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Basic Concepts

e Analogous to random sequences except the time axis is uncountable

Definition 7.1 — 1 Let (€2, #, P) be a probability space. Then define a mapping X

from the sample space {2 to a space of continuous time functions. The elements in this space
will be called sample functions. This mapping is called a random process if at each fixed
time the mapping is a random variable, that is T, X(¢, ¢) € & for each fixed t on the real
line —o0o <t < +00.

e Examples B

X(t,¢) = X(¢)f(t) where X is a random variable and f is a deterministic function of the 20

parameter t. We also write X(¢t) = X f(¢). 0
~20

40
X(t,¢) = A(¢) sin(wot + ©(¢)) where A and © are random variables. We also write X(¢) = o0
Asin(wpt + ©), suppressing the outcome ¢

X(t, &)

X(t) =, X[n]p,(t — T[n]) where X[n] and T'[n] are random sequences and the functions
pn(t) are deterministic waveforms that can take on various shapes. For example, the p,,(t)
could be an ideal step function.

® |Definition: A random process X () is statistically specified by its complete
set of n th order PDFs (pdf’s or PMFs) for all positive integers n, i.e., Fx(z1,Z2,. .., Zx;
15800 30 5Tn) TOPAIL 814 Bps o5 5 By @O for-all 1 < 25w in < By




Moment Functions

e Mean Function ux(t) = BIX(t)], —oo<t<+oo

e Autocorrelation function Rxx(ti,t2) £ E[X(t1)X"(t2)], — o0 <t1,t2 < +o0

e Autocovariance function Hoex{ e i g[[‘z(;(((ttll)))ig(:?g 1)) (X(t2) — pox(t2))"
Kxx(t1,t2) = Rxx(t1,t2) — px(t1)px(t2)

e Variance Function ok(t) = Kxx(t,t) = B [lXc(t)Iz]

e Power Function Rxx(t,t) = E [|X(t)|2]

e Example9.1-5

Rxx(t1,t2) = E[X(t1) X" (t2)]

px(t) = E[Asin(wot + O)] = E[A?sin(wot1 + ©) sin(wots + O)]
= E[A]E[Sin(‘i’ot + 9)] = E[Az]E[sin(wotl + O) sin(wptz + ©)] = EE[Aﬂ coswy(t; — t2)
1 .
= KA - % /_7r SlIl(Ld()t + 0)d9
=pys-0=0 Rxx(t1,t2) = Ryx(t2, 1)

Kxx(ti,t2) = Kxx(t2,t1)
Hermitian Symmetry




Example: Poisson Counting Process e o

k=1

Tin]
TI5] } 5]
e MGF of a exponential rv r[n] £ T[n] — T[n — 1] is Tl
e 3] o3 T[4]
Mx(t) = / e e Mdx = )\/ et NTgy — A provided that [¢| < A
0 0 t— A TI3] )
A T T[2]
. . . . T[2]
e Therefore MGF of T[n] is given by (ﬁ) whichis l }
the MGF of Erlang distribution n
0 1 2 3 ? 4 5
See example i) = (At)t X exf —\
3 — P t)u(t
8.1-11 r{tin) (n—1)! (FAd)ult) Exponential pdf of inter-arrival
time z[n] leads to Erlang pdf on
e Now, by construction (bottom rt. figure) total wait (arrival) time T[nl and
a Poisson PMF for the count n
P{N(t) =n} = P{T[n] < t,T[n+1] > t} l
— P{N(t) = n} = P{T[n| < t,7[n + 1] > t — T[n]} ek
e Usingindependence and definition of CDF T i*-’s—“l_
5+ I
t (o] t )\nan—le—/\a 00 ! :
; H(B)dB|da= | —————— )\"\ﬂd>d-t 4 —
[ st [ soyasac= [ = ([ e vap)dac-utt : _ i
= (/ a”‘lda) N M/ (n — 1)lu(t) 2 -~
(At)" ° A is the mean 1 —
Py(n;t) = — My(t) fort>0, n>0 arrival rate 01— — : =
n: and E[N(t)] = At ho k& 's
e This yields the PMF of a Poisson counting process N@) £ u(t - Tln)

n=1



Independent Increment

e The PMF of the increment in Poisson counting processin (t.t.) Is Poisson

PIN(t) — N(ta) = ] = 2" sty

n!

