Chapter - 9: Random Processes

Aveek Dutta
Assistant Professor
Department of Electrical and Computer Engineering University at Albany
Fall 2019

Basic Concepts

- Analogous to random sequences except the time axis is uncountable Definition $7.1-1$ Let (Ω, \mathscr{F}, P) be a probability space. Then define a mapping X from the sample space Ω to a space of continuous time functions. The elements in this space will be called sample functions. This mapping is called a random process if at each fixed time the mapping is a random variable, that is ${ }^{\dagger}, X(t, \zeta) \in \mathscr{F}$ for each fixed t on the real line $-\infty<t<+\infty$.
- Examples
$X(t, \zeta)=X(\zeta) f(t)$ where X is a random variable and f is a deterministic function of the parameter t. We also write $X(t)=X f(t)$.
$X(t, \zeta)=A(\zeta) \sin \left(\omega_{0} t+\Theta(\zeta)\right)$ where A and Θ are random variables. We also write $X(t)=0$ $A \sin \left(\omega_{0} t+\Theta\right)$, suppressing the outcome ζ
$X(t)=\sum_{n} X[n] p_{n}(t-T[n])$ where $X[n]$ and $T[n]$ are random sequences and the functions $p_{n}(t)$ are deterministic waveforms that can take on various shapes. For example, the $p_{n}(t)$ could be an ideal step function.

- Definition: A random process $X(t)$ is statistically specified by its complete set of nth order PDFs (pdf's or PMFs) for all positive integers n, i.e., $F_{X}\left(x_{1}, x_{2}, \ldots, x_{n}\right.$; $t_{1}, t_{2}, \ldots, t_{n}$) for all $x_{1}, x_{2}, \ldots, x_{n}$ and for all $t_{1}<t_{2}<\ldots<t_{n}$

Moment Functions

- Mean Function
- Autocorrelation function
- Autocovariance function
- Variance Function
- Power Function
- Example 9.1-5

$$
\begin{aligned}
\mu_{X}(t) & =E\left[A \sin \left(\omega_{0} t+\Theta\right)\right] \\
& =E[A] E\left[\sin \left(\omega_{0} t+\Theta\right)\right] \\
& =\mu_{A} \cdot \frac{1}{2 \pi} \int_{-\pi}^{+\pi} \sin \left(\omega_{0} t+\theta\right) d \theta \\
& =\mu_{A} \cdot 0=0
\end{aligned}
$$

$$
\mu_{X}(t) \triangleq E[X(t)], \quad-\infty<t<+\infty
$$

$$
\begin{aligned}
R_{X X}\left(t_{1}, t_{2}\right) & \triangleq E\left[X\left(t_{1}\right) X^{*}\left(t_{2}\right)\right], \quad-\infty<t_{1}, t_{2}<+\infty \\
K_{X X}\left(t_{1}, t_{2}\right) & \triangleq E\left[X_{c}\left(t_{1}\right) X_{c}^{*}\left(t_{2}\right)\right] \\
& \triangleq E\left[\left(X\left(t_{1}\right)-\mu_{X}\left(t_{1}\right)\right)\left(X\left(t_{2}\right)-\mu_{X}\left(t_{2}\right)\right)^{*}\right]
\end{aligned}
$$

$$
K_{X X}\left(t_{1}, t_{2}\right)=R_{X X}\left(t_{1}, t_{2}\right)-\mu_{X}\left(t_{1}\right) \mu_{X}^{*}\left(t_{2}\right)
$$

$$
\sigma_{X}^{2}(t) \triangleq K_{X X}(t, t)=E\left[\left|X_{c}(t)\right|^{2}\right]
$$

$$
R_{X X}(t, t)=E\left[|X(t)|^{2}\right]
$$

$$
\begin{aligned}
& R_{X X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X^{*}\left(t_{2}\right)\right] \\
&=E\left[A^{2} \sin \left(\omega_{0} t_{1}+\Theta\right) \sin \left(\omega_{0} t_{2}+\Theta\right)\right] \\
&=E\left[A^{2}\right] E\left[\sin \left(\omega_{0} t_{1}+\Theta\right) \sin \left(\omega_{0} t_{2}+\Theta\right)\right]=\frac{1}{2} E\left[A^{2}\right] \cos \omega_{0}\left(t_{1}-t_{2}\right) \\
& R_{X X}\left(t_{1}, t_{2}\right)=R_{X X}^{*}\left(t_{2}, t_{1}\right) \\
& K_{X X}\left(t_{1}, t_{2}\right)=K_{X X}^{*}\left(t_{2}, t_{1}\right) \\
& \quad \text { Hermitian Symmetry }
\end{aligned}
$$

Example: Poisson Counting Process

- MGF of a exponential rv $\tau[n] \triangleq T[n]-T[n-1]$ is $M_{X}(t)=\int_{0}^{\infty} e^{t \lambda^{t} \lambda} \lambda e^{-\lambda x} d x=\lambda \int_{0}^{\infty} e^{(t-\lambda) x} d x=\frac{\lambda}{t-\lambda} \quad$ provided that $|t|<\lambda$
- Therefore MGF of $T[n]$ is given by $\left(\frac{\lambda}{\lambda-t}\right)^{n}$ which is the MGF of Erlang distribution
$\underset{8.1-11}{\text { See example }} \quad f_{T}(t ; n)=\frac{(\lambda t)^{n-1}}{(n-1)!} \lambda \exp (-\lambda t) u(t)$
- Now, by construction (bottom rt. figure)

$$
\begin{aligned}
& P\{N(t)=n\}=P\{T[n] \leq t, T[n+1]>t\} \\
\Longrightarrow & P\{N(t)=n\}=P\{T[n] \leq t, \tau[n+1]>t-T[n]\}
\end{aligned}
$$

