FROM THE WEAK BRUHAT ORDER TO CRYSTAL POSETS

PATRICIA HERSH AND CRISTIAN LENART

Abstract

We investigate the ways in which fundamental properties of the weak Bruhat order on a Weyl group can be lifted (or not) to a corresponding highest weight crystal graph, viewed as a partially ordered set; the latter projects to the weak order via the key map. First, a crystal theoretic analogue of the statement that any two reduced expressions for the same Coxeter group element are related by Coxeter moves is proven for all lower intervals $[\hat{0}, v]$ in a simply or doubly laced crystal. On the other hand, it is shown that no finite set of moves exists, even in type A, for arbitrary crystal graph intervals. In fact, it is shown that there are relations of arbitrarily high degree amongst crystal operators that are not implied by lower degree relations. Second, for crystals associated to Kac-Moody algebras it is shown for lower intervals that the Möbius function is always 0 or ± 1, and in finite type this is also proven for upper intervals, with a precise formula given in each case. Moreover, the order complex for each of these intervals is proven to be homotopy equivalent to a ball or to a sphere of some dimension, despite often not being shellable. For general intervals, examples are constructed with arbitrarily large Möbius function, again even in type A.

New properties of the key map are also derived. The key is shown to be determined entirely by the edge-colored poset-theoretic structure of the crystal, and a recursive algorithm is given for calculating it. In finite types, the fiber of the longest element of any parabolic subgroup of the Weyl group is also proven to have a unique minimal and a unique maximal element; this property fails for more general elements of the Weyl group.

1. Introduction

Crystal graphs, introduced by Kashiwara [16], are a powerful tool in the representation theory of symmetrizable Kac-Moody algebras and their quantum algebras. They are colored directed graphs encoding important data regarding quantum group representations when the quantum parameter goes to 0 . In this paper, a crystal always means one associated with an integrable highest weight representation of a symmetrizable Kac-Moody algebra (more precisely, of the corresponding quantum algebra). Several combinatorial models for crystals exist, ranging from uniform models, for all Lie types (such as the Littelmann path model, the alcove model, the Lusztig and string parametrizations of the canonical basis), to specialized models which only work in type A (semistandard Young tableaux) or classical types. We will use both types of models in this paper, as well as a more abstract viewpoint due to Stembridge for simply laced crystals.

Highest weight crystals are, in fact, partially ordered sets (posets), with cover relations $u \lessdot v$ whenever there exists i such that $v=f_{i}(u)$ for f_{i} a crystal operator (defined shortly). It is useful to color such a cover relation i, thereby giving the crystal the structure of an edge-colored poset. The resulting crystal posets project to the left weak Bruhat order on

[^0]the corresponding Weyl group via the so-called key map (cf. [17, 23, 28]). Previous interest in this poset map stems from the fact that it detects the smallest Demazure subcrystal containing a given crystal vertex.

A main point of our work is to show how many well-known properties of the weak Bruhat order can be lifted to the crystal poset via the key. However, there is a dichotomy in crystals in that we show that the properties under consideration hold for lower intervals $[\hat{0}, v]$ (and hence in finite type also for upper intervals $[v, \hat{1}]$), whereas we also construct intervals $[u, v]$ that fail to have these same properties, in fact failing in arbitrarily extreme ways (as explained later). This distinction does not exist in the case of Weyl groups, where any interval $[u, v]$ in the weak Bruhat order is isomorphic to a lower interval.

In a slightly different, but related, direction, we develop new properties of the key. First, in Section 3, we give an efficient recursive algorithm to calculate the key. In the process, we demonstrate that the key is determined entirely by the edge-colored poset-theoretic structure of the crystal graph in a uniform way. This algorithm works in the level of generality of symmetrizable Kac-Moody algebras. Second, we prove in Theorem 5.1 that the subposet of a crystal poset mapping under the key to the longest element $w_{\circ}(J)$ of any parabolic subgroup W_{J} has unique minimal and maximal elements; we also give examples showing that this property fails for arbitrary Weyl group elements.