® | Definition 7.2 — 1 A random process has independent increments when the set of n random variables,
X(t1), X(t2) — X(t1), ..., X(tn) — X(tn-1)
are jointly independent for allt; <ty < ... < t,and foralln > 1

e |t helpsin calculating higher order distributions

PN(nl,ng,tl,tg) = P[N( ) = ’nl]P[N(tz) — N(tl) = N9 — nl]
(}\tl) — Aty At —t1)]™ ™ o At2—t1)

ny! (ng —nq)!
B >\n2t71l1 (tz — t1)n2_n1

n1!(n2 — nl)‘

u(ny)u(ng — ny)

—Ats

e "u(ny)u(ng —ny), 0<t <ty

e Autocorrelation and Autocovariance using independent increments

E|N(t2)N(t1)] = E|(N(t1) + [N(t2) — N(t1)|)N (1))
= E[N?(t:)] + E[N(t2) — N(t:)] E[N(t1)]
= M1 4+ A22 4 At — t1) Aty
= At; + N1ty = Amin(ty, &) + A2tit

KNN(tl, tg) = X min(tl, tz)
s



Markov Random Process

e Continuous valued (first order) Markov process X(t) is satisfies the
conditional pdf

fX(wnlwn—hwn—% v ae i 5o o i o atl) = fX(wn|mn—1;tna tn—l)

e Discrete valued Markov process X(t) satisfies the conditional PMF

PX(wnImn—la oo g B by o ,tl) = PX(mn|mn—1;tn,tn—1)

e Problem: Find CDF and pdf of Z = min(X.Y)

Fa5) 2 PlZ<4 2 e e s 0% o

= 1-P[Z>7] R If Xand Y are iid exponential rv

= 1-— P[X > z|P[Y > 7]

= 1-(1-P[X<2])(1-P[Y < z]) fx(CL') - fY(m) - aexp(—a:r:)u(:z:).

= 1-Q1-Fx{(2) (1 - Fr(2)) We get

= Fx(z) -+ Fy(z) — Fx(z)Fy(z).

Fz(z) = (1 — exp(—2az))u(2)
fz(z) = dFdLZ(Z) fz(z) = 2aexp(—2az)u(z).
d(Fx(z) + Fy(2) = Fx(2)Fy (2))

dz

= fx(2) + fr(2) — fx(2)Fy (2) — Fx(2) fr (2)-




Multiprocessor Reliability

Transition time is an Wait another
rvzZ = min(TR1 ' Try) repair time T,

e State X=0: Both processor down
e State X=1: Either one is down
e State X=2:Both are up 1-2.00

e Repair Time is exponential with parameter u

Transition time is an
o Average time to repairis 1/u rvZ=min(T_,, T.,)

e Failure TIme is exponential with parameter A
o Average time to repairis 1/A

o Inter-transition times are exponentially distributed like the inter-arrival times in Poisson
counting process

e Now, the probability of being in X=2 at (t+At) having been in X=1 at time t

o This requires the service time T_ to be within interval (t,t+At], conditioned on T_>
Py(t+ At) = P (t)P[t < Ts < t + At|T; > t]

Fr, (t+A8)— Fr, (¢ NOTE: Sum of
where, Pt <T, <t+ At|T, >t] = = (;L_FT)S(,«,)T 9 = pAt + o(At) probabilitieusTe:ving

any state is always 1

o The probability of staying in X=2 at t+At, having been in state 2

Py(t + At) = Py(t)P[T; = min(Tx,, Tr,) > At] = Py(t){1 — Fr.(At)} = Py(t)(1 — (1 — e 24%)) = Py(£)(1 — 2AAt)
e ——