- Using independence and definition of CDF

$$
\begin{array}{r}
\int_{0}^{t} f_{T}(\alpha ; n)\left[\int_{t-\alpha}^{\infty} f_{\tau}(\beta) d \beta\right] d \alpha=\int_{0}^{t} \frac{\lambda^{n} \alpha^{n-1} e^{-\lambda \alpha}}{(n-1)!}\left(\int_{t-\alpha}^{\infty} \lambda e^{-\lambda \beta} d \beta\right) d \alpha \cdot u(t) \\
=\left(\int_{0}^{t} \alpha^{n-1} d \alpha\right) \lambda^{n} e^{-\lambda t} /(n-1)!u(t) \\
P_{N}(n ; t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} u(t) \quad \text { for } t \geq 0, \quad n \geq 0 \quad \begin{array}{c}
\lambda \text { is the mean } \\
\text { arrival rate }
\end{array} \\
\text { and } \mathrm{E}[\mathrm{~N}(\mathrm{t})]=\lambda \mathrm{t}
\end{array}
$$

- This yields the PMF of a Poisson counting process

Independent Increment

- The PMF of the increment in Poisson counting process in $\left(t_{a}, t_{b}\right)$ is Poisson

$$
P\left[N\left(t_{b}\right)-N\left(t_{a}\right)=n\right]=\frac{\left[\lambda\left(t_{b}-t_{a}\right)\right]^{n}}{n!} e^{-\lambda\left(t_{b}-t_{a}\right)} u(n)
$$

- Definition 7.2-1A random process has independent increments when the set of n random variables,

$$
X\left(t_{1}\right), X\left(t_{2}\right)-X\left(t_{1}\right), \ldots, X\left(t_{n}\right)-X\left(t_{n-1}\right)
$$

are jointly independent for all $t_{1}<t_{2}<\ldots<t_{n}$ and for all $n \geq 1$

- It helps in calculating higher order distributions

$$
\begin{aligned}
P_{N}\left(n_{1}, n_{2} ; t_{1}, t_{2}\right) & =P\left[N\left(t_{1}\right)=n_{1}\right] P\left[N\left(t_{2}\right)-N\left(t_{1}\right)=n_{2}-n_{1}\right] \\
& =\frac{\left(\lambda t_{1}\right)^{n_{1}}}{n_{1}!} e^{-\lambda t_{1}} \frac{\left.\lambda\left(t_{2}-t_{1}\right)\right]^{n_{2}-n_{1}}}{\left(n_{2}-n_{1}\right)!} e^{-\lambda\left(t_{2}-t_{1}\right)} u\left(n_{1}\right) u\left(n_{2}-n_{1}\right) \\
& =\frac{\lambda^{n_{2}} t_{1}^{n_{1}}\left(t_{2}-t_{1}\right)^{n_{2}-n_{1}}}{n_{1}!\left(n_{2}-n_{1}\right)!} e^{-\lambda t_{2}} u\left(n_{1}\right) u\left(n_{2}-n_{1}\right), \quad 0 \leq t_{1}<t_{2}
\end{aligned}
$$

- Autocorrelation and Autocovariance using independent increments

$$
\begin{aligned}
E\left[N\left(t_{2}\right) N\left(t_{1}\right)\right] & =E\left[\left(N\left(t_{1}\right)+\left[N\left(t_{2}\right)-N\left(t_{1}\right)\right]\right) N\left(t_{1}\right)\right] \\
& =E\left[N^{2}\left(t_{1}\right)\right]+E\left[N\left(t_{2}\right)-N\left(t_{1}\right)\right] E\left[N\left(t_{1}\right)\right] \\
& =\lambda t_{1}+\lambda^{2} t_{1}^{2}+\lambda\left(t_{2}-t_{1}\right) \lambda t_{1} \\
& =\lambda t_{1}+\lambda^{2} t_{1} t_{2}=\lambda \min \left(t_{1}, t_{2}\right)+\lambda^{2} t_{1} t_{2}
\end{aligned}
$$

$$
K_{N N}\left(t_{1}, t_{2}\right)=\lambda \min \left(t_{1}, t_{2}\right)
$$

Markov Random Process

- Continuous valued (first order) Markov process $X(t)$ is satisfies the conditional pdf

$$
f_{X}\left(x_{n} \mid x_{n-1}, x_{n-2}, \ldots, x_{1} ; t_{n}, \ldots, t_{1}\right)=f_{X}\left(x_{n} \mid x_{n-1} ; t_{n}, t_{n-1}\right)
$$

- Discrete valued Markov process $X(\mathrm{t})$ satisfies the conditional PMF

$$
P_{X}\left(x_{n} \mid x_{n-1}, \ldots, x_{1} ; t_{n}, \ldots, t_{1}\right)=P_{X}\left(x_{n} \mid x_{n-1} ; t_{n}, t_{n-1}\right)
$$

