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Basic Concepts
● Analogous to random sequences except the time axis is uncountable

● Examples 

●



Moment Functions
● Mean Function 

● Autocorrelation function

● Autocovariance function

● Variance Function

● Power Function

● Example 9.1-5

Hermitian Symmetry



Example: Poisson Counting Process
● MGF of a exponential rv                                  is

● Therefore MGF of T[n] is given by              , which is  
the MGF of Erlang distribution 

● Now, by construction (bottom rt. figure)

● Using independence and definition of CDF

● This yields the PMF of a Poisson counting process

Exponential pdf of inter-arrival 
time 𝛕[n] leads to Erlang pdf on 
total wait (arrival) time T[n] and 
a Poisson PMF for the count n

λ is the mean 
arrival rate 

and E[N(t)] = λt

See example 
8.1-11



● The PMF of the increment in Poisson counting process in (ta,tb) is Poisson

● D

● It helps in calculating higher order distributions

● Autocorrelation and Autocovariance using independent increments

Independent Increment



Markov Random Process
● Continuous valued (first order) Markov process X(t) is satisfies the 

conditional pdf

● Discrete valued Markov process X(t) satisfies the conditional PMF

● Problem: Find CDF and pdf of Z = min(X,Y)

If X and Y are iid exponential rv

We get

NOTE: For this condition 
to be true, both X>Z and 
Y>Z has to be true



Multiprocessor Reliability 
● State X=0 : Both processor down
● State X=1 : Either one is down
● State X=2 : Both are up

 
● Repair Time is exponential with parameter 𝜇

○ Average time to repair is 1/𝜇 

● Failure TIme is exponential with parameter λ
○ Average time to repair is 1/λ 

○ Inter-transition times are exponentially distributed like the inter-arrival times in Poisson 
counting process

● Now, the probability of being in X=2 at (t+Δt) having been in X=1 at time t
○ This requires the service time Ts to be within interval (t,t+Δt] , conditioned on Ts > 

○ The probability of staying in X=2 at t+Δt, having been in state 2

Transition time is an 
rv Z = min(TR1 , TR2

 )

Transition time is an 
rv Z = min(TF1 , TF2

 )

Wait another 
repair time TR

NOTE: Sum of 
probabilities leaving 
any state is always 1



...contd
● Continuing in similar fashion for other states,

● Rearranging the terms

● Dividing both sides by Δt

● A is called the generator matrix of the Markov chain X

● The solution of the matrix differential equation is given by

● We are interested in the steady state probabilities of MC or AP = 0, from 
first and last row

To find a particular solution to the vector differential equation see this - http://people.math.gatech.edu/~xchen/teach/ode/ExpMatrix.pdf

http://people.math.gatech.edu/~xchen/teach/ode/ExpMatrix.pdf


Birth-Death Markov Chains
● In MC with only adjacent state transition is called a Birth-Death chain

○ Infinite no. of states and Finite number of states (M/M/1 Queue)

● The time between births and time between                                                            
deaths are exponentially distributed with                                                 
parameters 𝜇 and λ

○ We can write                             , where 

● Rearranging and dividing by Δt                             and the steady state is given by AP = 0

●

Denominator does not converge there is no steady state.

NOTE: The rates are 
different than the 
previous example

This model is called M/M/1 queue. See 
Kendall’s notation for queuing models



● If we assume 𝜇i = 𝜇 and λi = λ for al i, and the queue length cannot exceed L

○ The dynamical equation of the MC is 

○ The steady state  solution is therefore, 

And since

● Example 9.2-6- If the buffer is full and 𝛕s and 𝛕i is the service time and 
interarrival time, then prob. of packet loss is 

                                      is given by calculating the pdf of (Z = 𝛕s - 𝛕i) , which is the 
difference of two exponential pdf 𝛕s ~ exp(𝜇) and 𝛕s ~ exp(λ), i.e. 