...contd

e Continuing in similar fashion for other states,

Py (t + At) 1—2uAt AAL 0 B (t)
Pt+At)| = | 2uAt  1-(A+wAt  22At | | P(t)| +o(At)
P2 (t + At) 0 ,LLAt 1—2)\At P2 (t)

e Rearranging the terms
Po(t+At) - Po(t) —2[11 A 0 P()(t)
[Pl(t+At)—P1(t)] = l2u —(A+p) 2A] lPl(t)] At + o(At)
Pz(t + At) = P2(t) 0 M -2\ Pg(t)
dP(t)
dt
e Aiscalled the generator matrix of the Markov chain X

e Dividing both sides by At —— — AP(t)

e The solution of the matrix differential equation is given by
P(t) =erPy, t>0 P(0) 2P

e We areinterested in the steady state probabilities of MC or AP =0, from

first and last row  —2uPy+ AP, =0

+uPy —2AP, =0 Py = (2p/X) Py and Py = (1/2)) Py = (1/X)* Py

1
A+ 2u) + p?

T
Py+ Py + P, =1, we obtain Py = A*/(\* + 2u) + %) and finally P = (N2, 2p), ]

To find a particular solution to the vector differential equation see this - hitp://people.math.gatech.edu/~xchen/teach/ode/ExpMatrix.pdf



http://people.math.gatech.edu/~xchen/teach/ode/ExpMatrix.pdf

Birth-Death Markov Chains

e In MC with only adjacent state transition is called a Birth-Death chain

o Infinite no. of states and Finite number of states (M/M/1 Queue) itorent thomthe

previous example

e The time between births and time between o \ ™
deaths are exponentially distributed with
parameters u and A

Mi+2
. i1
o We can write P(t+ At) = BP(¢) , where , ,
This model is called M/M/1 queue. See

1 — XAt At 0 e Kendall's notation for queuing models
MNAE 1 — (A + pp)At pa At 0 .-
B = 0 A]At 1-— ()\2 + /1'2)At }LzAt 0

® Rearranging and dividing by At dP(t)/dt = AP(t) and the steady state is given by AP = 0

—o H1 0 P=pFR
Ao —(Ar+ ) He2 o .- Py = pyP1 = p1p2 Py where p; = \;_1/p;, for j > 1
— ] j—1/ Mj, I0T ] =2
A= 0 A1 —()\2 + ,U2) us 0 ’

Pj = piPj1 = pj--- p2p1 Py

® Assuming that the series converges, we require that ) *  P; = 1. With the notation
r; = pj+ -+ p2p1, and 7o = 1, this means Py Y oo = lor Py =1/ r;. Hence the
steady-state probabilities for the birth-death Markov chain are given by
P;=r;/ Zfio r;, J =0 <e— Denominator does not converge there is no steady state.



Finite Capacity Buffer

e Ifweassumeyu =uandA =Aforali, and the queue length cannot exceed L

o The dynamical equation of the MC s

dPy(t)/dt = —APy(t) + pPi(t)
dPy(t)/dt = +APy(t) — (A + p) Pr(t) + uPa(t)

dP,(8)/dt = +APy 1(t) — uPu(t) -

o The steady state solution is therefore,
P, =p'Py, for0<i<L wherep2 \/p

And since

L Arriving
: ~Ppacket |
E szO = ]_, or that PO = (1 = p)/(l = pL+1) b Buffer of size L

Py =M1 p)/(1 - p*)

e Example 9.2-6- If the buffer is full and t_ and = is the service time and
interarrival time, then prob. of packet loss is
PJ “packet loss” | = P[“saturation” N {7y > 7;}]
=p"(1=p)/(1 = ™) X Plry =7 > 0] = p"(1 = p)/(1— p"*") x p/(1+ p)
Plr, — ;> 0] =X/(A+ ) is given by calculating the pdf of (Z = t_- 1), which is the

difference of two exponential pdf t_~ exp(u) and T_~ exp(A), i.e. |f@) = AAﬁL_;L#{Z;M iiiiﬁ




Chapman-Kolmogorov Equations

e A markov process random variable X(t.), X(t,), X(t)) at t,>t,>t,, then C-K
equations provide the conditional pdf of X(t,) given X(t,)