- Problem: Find CDF and pdf of $Z=\min (X, Y)$

$$
\begin{aligned}
& F_{Z}(z) \triangleq P[Z \leq z] \quad \begin{array}{l}
\text { NOTE: For this condition } \\
\text { to be true, both } X>Z \text { and }
\end{array} \\
& =1-P[Z>z] \quad Y>Z \text { has to be true } \\
& =1-P[X>z] P[Y>z] \\
& =1-(1-P[X \leq z])(1-P[Y \leq z]) \\
& =1-\left(1-F_{X}(z)\left(1-F_{Y}(z)\right)\right. \\
& =F_{X}(z)+F_{Y}(z)-F_{X}(z) F_{Y}(z) \text {. } \\
& f_{Z}(z) \triangleq \frac{d F_{Z}(z)}{d z} \\
& =\frac{d\left(F_{X}(z)+F_{Y}(z)-F_{X}(z) F_{Y}(z)\right)}{d z} \\
& =f_{X}(z)+f_{Y}(z)-f_{X}(z) F_{Y}(z)-F_{X}(z) f_{Y}(z) . \\
& \text { If } \mathrm{X} \text { and } \mathrm{Y} \text { are iid exponential rv } \\
& f_{X}(x)=f_{Y}(x)=\alpha \exp (-\alpha x) u(x) . \\
& \text { We get } \\
& F_{Z}(z)=(1-\exp (-2 \alpha z)) u(z) \\
& f_{Z}(z)=2 \alpha \exp (-2 \alpha z) u(z) .
\end{aligned}
$$

Multiprocessor Reliability

- State $\mathrm{X}=0$: Both processor down
- State $X=1$: Either one is down
- State $X=2$: Both are up
- Repair Time is exponential with parameter μ
- Average time to repair is $1 / \mu$

- Failure TIme is exponential with parameter λ
- Average time to repair is $1 / \lambda$
- Inter-transition times are exponentially distributed like the inter-arrival times in Poisson counting process
- Now, the probability of being in $\mathrm{X}=2$ at $(\mathrm{t}+\Delta \mathrm{t})$ having been in $\mathrm{X}=1$ at time t
- This requires the service time T_{s} to be within interval ($\left.\mathrm{t}, \mathrm{t}+\Delta \mathrm{t}\right]$, conditioned on $\mathrm{T}_{\mathrm{s}}>$

$$
P_{2}(t+\Delta t)=P_{1}(t) P\left[t<T_{s} \leq t+\Delta t \mid T_{s} \geq t\right]
$$

$$
\text { where, } \quad P\left[t<T_{s} \leq t+\Delta t \mid T_{s} \geq t\right]=\frac{F_{T_{s}}(t+\Delta t)-F_{T_{s}}(t)}{1-F_{T_{s}}(t)}=\mu \Delta t+o(\Delta t)
$$

NOTE: Sum of probabilities leaving any state is always 1

- The probability of staying in $\mathrm{X}=2$ at $\mathrm{t}+\Delta \mathrm{t}$, having been in state 2

$$
P_{2}(t+\Delta t)=P_{2}(t) P\left[T_{Z}=\min \left(T_{F_{1}}, T_{F_{2}}\right)>\Delta t\right]=P_{2}(t)\left\{1-F_{T_{z}}(\Delta t)\right\}=P_{2}(t)\left(1-\left(1-e^{-2 \lambda \Delta t}\right)\right)=P_{2}(t)(1-2 \lambda \Delta t)
$$

contd

- Continuing in similar fashion for other states,

$$
\left[\begin{array}{l}
P_{0}(t+\Delta t) \\
P_{1}(t+\Delta t) \\
P_{2}(t+\Delta t)
\end{array}\right]=\left[\begin{array}{ccc}
1-2 \mu \Delta t & \lambda \Delta t & 0 \\
2 \mu \Delta t & 1-(\lambda+\mu) \Delta t & 2 \lambda \Delta t \\
0 & \mu \Delta t & 1-2 \lambda \Delta t
\end{array}\right]\left[\begin{array}{l}
P_{0}(t) \\
P_{1}(t) \\
P_{2}(t)
\end{array}\right]+\mathbf{o}(\Delta t)
$$

- Rearranging the terms

$$
\left[\begin{array}{l}
P_{0}(t+\Delta t)-P_{0}(t) \\
P_{1}(t+\Delta t)-P_{1}(t) \\
P_{2}(t+\Delta t)-P_{2}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 \mu & \lambda & 0 \\
2 \mu & -(\lambda+\mu) & 2 \lambda \\
0 & \mu & -2 \lambda
\end{array}\right]\left[\begin{array}{l}
P_{0}(t) \\
P_{1}(t) \\
P_{2}(t)
\end{array}\right] \Delta t+\mathrm{o}(\Delta t)
$$

- Dividing both sides by $\Delta t \longrightarrow \frac{d \mathbf{P}(t)}{d t}=\mathbf{A P}(t)$
- A is called the generator matrix of the Markov chain X
- The solution of the matrix differential equation is given by

$$
\mathbf{P}(t)=e^{\mathbf{A} t} \mathbf{P}_{0}, \quad t \geq 0 \quad \mathbf{P}(0) \triangleq \mathbf{P}_{0}
$$