A fundamental (and quite useful) property of Coxeter groups W is the following: any two reduced expressions r_{1}, r_{2} for an element $w \in W$ are connected by a series of braid moves. That is, one may apply a series of braid moves to r_{1} to obtain r_{2}. In this sense, we think of the braid moves as connecting the set of reduced expressions for w. This appears e.g. as Theorem 3.3.1 in [3], and for type A as Theorem 1.1.2 in [9]. One way of phrasing this property is that, for any $u \leq v$ in weak Bruhat order, all saturated chains from u to v are connected by braid moves (see Proposition 3.1.2 in [3]), using that these saturated chains are naturally labeled by the reduced expressions for $v u^{-1}$ by placing the label s_{i} on each $u \lessdot s_{i} u$. Another fundamental property of weak Bruhat order is that its Möbius function $\mu(u, v)$ only takes values $0, \pm 1$, and in fact each open interval (u, v) has order complex homotopy equivalent to a ball or a sphere.

We will develop analogues of both of these results for crystal graphs, in Theorem 4.2 and Corollary 6.8, respectively, but only for lower intervals (and upper ones in finite types). We also prove a homotopy theoretic statement in Theorem 6.6, from which Corollary 6.8 follows. The connectedness result, Theorem 4.2 in the simply-laced case, holds for simply and doubly laced crystals. The topological result, Theorem 6.6, holds from all crystals coming from symmetrizable Kac-Moody algebras. One might then expect such results for arbitrary crystal poset intervals $[u, v]$. However, we give examples in type A, in Section 7, showing that the corresponding statements are false in general. We also demonstrate in Example 7.4 that type A crystal posets are not always lattices.

Let us briefly explain our results now in somewhat more precise language. It is natural to ask for an analogous property for crystal graphs to the connectedness of the set of reduced expressions under braid moves, specifically by replacing braid moves with so-called Stembridge moves (cf. Definition 4.1 and [36]) in the simply laced case, or with some larger set of moves more generally. In a crystal, we need to specify an element u, then consider the set $S(u, v)$ of "reduced expressions" r in our crystal operators $f_{1}, f_{2}, \ldots, f_{n}$ (commonly known as strings) such that $r(u)=v$. Unlike in the setting of Coxeter groups and the weak order, the sets $S(u, v)$ and the relations between their elements may depend not just on $v u^{-1}$, but
also on u. Given r_{1}, r_{2} in $S(u, v)$, one asks for a finite set of local moves that will transform r_{1} into r_{2}, with each intermediate move yielding an element of $S(u, v)$.

Theorem 7.1 will show that no finite list of moves analogous to braid moves will suffice as we allow both u and v to vary freely. This is done by producing pairs of elements $u \leq v$, with the interval $[u, v]$ having arbitrarily large rank, such that the associated open intervals (u, v) are all disconnected. Thus, arbitrarily high degree relations amongst crystal operators exist that are not implied by lower degree relations. In contrast, if we fix u to be the bottom element $\hat{0}$ in our crystal, then we prove in Theorem 4.2 that the finite list of moves in Stembridge's work [36] suffices in the simply laced case; we also note that the same method of proof also yields that the larger set of moves considered by Sternberg [37] (which already appeared in [36]) suffices for lower intervals in the doubly laced case.

For crystals arising from symmetrizable Kac-Moody algebras (including in finite type), we prove in Corollary 6.8 that the poset Möbius function μ only takes values $0, \pm 1$ for intervals of the form $(\hat{0}, v)$, and likewise for intervals of the form $(v, \hat{1})$ when a unique maximal element exists. This follows from a stronger homotopy-theoretic statement proved in Theorem 6.6, by the interpretation of the Möbius function as reduced Euler characteristic. More specifically, we deduce that $\mu(\hat{0}, v)=0$ unless the key of v is the longest element $w_{0}(J)$ of a parabolic subgroup W_{J} and v is the minimal element of the crystal having key $w_{\circ}(J)$, in which case we have $\mu(\hat{0}, v)=(-1)^{|J|}$. On the other hand, we construct in Theorem 7.3 intervals $[u, v]$ in type A with $\mu(u, v)$ arbitrarily large in value. Similarly to the weak Bruhat order (cf. [3], $[2],[7],[8]$), these crystal posets are typically not shellable (a powerful topological condition developed extensively in [1], [4]), even when one restricts attention to the topologically wellunderstood lower (or upper) intervals.