“+00

fx(z3,z15t3,t1) = Fx(zs|xe, 153, t2, t1) fx (22, 1 b2, t1)dxs
—0

Dividing both sides by f(z1;t1), we obtain

Fx(zslar) = [17 fx(@s|za, 1) fx(22|21)das

Then using the Markov property the above becomes

fx(@slzs) = [73 fx(@s|e) fx(@e|z:)des

e For discrete Markov chains

o Given Xy =1, P, = P(X, = k|Xo = 1) is the probability that the state at time n is k
o Butgiven, X, =k, the probability that the chain will be in state j at m time units later is P

o Therefore, since transitions are independent, we get P(X,, = k, Xnim = j|Xo = ¢) = P, Pf"

o Summing over k gives the C-K equations




..codd U (:Qi RO

time=0 time=n time = n+m
State: X, =i State: X_ =k State: X, =]
e Therefore, we get the following proof \/ \/
Transition Probability Transition Probability
) . Pn =PX =k | X,= m o= =j|X =k
P = P(Xoim = 51 X0 = ) S
; ; =PX, =i 1 X,=Kk)
= Z P X i = 95K = k| Xy = 1) (Using definition of Total Probability) (memoryless property
kesS of MCsetn=0)
- Z P(Xnim = J, Xn = k, Xo = 1) (Using definition of Conditional Probability)
kes P(Xo =1)
P(Xn+m_.7|Xn:k7X0:i)P(Xn:k’X0:i) ) o ) .
= ; (Using definition of Jointly Conditional on X_and X)
P(Xy =1) " 0
keS 0
P(X = K, XO = 'L)Pm -~
— Z (Using Markov Property)
o = 1) P(Xpim = 31 Xn =k, Xo = 6) = P(Xnsm = §1Xn = k) = P(Xou= j|Xo = k) = By
Z kPkJ
keS

e Whenn=m=1

= ZPi,kPk,j,i €S,5€8
keS

e Which in the matrix form yields P@=P? , where P(™ = (pjy),n >1

e Similarly, when n=1and m =2 (3 time steps in future) In general, for n=1, m =

P} = gﬂ’kplzj—T(?’): P xP? =P xP’=pP°
S

P % Pl=Pl+1




Example

e Example: Let X.=0if it rains on day i; otherwise, X. = 1

0.7 0.3
0.4 0.6

e Suppose it rains on Monday. Then the prob that it rains on Friday is Py,

p@_ps_ (07 03\'_ (05749 0.4251
0.4 0.6 0.5668 0.4332

e SupposeP,,=0.7andP.,=0.4. ThenP = (

so that POO“‘) = 0.5749

e NOTE: To compute power of a matrix - Diagonalize and raise to the power

o Diagonalize A = STAS, where S = matrix with columns are eigenvectors and A is a matrix

with eigenvalues as diagonals.
o Then, A" =S'A"S, where A" =diag (A", A", ....A|")




Continuous Time Linear Systems

e SELF STUDY Section 9.3

e It follows the same methodology as random sequences

e Pay attention to the conjugate operator




Useful Classifications

e I[fXandY arerandom processes

(a) Uncorrelated if Rxy (¢1,t2) = px(t1)py(t2), for all £ and ¢,
(b) Orthogonal if Rxy (t1,t2) = 0 for all ¢; and t;
(c) Independent if for all positive integers n, the n th order PDF of X and Y factors,
that is,
Fxy(T1,Y1,%2,Y25 -+ Tny Ynjt1y -« 5 tn)
= Fx(x1,.. .y Tn;t1y e oy tn) Fy (Y1, -« -y Ynj tiy e oy tn) for all z;,y; and for all t,...,t,

e Note: Two processes are orthogonal if they are uncorrelated and at least
one has zero mean

e IfR, (t,t,)=0thenitis called a orthogonal random process

e X(t)is Stationarity if it has the same n'" order CDF/PDF as X(t+T)