- We are interested in the steady state probabilities of MC or AP $=\mathbf{0}$, from first and last row $\quad-2 \mu P_{0}+\lambda P_{1}=0$

$$
\begin{aligned}
& -2 \mu P_{0}+\lambda P_{1}=0 \\
& +\mu P_{1}-2 \lambda P_{2}=0
\end{aligned} \longrightarrow P_{1}=(2 \mu / \lambda) P_{0} \text { and } P_{2}=(\mu / 2 \lambda) P_{1}=(\mu / \lambda)^{2} P_{0}
$$

$P_{0}+P_{1}+P_{2}=1$, we obtain $P_{0}=\lambda^{2} /\left(\lambda^{2}+2 \mu \lambda+\mu^{2}\right)$ and finally $\quad \mathbf{P}=\frac{1}{\lambda^{2}+2 \mu \lambda+\mu^{2}}\left[\lambda^{2}, 2 \mu \lambda, \mu^{2}\right]^{T}$

Birth-Death Markov Chains

- In MC with only adjacent state transition is called a Birth-Death chain
- Infinite no. of states and Finite number of states (M/M/1 Queue)
- The time between births and time between deaths are exponentially distributed with parameters μ and λ
- We can write $\mathbf{P}(t+\Delta t)=\mathbf{B P}(t)$, where

$$
\mathbf{B}=\left[\begin{array}{ccccc}
1-\lambda_{0} \Delta t & \mu_{1} \Delta t & 0 & \cdots & \\
\lambda_{0} \Delta t & 1-\left(\lambda_{1}+\mu_{1}\right) \Delta t & \mu_{2} \Delta t & 0 & \cdots \\
0 & \lambda_{1} \Delta t & 1-\left(\lambda_{2}+\mu_{2}\right) \Delta t & \mu_{2} \Delta t & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

This model is called $M / M / 1$ queue. See Kendall's notation for queuing models

- Rearranging and dividing by $\Delta \mathrm{t} d \mathbf{P}(t) / d t=\mathbf{A P}(t)$ and the steady state is given by $\mathbf{A P}=\mathbf{0}$
$\mathbf{A}=\left[\begin{array}{ccccc}-\lambda_{0} & \mu_{1} & 0 & \cdots & \\ \lambda_{0} & -\left(\lambda_{1}+\mu_{1}\right) & \mu_{2} & 0 & \cdots \\ 0 & \lambda_{1} & -\left(\lambda_{2}+\mu_{2}\right) & \mu_{3} & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right] \longrightarrow \begin{aligned} & P_{1}=\rho_{1} P_{0} \\ & P_{2}=\rho_{2} P_{1}=\rho_{1} \rho_{2} P_{0} \\ & \vdots \\ & P_{j}=\rho_{j} P_{j-1}=\rho_{j} \cdots \rho_{2} \rho_{1} P_{0}\end{aligned} \quad$ where $\rho_{j} \triangleq \lambda_{j-1} / \mu_{j}$, for $j \geq 1$
- Assuming that the series converges, we require that $\sum_{i=0}^{\infty} P_{i}=1$. With the notation $r_{j} \triangleq \rho_{j} \cdots \rho_{2} \rho_{1}$, and $r_{0}=1$, this means $P_{0} \sum_{i=0}^{\infty} r_{i}=1$ or $P_{0}=1 / \sum_{i=0}^{\infty} r_{i}$. Hence the steady-state probabilities for the birth-death Markov chain are given by $P_{j}=r_{j} / \sum_{i=0}^{\infty} r_{i}, \quad j \geq 0 \longleftarrow$ Denominator does not converge there is no steady state.

Finite Capacity Buffer

- If we assume $\mu_{\mathrm{i}}=\mu$ and $\lambda_{\mathrm{i}}=\lambda$ for al i , and the queue length cannot exceed L
- The dynamical equation of the MC is

$$
\begin{aligned}
d P_{0}(t) / d t & =-\lambda P_{0}(t)+\mu P_{1}(t) \\
d P_{1}(t) / d t & =+\lambda P_{0}(t)-(\lambda+\mu) P_{1}(t)+\mu P_{2}(t) \\
& \ddot{:} \\
d P_{L}(t) / d t & =+\lambda P_{L-1}(t)-\mu P_{L}(t)
\end{aligned}
$$

- The steady state solution is therefore,

$$
P_{i}=\rho^{i} P_{0}, \text { for } 0 \leq i \leq L \quad \text { where } \rho \triangleq \lambda / \mu
$$

And since

$$
\begin{aligned}
\sum_{i=0}^{L} \rho^{i} P_{0}=1, \text { or that } P_{0} & =(1-\rho) /\left(1-\rho^{L+1}\right) \\
P_{L} & =\rho^{L}(1-\rho) /\left(1-\rho^{L+1}\right)
\end{aligned}
$$