As far as motivation for this work is concerned, the topological structure for fundamental posets arising in other parts of algebra, for instance finite group theory and commutative algebra, have played an important role there in characterizing important properties such as solvability and supersolvability in finite group theory, and various properties of free resolutions including bounds on Betti numbers in commutative algebra (cf. [1], [6], [11], [25], [26], [30], [31], [32], [35]). It is natural to ask in other algebraic settings, such as the present one, whether topological properties of posets may again be useful as a tool for obtaining characterization results. Indeed, the strings in the set $S(\hat{0}, u)$ mentioned above, which play an important role in the theory of crystals, are now interpreted as the facets of the corresponding order complex; so the topology of the latter is bound to provide useful information, as illustrated by the following examples. Corollary 6.11 shows that the crystals of highest weight ρ (where, in type A, the weight ρ is just the staircase partition) are special, in the sense that they have a particularly close structure to that of the weak order on the Weyl group, unlike the other crystals. Corollary 6.8 will directly imply that the Möbius function alone can detect whether a given crystal element is the minimal element whose key is the longest element of a parabolic subgroup W_{J}, because these special elements of the crystal are proven to be exactly the elements u having $\mu(\hat{0}, u)$ nonzero. This also yields a simple method to calculate the key of such elements u directly, i.e. without needing to know the key of lower elements in the crystal poset, since J will in this case be the set of colors appearing on edges of saturated chains from $\hat{0}$ to u.

The result that any two reduced expressions for the same Coxeter group element are connected by a series of braid moves is a very useful tool, for instance in that it allows proofs to proceed by showing that a result holds for one particularly well-behaved reduced
expression, and that the result is preserved under braid moves. Indeed, it is possible to give an algorithm to calculate the key by using connectendess under Stembridge moves, together with the fact that the key may be calculated more easily along certain particularly nice saturated chains. There is also the more intrinsic motivation for our connectedness and disconnectedness results that they give a better understanding of the nature of the set of relations that hold among crystal operators. Example 7.4, constructing a crystal that is not a lattice, may also shed further light on local structure as well as helping to further explain the dichotomy between lower intervals and arbitrary intervals (at least in terms of the proof techniques that are available).

John Stembridge developed quite a powerful and precise theory of a local structure in simply laced crystals in [36]. In some sense, his work may be seen as giving a local structure that controls what one may encounter in proceeding from bottom to top (or from top to bottom) through a crystal poset. Our results show how this top-to-bottom local structure also forces structure to propagate from left to right across a full crystal poset (or a lower or upper interval of a full crystal), in particular enabling a connectivity result for the saturated chains on a lower or upper interval. On the other hand, our results show how this fails for more general intervals, where arbitrarily high degree relations amongst crystal operators may hold.

Before proving the main new results of this paper in Section 3-7, we first provide background material, which is organized as follows. Sections 2.1 and 2.2 review general properties of crystals and their local structure, while Section 2.7 provides background on partially ordered sets and on topological combinatorics. These sections, together with a suitable definition of the key map (either taken from Section 2.6 or from Section 3), will suffice to understand the proofs of our positive results regarding Möbius functions, homotopy type, and connectedness of the set of saturated chains in lower and upper intervals under Stembridge moves. Section 2.3 reviews the SSYT model for type A crystals, so as to prepare readers to understand our infinite families of examples giving negative results in Section 7, regarding Möbius functions and connectedness for arbitrary type A crystal poset intervals. Section 2.5 explains the more general alcove model for crystals, in preparation for the proof of Theorem 5.1 on the fibers of the key map at longest elements of parabolic subgroups. Theorem 5.1 will provide a vital input into the proofs of our positive Möbius function and homotopy type results, though it can be treated as a black box, e.g., by readers who are more familiar with combinatorics of posets than with representation theory. Section 2.6 reviews the definition of the key map in terms of both the SSYT model and the alcove model, as well as abstract properties of the key. Section 3 provides a new, elementary algorithm for calculating the key, which is based on abstract properties of the key map. Some readers may find it convenient to take the output of this algorithm as the definition of the key map. Now let us commence with our review of background material.

Acknowledgments. We thank Karola Mészáros, Victor Reiner, Anne Schilling, Mark Shimozono, and John Stembridge for valuable discussions related to several aspects of this paper.

2. Basic setup and background

2.1. Basic notions related to crystal graphs. Crystals are colored directed graphs encoding certain representations of quantum groups $U_{q}(\mathfrak{g})$ in the limit $q \rightarrow 0$. We will only refer here to the highest weight integrable representations of symmetrizable Kac-Moody algebras,
all of which are known to possess crystals. Given a dominant weight $\lambda \in \Lambda^{+}$(where Λ denotes the set of weights), we denote by $B=B(\lambda)$ the crystal of the irreducible representation $V(\lambda)$ of highest weight λ, which we call a \mathfrak{g}-crystal. Its vertices correspond to the so-called crystal basis of $V(\lambda)$, and its edges partially encode the action of the Chevalley generators e_{i}, f_{i} of $U_{q}(\mathfrak{g})$ on this basis; therefore, the edges are labeled by $i \in I$ (also called colors) indexing the corresponding simple roots α_{i}. Note that if \mathfrak{g} is a semisimple Lie algebra, then the corresponding root system is finite, and so are all the corresponding \mathfrak{g}-crystals $B(\lambda)$; otherwise, these crystals are infinite.