FX(ml,...,mn;tl,...,tn) = Fx(xl,...,il:n;tl +T,...,tn+T)
If differentiable then

fX(wlr",mn;tl,-",tn) = fX(mla---,wn;tl +Ta7tn+T)
e Stationary random process implies

f(z;t) = f(z;t + T) for all T implies f(z;t) = f(x;0) by taking T' = —¢ which in turn implies E[z(t)] = px(t) = px(0)



Stationarity

e Since the second order density is also shift invariant
T = —t
f(z1, e t1,t2) = f(z1,@o3t1 + Ty ta + T) —2>f(a:1,a:2;t1,t2) = f(z1,xa;t; — tg,0) ——E[X(t1)X*(t2)] = Rxx(t1 — t2,0)
[ J

Therefore, we can write the one-parameter correlation function
Rxx(1) = Rxx(7,0)
= E[X(t + ) X*(t)]

® Definition 7.4 — 3 A random process X is wide-sense stationary (WSS) if E[X(t)] =

ix, aconstant, and E[X(t + 7)X*(t)] = Rxx(7) for all — oo < 7+ 00, independent of the
time parameter t.

SELF STUDY Section 9.5 on interaction of WSS random process with

linear systems. The discussion follows the same reasoning as in
random sequences




Power Spectral Density

e PSD is defined for WSS and hence for stationary random process

® Definition — Let Rxx(7) be an autocorrelation function. Then we define the
power spectral density Sxx(w) to be its Fourier transform (if it exists), that is,

+00 .

Sxx(w) e Rxx(T)e_JwTdT
1 _oo+oo )

Rxx(T) = E Sxx(w)6+JWwa

We can also define Fourier transform of the cross-correlation function,
which is called cross power spectral density

+00
Sy (w) 2 / Ry (r)e— " dr

e Properties of PSD (Also see table 9.5-1)

1. Sxx(w) is real-valued since Rxx(7) is conjugate symmetric.
2.If X(t) is a real-valued WSS process, then Sx x(w) is an even function since Rxx(7)

is real and even. Otherwise Sxx(w) may not be an even function of w.
3. Sxx(w) > 0 (to be shown in Section in Theorem 9.5 — 1).




Interpretation of PSD

e For a WSS process X(t), consider the finite support segment (to ensure

validity and existence of FT) ——Xz(t) £ X(t)Ii_1,47)(t)
o Il_r 47 is an indicator function equal to 1if -T<t<T
o Therefore, FT of X(t) is given by

FT{X7(t)} = o X(t)e ™tdt

e The magnitude squared of this random variable is
|FT{Xr(t)}*= / o X(t1)X* (to)e M=t dt) dt,
—F ST

The area of integration in the t,-t,
plane changes to the diamond shape

e Dividing both sides by 2T and taking expectation, in the s plane.

1 1 I Then, the line t, = T becomes (s-1)/2 =
ﬁE“FT{XT(t)HZ] = / Rxx(t; — tz)e_jw(tl_tZ)dtldtz T->s =1+ 2T (red arrow)
P

2T J ¢
e Define coordinateds=t +t,andt=t-t, >t =(s+tr)/2a
o Obtained by 45° rotation of t,-t, coordinate system
o The Jacobian for the transform t,= g(s,x) and t, = h(s,z) «4,

’ Bhel: ds
ot ot 1 1
Ot,t2) o ar|_|2 2z |_1
8(3,7‘) Oty Oty 4 1 2 t .
0s or 2 2 =27 0 2T 7
T T
4 4 d,,\ /

T=2T
—=2T 7
=T - =27

Example and tutorial on variable changes for multivariate integrals - http://tutorial.math.lamar.edu/Classes/Calclll/ChangeOfVariables.aspx



http://tutorial.math.lamar.edu/Classes/CalcIII/ChangeOfVariables.aspx

...contd

e The integral then becomes

wT —jwr | 2T+T
77 JI, Rxx(r)e *"drds = ﬁ{f or Bxx(7) [ (2—'1_1'*"7') ] }

+ ﬁ{ RXX - “’T[ ngT ) ds] dT} = f;? [1 - %] Rxx(T)e ™7dr

e Inthelimit T — +oo the integral tends to the def. of PSD
Swx(w) = Jim — B[|FT{Xr(1)} ]

e Therefore, S,,(0) is real and non-negative and specifies average power at
frequency . See examples 9..5-3, 9.5-4

e Theorem: If X(t) is stationary with R _(r) and psd S, (), then S, (o) > 0 and
for all 0_>o,, %/w sxx(w)dw the average power in the band (o,,0.)