- Example 9.2-6- If the buffer is full and $\boldsymbol{\tau}_{s}$ and $\boldsymbol{\tau}_{i}$ is the service time and interarrival time, then prob. of packet loss is

$$
\begin{aligned}
P[\text { "packet loss" }] & =P\left[\text { "saturation" } \cap\left\{\tau_{s}>\tau_{i}\right\}\right] \\
& =\rho^{L}(1-\rho) /\left(1-\rho^{L+1}\right) \times P\left[\tau_{s}-\tau_{i}>0\right]=\rho^{L}(1-\rho) /\left(1-\rho^{L+1}\right) \times \rho /(1+\rho)
\end{aligned}
$$

$P\left[\tau_{s}-\tau_{i}>0\right]=\lambda /(\lambda+\mu)$ is given by calculating the pdf of $\left(Z=\boldsymbol{\tau}_{s}-\boldsymbol{\tau}_{\mathrm{i}}\right)$, which is the
difference of two exponential pdf $\boldsymbol{\tau}_{\mathrm{s}} \sim \exp (\mu)$ and $\boldsymbol{\tau}_{\mathrm{s}} \sim \exp (\lambda)$, i.e. $f(x)=\frac{\lambda \mu}{\lambda+\mu} \begin{cases}e^{-\mu x} & \text { if } x>0 \\ e^{\lambda x} & \text { if } x<0\end{cases}$

Chapman-Kolmogorov Equations

- A markov process random variable $X\left(t_{1}\right), X\left(t_{2}\right), X\left(t_{3}\right)$ at $t_{3}>t_{2}>t_{1}$, then $C-K$ equations provide the conditional pdf of $X\left(t_{3}\right)$ given $X\left(t_{1}\right)$

$$
f_{X}\left(x_{3}, x_{1} ; t_{3}, t_{1}\right)=\int_{-\infty}^{+\infty} f_{X}\left(x_{3} \mid x_{2}, x_{1} ; t_{3}, t_{2}, t_{1}\right) f_{X}\left(x_{2}, x_{1} ; t_{2}, t_{1}\right) d x_{2}
$$

Dividing both sides by $f\left(x_{1} ; t_{1}\right)$, we obtain

$$
f_{X}\left(x_{3} \mid x_{1}\right)=\int_{-\infty}^{+\infty} f_{X}\left(x_{3} \mid x_{2}, x_{1}\right) f_{X}\left(x_{2} \mid x_{1}\right) d x_{2}
$$

Then using the Markov property the above becomes

$$
f_{X}\left(x_{3} \mid x_{1}\right)=\int_{-\infty}^{+\infty} f_{X}\left(x_{3} \mid x_{2}\right) f_{X}\left(x_{2} \mid x_{1}\right) d x_{2}
$$

- For discrete Markov chains
- Given $X_{0}=i, P_{i, k}^{n}=P\left(X_{n}=k \mid X_{0}=i\right)$ is the probability that the state at time n is k
- But given, $X_{n}=k$, the probability that the chain will be in state j at m time units later is $P_{k, j}^{m}$
- Therefore, since transitions are independent, we get $P\left(X_{n}=k, X_{n+m}=j \mid X_{0}=i\right)=P_{i, k}^{n} P_{k, j}^{m}$
- Summing over k gives the C-K equations

- Therefore, we get the following proof

$$
\begin{aligned}
& P_{i, j}^{n+m}=P\left(X_{n+m}=j \mid X_{0}=i\right) \\
& =\sum_{k \in \mathcal{S}} P\left(X_{n+m}=j, X_{n}=k \mid X_{0}=i\right) \\
& =\sum_{k \in \mathcal{S}} \frac{P\left(X_{n+m}=j, X_{n}=k, X_{0}=i\right)}{P\left(X_{0}=i\right)} \\
& =\sum_{k \in \mathcal{S}} \frac{P\left(X_{n+m}=j \mid X_{n}=k, X_{0}=i\right) P\left(X_{n}=k, X_{0}=i\right)}{P\left(X_{0}=i\right)} \\
& =\sum_{k \in \mathcal{S}} \frac{P\left(X_{n}=k, X_{0}=i\right) P_{k, j}^{m}}{P\left(X_{0}=i\right)} \stackrel{\text { (Using Markov Property) }}{ } \\
& =\sum_{k \in \mathcal{S}} P_{i, k}^{n} P_{k, j}^{m}
\end{aligned}
$$

- When $\mathrm{n}=\mathrm{m}=1$

$$
P_{i, j}^{2}=\sum_{k \in \mathcal{S}} P_{i, k} P_{k, j}, i \in \mathcal{S}, j \in \mathcal{S}
$$

- Which in the matrix form yields $\mathbf{P}^{(2)}=\mathbf{P}^{2}$, where $\mathbf{P}^{(n)}=\left(p_{i j}^{n}\right), n \geq 1$
- Similarly, when $\mathrm{n}=1$ and $\mathrm{m}=2$ (3 time steps in future)

$$
P_{i, j}^{3}=\sum_{k \in \mathcal{S}} P_{i, k} P_{k, j}^{2} \longrightarrow \mathbf{P}^{(3)}=\mathbf{P} \times \mathbf{P}^{(2)}=\mathbf{P} \times \mathbf{P}^{2}=\mathbf{P}^{3}
$$

