rightarrow 0$ as both n and $m \rightarrow \infty$

- Convergence of functions
- The Cauchy criterion applies for pointwise convergence of functions if the set of functions is considered complete

Definition 6.7-2 The sequence of functions $f_{n}(x)$ converges (pointwise) to the function $f(x)$ if for each x_{0} the sequence of complex numbers $f_{n}\left(x_{0}\right)$ converges to $f\left(x_{0}\right)$.

- Example convergence of sequence and functions
(a) $x_{n}=(1-1 / n) a+(1 / n) b \rightarrow a$ as $n \rightarrow \infty$
(b) $x_{n}=\sin \left(\omega+e^{-n}\right) \rightarrow \sin \omega$ as $n \rightarrow \infty$.
(c) $f_{n}(x)=\sin [(\omega+1 / n) x] \rightarrow \sin (\omega x)$, as $n \rightarrow \infty$ for any (fixed) x
(d) $f_{n}(x)=\left\{\begin{array}{c}e^{-n^{2} x}, \text { for } x>0 \\ 1, \\ \text { for } x \leq 0\end{array}\right\} \rightarrow u(-x)$, as $n \rightarrow \infty$ for any (fixed) x

Sure Convergence

Definition (Sure convergence.) The random sequence $X[n]$ converges surely to
the random variable X if the sequence of functions $X[n, \zeta]$ converges to the function $X(\zeta)$
as $n \rightarrow \infty$ for all $\zeta \in \Omega$.

- Most of the time we may not be interested in defining random variables for sets in Ω of probability zero. So we use almost-sure convergence
- Also called probability-1 convergence and sometimes written as $P\left\{\lim _{n \rightarrow \infty} X[n, \zeta]=X(\zeta)\right\}=1$

Definition (Almost-sure convergence.) The random sequence $X[n]$ converges
almost surely to the random variable X if the sequence of functions $X[n, \zeta]$ converges for all $\zeta \in \Omega$ except possibly on a set of probability zero.

- There is a set A , with $\mathrm{P}[\mathrm{A}]=1$ and $\mathrm{X}[\mathrm{n}]$ converges to X for all $\zeta \epsilon \mathrm{A}$ or $A \triangleq\left\{\zeta: \lim _{n \rightarrow \infty} X[n, \zeta]=X(\zeta)\right\}$
- Notation as $X[n] \rightarrow X$ a.s. and $\quad X[n] \rightarrow X \quad$ pr. 1

Definition (Mean-square convergence.) A random sequence $X[n]$ converges in the mean-square sense to the random variable X if $E\left\{|X[n]-X|^{2}\right\} \rightarrow 0$ as $n \rightarrow \infty$.

- Depends only on the second order properties of X[n]
contd

Definition (Convergence in probability.) Given the random sequence $X[n]$ and the limiting random variable X, we say that $X[n]$ converges in probability to X if for every $\varepsilon>0, \quad \lim _{n \rightarrow \infty} P[|X[n]-X|>\varepsilon]=0$.

- Also called p-convergence
- Convergence in mean-square implies convergence in probability
- Use Chebyshev inequality $P[|Y|>\varepsilon] \leq E\left[|Y|^{2}\right] / \varepsilon^{2}$ for $\varepsilon>0$

$$
P[|X[n]-X|>\varepsilon] \leq E\left[|X[n]-X|^{2}\right] / \varepsilon^{2}
$$

- Convergence in a.s (probability-1) implies convergence in probability
- So, conv. in probability is weaker than mean square and even weaker than probability 1
- Key difference - Limit of probability vs probability of limit

Definition: A random sequence $X[n\rfloor$ with probability distribution function $F_{n}(x)$ converges in distribution to the random variable X with probability distribution function $F(x)$ if $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ at all x for which F is continuous.
Consider the conditional distribution $\longrightarrow F_{X[n] \mid X}(y \mid x)=P\{X[n] \leq y \mid X=x\}$

P-convergence means seq. $\mathrm{X}[\mathrm{n}]$
converges to rv X, as n -> $\boldsymbol{\infty}$ therefore,
Using definition of conditional distribution for continuous r.v (see (2.6-4) in text)

0, y<x\end{array}\right.\) as $n \rightarrow \infty$

Law of Large Numbers

- LLN deals with the convergence of a sequence of estimates of the mean of a random variable to a constant value
- Weak law obtain convergence in probability
- Strong law yield convergence with probability -1

Theorem (Weak Law of Large Numbers). Let $X[n]$ be an independent random sequence with mean μ_{X} and variance σ_{X}^{2} defined for $n \geq 1$. Define another random sequence as $\hat{\mu}_{X}[n] \triangleq(1 / n) \sum_{k=1}^{n} X[k]$ for $n \geq 1$ Then $\hat{\mu}_{X}[n] \rightarrow \mu_{x}(\mathrm{p})$ as $n \rightarrow \infty$.

Theorem (Strong Law of Large Numbers.) Let $X[n\rfloor$ be a WSS independent random sequence with mean μ_{X} and variance σ_{X}^{2} defined for $n \geq 1$. Then as $n \rightarrow \infty$

$$
\hat{\mu}_{X}[n]=\frac{1}{n} \sum_{k=1}^{n} X[k] \rightarrow \mu_{X} \quad \text { (a.s.) }
$$