1, we€ (wy,ws)

_ . : A
o Define afilter with H(w) = {0, alse

Sxx(w), we€ (wi,ws)

o Then when X(t) passes through the filter Syy(w) = { 0 else

o Then the average output power of Y(t) is E[|Y(t)|2] = Ryy(0) (Thisis autocorrelation at O shift)
1 +00 1 wo
Ryy(()) — 2— Syy(w)dw = 2— Sxx(w)dw Z 0

m —00 w1



Periodic Process

Definition — A random process X (t) is wide-sense periodic if there is a T > 0 such that
px(t) = px(t+T) for all ¢

and
KXX(tl, tz) = Kxx(tl + T, tz) = Kxx(tl, ta + T) for all tq,ty

The smallest such 7 is called the period. Note that K xx(¢1,t2) is then periodic with period T" along both axes.

e The random complex exponential is an example of Periodic process

(A random complex exponential.) Let X(¢) £ A exp(j2nft) with f a known real constant
and A a real-valued random variable with mean E[A] = 0 and finite average power E[A4?].
Calculating the mean and correlation of X(t), we obtain
BIX(t)] = ElA exp(j2rft)] = E|4] exp(j2nft) = 0
and
E[X(t+ 7)X*(t)] = E[Aexp(j2rf(t + 7)) Aexp(—j2mft)]
= B[A%] exp(j2n ) = Rxx(7)

e A periodic process can also be WSS (like above) are
called wide-sense periodic stationary.

o K (t,t)is doubly periodic with a two dimensional
period of (T,T)




Cyclostationarity Process

Definition — A random process X(t) is wide-sense cyclostationary if there exists a positive value 7" such that
px(t) = px(t+T) for all ¢
KXX(tl, tz) = KXX(tl + Tty + T) for all ¢; and t9

e The covariance function is shift invariant both of its arguments
e It means statistics are periodic but not the process itself

e Typically modulated communication signals possess this property.

1 oo
p()
X(t) = _E_ A,p(t — nT).
0 T !
Consider a random amplitude sinusoid with period T: (@) Tidkvidsal stgual s /
X(t) = Acos(2mtIT). ;‘ 1
Is X(¢) cyclostationary? wide-sense cyclostationary? g = 2|T = o '
Consider the joint cdf for the time samples 7, ..., Iy
: -1 -1
P[X(tl) = X1, X(tZ) = X250, X(tk) = xk)] L | | | | | x (b) Waveform corresponding to data sequence 1001
1
= P[AcosQ2at)/T) < xy,..., Acos(2ut/T) < x;] oo A
= P[Acos(2a(t, + mT)IT) < x,..., Acos(2m(t, + mT)IT) = x;] Thiesrean of. X(z)ds
00 o)
=P[X(ty + mT) = x1,X(t + mT) < xp,..., X(t + mT') =< x;]. my(t) = E|: > Auwp(t - nT):l = > E[AJp(t — nT) =0
Thus X(¥) i clostationary random process and hence also a wide-sense cyclostationa
)15 . tonaty proces enee ais wide-sense cyclostationary since E[A,] = 0.The autocovariance function is
process.
Cx(t1, 1) = E[X(1)X ()] = 0
_JEX(n)) =1 ifnT =t;,,< (n+ 1)T
E[X(4)]E[X ()] =0 otherwise-
Figure ~ '~ shows the autocovariance function in terms of # and #,. It is clear that
Cx(ty + mT,ty + mT) = Cx(t;,t,) for all integers m. Therefore the process is wide-sense cy-

clostationary.