Example

- Example: Let $\boldsymbol{X}_{\boldsymbol{i}}=\mathbf{0}$ if it rains on day \boldsymbol{i}; otherwise, $\mathrm{X}_{\mathrm{i}}=\mathbf{1}$
- Suppose $P_{00}=0.7$ and $P_{10}=0.4$. Then $\mathbf{P}=\left(\begin{array}{ll}0.7 & 0.3 \\ 0.4 & 0.6\end{array}\right)$
- Suppose it rains on Monday. Then the prob that it rains on Friday is $\mathbf{P}_{00}{ }^{(4)}$

$$
\mathbf{P}^{(4)}=\mathbf{P}^{4}=\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right)^{4}=\left(\begin{array}{ll}
0.5749 & 0.4251 \\
0.5668 & 0.4332
\end{array}\right)
$$

so that $\mathbf{P}_{00}{ }^{(4)}=\mathbf{0 . 5 7 4 9}$

- NOTE: To compute power of a matrix - Diagonalize and raise to the power
- Diagonalize $A=S^{-1} \Lambda S$, where $S=$ matrix with columns are eigenvectors and Λ is a matrix with eigenvalues as diagonals.
- Then, $A^{n}=S^{-1} \Lambda^{n}$, where $\Lambda^{n}=\operatorname{diag}\left(\Lambda_{1}{ }^{n}, \Lambda_{2}{ }^{n}, \ldots \ldots . . \Lambda_{N}{ }^{n}\right)$

Continuous Time Linear Systems

- SELF STUDY Section 9.3
- It follows the same methodology as random sequences
- Pay attention to the conjugate operator

Useful Classifications

- If X and Y are random processes
(a) Uncorrelated if $R_{X Y}\left(t_{1}, t_{2}\right)=\mu_{X}\left(t_{1}\right) \mu_{Y}^{*}\left(t_{2}\right)$, for all t_{1} and t_{2}
(b) Orthogonal if $R_{X Y}\left(t_{1}, t_{2}\right)=0$ for all t_{1} and t_{2};
(c) Independent if for all positive integers n, the nth order PDF of X and Y factors, that is,

$$
\begin{aligned}
& F_{X Y}\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n} ; t_{1}, \ldots, t_{n}\right) \\
& \quad=F_{X}\left(x_{1}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right) F_{Y}\left(y_{1}, \ldots, y_{n} ; t_{1}, \ldots, t_{n}\right) \quad \text { for all } x_{i}, y_{i} \text { and for all } t_{1}, \ldots, t_{n}
\end{aligned}
$$

- Note: Two processes are orthogonal if they are uncorrelated and at least one has zero mean
- If $R_{x x}\left(t_{1}, t_{2}\right)=0$ then it is called a orthogonal random process
- $\mathrm{X}(\mathrm{t})$ is Stationarity if it has the same $\mathrm{n}^{\text {th }}$ order CDF/PDF as $\mathrm{X}(\mathrm{t}+\mathrm{T})$

$$
F_{X}\left(x_{1}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right)=F_{X}\left(x_{1}, \ldots, x_{n} ; t_{1}+T, \ldots, t_{n}+T\right)
$$

If differentiable then

$$
f_{X}\left(x_{1}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right)=f_{X}\left(x_{1}, \ldots, x_{n} ; t_{1}+T, \ldots, t_{n}+T\right)
$$

- Stationary random process implies
$f(x ; t)=f(x ; t+T)$ for all T implies $f(x ; t)=f(x ; 0)$ by taking $T=-t$ which in turn implies $E[x(t)]=\mu_{X}(t)=\mu_{X}(0)$

Stationarity

- Since the second order density is also shift invariant
$f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=f\left(x_{1}, x_{2} ; t_{1}+T, t_{2}+T\right) \xrightarrow{T=-t_{2}} f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=f\left(x_{1}, x_{2} ; t_{1}-t_{2}, 0\right) \longrightarrow E\left[X\left(t_{1}\right) X^{*}\left(t_{2}\right)\right]=R_{X X}\left(t_{1}-t_{2}, 0\right)$
- Therefore, we can write the one-parameter correlation function

$$
\begin{aligned}
R_{X X}(\tau) & \triangleq R_{X X}(\tau, 0) \\
& =E\left[X(t+\tau) X^{*}(t)\right]
\end{aligned}
$$

- Definition $7.4-3$ A random process X is wide-sense stationary (WSS) if $E[X(t)]=$ μ_{X}, a constant, and $E\left[X(t+\tau) X^{*}(t)\right]=R_{X X}(\tau)$ for all $-\infty<\tau+\infty$, independent of the time parameter t.
- SELF STUDY Section 9.5 on interaction of WSS random process with linear systems. The discussion follows the same reasoning as in random sequences

Power Spectral Density

- PSD is defined for WSS and hence for stationary random process
- Definition - Let $R_{X X}(\tau)$ be an autocorrelation function. Then we define the power spectral density $S_{X X}(\omega)$ to be its Fourier transform (if it exists), that is,

$$
\begin{gathered}
S_{X X}(\omega) \triangleq \int_{-\infty}^{+\infty} R_{X X}(\tau) e^{-j \omega \tau} d \tau \\
R_{X X}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} S_{X X}(\omega) e^{+j \omega \tau} d \omega
\end{gathered}
$$

- We can also define Fourier transform of the cross-correlation function, which is called cross power spectral density

$$
S_{X Y}(\omega) \triangleq \int_{-\infty}^{+\infty} R_{X Y}(\tau) e^{-j \omega \tau} d \tau
$$

- Properties of PSD (Also see table 9.5-1)

1. $S_{X X}(\omega)$ is real-valued since $R_{X X}(\tau)$ is conjugate symmetric.
2. If $X(t)$ is a real-valued WSS process, then $S_{X X}(\omega)$ is an even function since $R_{X X}(\tau)$ is real and even. Otherwise $S_{X X}(\omega)$ may not be an even function of ω.
3. $S_{X X}(\omega) \geq 0$ (to be shown in Section in Theorem $9.5-1$).