Finite Capacity Buffer



Chapman-Kolmogorov Equations
● A markov process random variable X(t1), X(t2), X(t3) at t3>t2>t1 , then C-K 

equations provide the conditional pdf of X(t3) given X(t1)

● For discrete Markov chains

○ Given                                                           is the probability that the state at time n is k

○ But given,               , the probability that the chain will be in state j at m time units later is 

○ Therefore, since transitions are independent, we get

○ Summing over k gives the C-K equations



… contd
● Therefore, we get the following proof

● When n = m = 1

● Which in the matrix form yields                  , where       

● Similarly, when n = 1 and m = 2 (3 time steps in future) In general, for n=1, m = l

(Using definition of Total Probability)

(Using definition of Conditional Probability)

(Using Markov Property)

Xn+mXnX0

time = 0
State: X0 = i

time = n
State: Xn = k

time = n+m
State: Xn+m = j

Transition Probability 
Pn

ik 
 = P(Xn = k | X0 = i)

Transition Probability 
Pm

kj 
 = P(Xn+m = j | Xn = k)

= P(Xm = j | X0 = k) 
(memoryless property 

of MC set n = 0)

(Using definition of Jointly Conditional on Xn and X0)



Example
● Example: Let Xi = 0 if it rains on day i; otherwise, Xi = 1

● Suppose P00 = 0.7 and P10 = 0.4. Then

● Suppose it rains on Monday. Then the prob that it rains on Friday is P00
(4) 

so that P00
(4) = 0.5749

● NOTE: To compute power of a matrix - Diagonalize and raise to the power 
○ Diagonalize A = S-1ΛS, where S = matrix with columns are eigenvectors and Λ is a matrix 

with eigenvalues as diagonals. 

○ Then, An = S-1ΛnS, where Λn  = diag (Λ1
n, Λ2

n, …...ΛN
n)



Continuous Time Linear Systems

● SELF STUDY Section 9.3 

● It follows the same methodology as random sequences

● Pay attention to the conjugate operator



Useful Classifications
● If X and Y are random processes

● Note: Two processes are orthogonal if they are uncorrelated and at least 
one has zero mean

● If RXX (t1,t2) = 0 then it is called a orthogonal random process

● X(t) is Stationarity if it has the same nth order CDF/PDF as X(t+T)

If differentiable then 

● Stationary random process implies  



Stationarity 
● Since the second order density is also shift invariant

● Therefore, we can write the one-parameter correlation function 

● S

● SELF STUDY Section 9.5 on interaction of WSS random process with 
linear systems. The discussion follows the same reasoning as in 
random sequences



Power Spectral Density 
● PSD is defined for WSS and hence for stationary random process

● S

● We can also define Fourier transform of the cross-correlation function, 
which is called cross power spectral density

● Properties of PSD (Also see table 9.5-1)



Interpretation of PSD
● For a WSS process X(t), consider the finite support segment (to ensure 

validity and existence of FT)
○           is an indicator function equal to 1 if -T ≤ t ≤ T
○ Therefore, FT of XT(t) is given by 

● The magnitude squared of this random variable is 

● Dividing both sides by 2T and taking expectation,

● Define coordinated s = t1+ t2 and 𝛕 = t1- t2  -> t1 = (s+𝛕)/2 and  t2 = (s-𝛕)/2
○ Obtained by 45o rotation of t1-t2 coordinate system

○ The Jacobian for the transform t1= g(s,𝛕) and t2 = h(s,𝝉)

Example and tutorial on variable changes for multivariate integrals - http://tutorial.math.lamar.edu/Classes/CalcIII/ChangeOfVariables.aspx

The area of integration in the t1-t2 
plane changes to the diamond shape 
in the s-𝛕 plane. 
Then, the line t2 = T becomes (s-𝛕)/2 = 
T -> s = 𝛕 + 2T (red arrow)

http://tutorial.math.lamar.edu/Classes/CalcIII/ChangeOfVariables.aspx


...contd
● The integral then becomes

● In the limit                  the integral tends to the def. of PSD

● Therefore, SXX(⍵) is real and non-negative and specifies average power at 
frequency ⍵. See examples 9..5-3, 9.5-4 

● Theorem: If X(t) is stationary with Rxx(𝛕) and psd SXX(⍵), then SXX(⍵) ≥ 0 and 
for all ⍵2>⍵1,                    is the average power in the band (⍵1,⍵2)

○ Define a filter with                                         

○ Then when X(t) passes through the filter

○ Then the average output power of Y(t) is (This is autocorrelation at 0 shift)



Periodic Process

● The random complex exponential is an example of Periodic process

● A periodic process can also be WSS (like above) are                                                                
called wide-sense periodic stationary.

● KXX(t1,t2) is doubly periodic with a two dimensional                                            
period of (T,T)



Cyclostationarity Process

● The covariance function is shift invariant both of its arguments

● It means statistics are periodic but not the process itself

● Typically modulated communication signals possess this property. 