Interpretation of PSD

- For a WSS process $X(t)$, consider the finite support segment (to ensure validity and existence of FT$) \longrightarrow X_{T}(t) \triangleq X(t) I_{[-T,+T]}(t)$
- $I_{[-T,+T]}$ is an indicator function equal to 1 if $-\mathrm{T} \leq \mathrm{t} \leq \mathrm{T}$
- Therefore, FT of $X_{T}(t)$ is given by

$$
F T\left\{X_{T}(t)\right\}=\int_{-T}^{+T} X(t) e^{-j \omega t} d t
$$

- The magnitude squared of this random variable is

$$
\left|F T\left\{X_{T}(t)\right\}\right|^{2}=\int_{-T}^{+T} \int_{-T}^{+T} X\left(t_{1}\right) X^{*}\left(t_{2}\right) e^{-j \omega\left(t_{1}-t_{2}\right)} d t_{1} d t_{2}
$$

- Dividing both sides by $2 T$ and taking expectation,

$$
\frac{1}{2 T} E\left[\left|F T\left\{X_{T}(t)\right\}\right|^{2}\right]=\frac{1}{2 T} \int_{-T}^{+T^{\prime}} \int_{-T}^{+T^{\prime}} R_{X X}\left(t_{1}-t_{2}\right) e^{-j \omega\left(t_{1}-t_{2}\right)} d t_{1} d t_{2}
$$

The area of integration in the $\mathbf{t}_{1}-\mathbf{t}_{2}$ plane changes to the diamond shape in the $\mathbf{s}-\boldsymbol{\tau}$ plane.
Then, the line $\mathrm{t}_{2}=\mathrm{T}$ becomes $(\mathrm{s}-\tau) / 2=$ $\mathrm{T}->\mathrm{s}=\boldsymbol{\tau}+2 \mathrm{~T}^{2}$ (red arrow)

- Define coordinated $\mathbf{s}=\mathrm{t}_{1}+\mathrm{t}_{2}$ and $\boldsymbol{\tau}=\mathrm{t}_{1}-\mathrm{t}_{2}->\mathrm{t}_{1}=(\mathbf{s}+\boldsymbol{\tau}) / 2$ and $\mathrm{t}_{2}=(\mathbf{s}-\boldsymbol{\tau}) / 2$
- Obtained by 45° rotation of $\mathrm{t}_{1}-\mathrm{t}_{2}$ coordinate system
- The Jacobian for the transform $\mathbf{t}_{1}=\mathbf{g}(\mathbf{s}, \boldsymbol{\tau})$ and $\mathbf{t}_{\mathbf{2}}=\mathbf{h}(\mathbf{s}, \boldsymbol{\tau})$

$$
\frac{\partial\left(t_{1}, t_{2}\right)}{\partial(s, \tau)}=\left|\begin{array}{ll}
\frac{\partial t_{1}}{\partial s} & \frac{\partial t_{1}}{\partial \tau} \\
\frac{\partial t_{2}}{\partial s} & \frac{\partial \partial_{2}}{\partial \tau}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=\frac{1}{2}
$$

contd

- The integral then becomes

$$
\begin{aligned}
\frac{1}{4 T} \iint_{\wp} R_{X X}(\tau) e^{-j \omega \tau} d \tau d s= & \frac{1}{4 T}\left\{\int_{-2 T}^{0} R_{X X}(\tau) e^{-j \omega \tau}\left[\int_{-(2 T+\tau)}^{2 T+\tau} d s\right] d \tau\right\} \\
& +\frac{1}{4 T}\left\{\int_{0}^{2 T} R_{X X}(\tau) e^{-j \omega \tau}\left[\int_{-(2 T-\tau)}^{2 T-\tau} d s\right] d \tau\right\}=\int_{-2 T}^{+2 T}\left[1-\frac{|\tau|}{2 T}\right] R_{X X}(\tau) e^{-j \omega \tau} d \tau
\end{aligned}
$$

- In the limit $T \rightarrow+\infty$ the integral tends to the def. of PSD

$$
S_{X X}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{2 T} E\left[\left|F T\left\{X_{T}(t)\right\}\right|^{2}\right]
$$

- Therefore, $\mathrm{S}_{x x}(\omega)$ is real and non-negative and specifies average power at frequency ω. See examples 9..5-3, 9.5-4
- Theorem: If $X(t)$ is stationary with $R_{x x}(\tau)$ and psd $S_{x x}(\omega)$, then $S_{x x}(\omega) \geq 0$ and for all $\omega_{2}>\omega_{1}, \frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}} s_{S_{X}(\omega) d \omega}$ the average power in the band $\left(\omega_{1}, \omega_{2}\right)$
- Define a filter with $H(\omega) \triangleq \begin{cases}1, & \omega \in\left(\omega_{1}, \omega_{2}\right) \\ 0, & \text { else }\end{cases}$
- Then when $X(\mathrm{t})$ passes through the filter $S_{Y Y}(\omega)=\left\{\begin{array}{cc}S_{X X}(\omega), & \omega \in\left(\omega_{1}, \omega_{2}\right) \\ 0, & \text { else. }\end{array}\right.$
- Then the average output power of $\mathrm{Y}(\mathrm{t})$ is $E\left[|Y(t)|^{2}\right]=R_{Y Y}(0)$ (This is autocorrelation at 0 shift)

$$
R_{Y Y}(0)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} S_{Y Y}(\omega) d \omega=\frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}} S_{X X}(\omega) d \omega \geq 0
$$

Periodic Process

Definition - A random process $X(t)$ is wide-sense periodic if there is a $T>0$ such that

$$
\mu_{X}(t)=\mu_{X}(t+T) \text { for all } t
$$

and

$$
K_{X X}\left(t_{1}, t_{2}\right)=K_{X X}\left(t_{1}+T, t_{2}\right)=K_{X X}\left(t_{1}, t_{2}+T\right) \quad \text { for all } t_{1}, t_{2}
$$

The smallest such T is called the period. Note that $K_{X X}\left(t_{1}, t_{2}\right)$ is then periodic with period T along both axes.

- The random complex exponential is an example of Periodic process
(A random complex exponential.) Let $X(t) \triangleq A \exp (j 2 \pi f t)$ with f a known real constant and A a real-valued random variable with mean $E[A]=0$ and finite average power $E\left[A^{2}\right]$.
Calculating the mean and correlation of $X(t)$, we obtain

$$
E[X(t)]=E[A \exp (j 2 \pi f t)]=E[A] \exp (j 2 \pi f t)=0
$$

and

$$
\begin{aligned}
E\left[X(t+\tau) X^{*}(t)\right] & =E[A \exp (j 2 \pi f(t+\tau)) A \exp (-j 2 \pi f t)] \\
& =E\left[A^{2}\right] \exp (j 2 \pi f \tau)=R_{X X}(\tau)
\end{aligned}
$$

- A periodic process can also be WSS (like above) are called wide-sense periodic stationary.
- $\mathrm{K}_{\mathrm{xx}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is doubly periodic with a two dimensional period of (T, T)

Cyclostationarity Process

Definition - A random process $X(t)$ is wide-sense cyclostationary if there exists a positive value T such that

$$
\mu_{X}(t)=\mu_{X}(t+T) \text { for all } t
$$

$K_{X X}\left(t_{1}, t_{2}\right)=K_{X X}\left(t_{1}+T, t_{2}+T\right)$ for all t_{1} and t_{2}

- The covariance function is shift invariant both of its arguments
- It means statistics are periodic but not the process itself
- Typically modulated communication signals possess this property.

Consider a random amplitude sinusoid with period T :

$$
X(t)=A \cos (2 \pi t / T)
$$

Is $X(t)$ cyclostationary? wide-sense cyclostationary?
Consider the joint cdf for the time samples t_{1}, \ldots, t_{k} :

$$
\begin{aligned}
P & {\left.\left[X\left(t_{1}\right) \leq x_{1}, X\left(t_{2}\right) \leq x_{2}, \ldots, X\left(t_{k}\right) \leq x_{k}\right)\right] } \\
& =P\left[A \cos \left(2 \pi t_{1} / T\right) \leq x_{1}, \ldots, A \cos \left(2 \pi t_{k} / T\right) \leq x_{k}\right] \\
& =P\left[A \cos \left(2 \pi\left(t_{1}+m T\right) / T\right) \leq x_{1}, \ldots, A \cos \left(2 \pi\left(t_{k}+m T\right) / T\right) \leq x_{k}\right] \\
& =P\left[X\left(t_{1}+m T\right) \leq x_{1}, X\left(t_{2}+m T\right) \leq x_{2}, \ldots, X\left(t_{k}+m T\right) \leq x_{k}\right]
\end{aligned}
$$

Thus $X(t)$ is a cyclostationary random process and hence also a wide-sense cyclostationary process.

The mean of $X(t)$ is

$$
m_{X}(t)=E\left[\sum_{n=-\infty}^{\infty} A_{n} p(t-n T)\right]=\sum_{n=-\infty}^{\infty} E\left[A_{n}\right] p(t-n T)=0
$$

since $E\left[A_{n}\right]=0$. The autocovariance function is

$$
\begin{aligned}
& C_{X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]-0 \\
& \quad=\left\{\begin{array}{lr}
E\left[X\left(t_{1}\right)^{2}\right]=1 & \text { if } n T \leq t_{1}, t_{2}<(n+1) T \\
E\left[X\left(t_{1}\right)\right] E\left[X\left(t_{2}\right)\right]=0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Figure -.- shows the autocovariance function in terms of t_{1} and t_{2}. It is clear that $C_{X}\left(t_{1}+m T, t_{2}+m T\right)=C_{X}\left(t_{1}, t_{2}\right)$ for all integers m. Therefore the process is wide-sense cyclostationary.