We briefly recall the standard terminology related to root systems in Section 2.4, by focusing on the finite case, in preparation for presenting the alcove model for crystals (in Section 2.5). We now review some basic facts about crystals, and refer the reader to [12] for more details. We start by defining a larger class of objects called crystals in an abstract way, and then we discuss which of them are \mathfrak{g}-crystals.

Definition 2.1. A crystal B is a directed graph with labeled edges satisfying axioms (P1) and (P2) below; the vertex set is also denoted B, and the label on the edge $b \xrightarrow{i} b^{\prime}$ is an element of I.
(P1) All monochromatic directed paths have finite length; in particular, B has no monochromatic circuits.
(P2) For every vertex b and every color $i \in I$, there is at most one edge $b \rightarrow b^{\prime}$ with color i, and at most one edge $b^{\prime \prime} \rightarrow b$ with color i.

The crystal operators $e_{i}, f_{i}: B \rightarrow B \cup\{\mathbf{0}\}$ for $i \in I$ (where $\mathbf{0} \notin B$) are defined by letting $f_{i}(b)=b^{\prime}$ and $e_{i}\left(b^{\prime}\right)=b$ for each i-colored edge $b \rightarrow b^{\prime}$; if there is no such edge, we set $f_{i}(b)=e_{i}\left(b^{\prime}\right)=\mathbf{0}$. Define the i-string through $b \in B$ to be the maximal path of the form

$$
e_{i}^{d}(b) \rightarrow \cdots \rightarrow e_{i}(b) \rightarrow b \rightarrow f_{i}(b) \rightarrow \cdots \rightarrow f_{i}^{r}(b)
$$

for some $r, d \geq 0$. Then the i-rise of b, denoted $\varepsilon(b, i)$, is the nonnegative integer r, while the i-depth of b, denoted $\delta(b, i)$, is the nonpositive integer $-d$.

The \mathfrak{g}-crystals are also endowed with a weight function wt : $B \rightarrow \Lambda$, which is subject to the condition:

$$
\mathrm{wt}\left(f_{i}(b)\right)=\mathrm{wt}(b)-\alpha_{i} .
$$

Using the weight function, we can express combinatorially the character of the representation $V(\lambda)$ as a positive linear combination of formal exponentials in the group algebra of the corresponding weight lattice:

$$
\begin{equation*}
\operatorname{ch} V(\lambda)=\sum_{b \in B(\lambda)} x^{\mathrm{wt}(b)} \tag{1}
\end{equation*}
$$

Now recall that, for a Weyl group element w, the Demazure module $V_{w}(\lambda)$ is the submodule of $V(\lambda)$ generated from an extremal weight vector of weight $w \lambda$ by the action of an upper triangular subalgebra $U_{q}^{+}(\mathfrak{g})$ of the quantum group $U_{q}(\mathfrak{g})$. The corresponding Demazure subcrystal of $B(\lambda)$ is denoted $B_{w}(\lambda)$, and the Demazure character ch $V_{w}(\lambda)$ is expressed in a similar way to (1), as a sum over $B_{w}(\lambda)$. Similarly, one defines the opposite Demazure module and crystal by using the lower triangular subalgebra $U_{q}^{-}(\mathfrak{g})$ of $U_{q}(\mathfrak{g})$.

Besides character formulas, crystals are used to derive combinatorial formulas for decomposing tensor products of irreducible representations, as well as their inductions and restrictions.

We are interested in the partially ordered set structure on a \mathfrak{g}-crystal, called a crystal poset, which is defined by its cover relations $b \lessdot b^{\prime}$ with $b^{\prime}=f_{i}(b)$ for some i. The crystal poset $B(\lambda)$ always has a minimum $\hat{0}$, satisfying $w t(\hat{0})=\lambda$. On the other hand, the maximum $\hat{1}$ only exists in the finite case, in which case we have $\mathrm{wt}(\hat{1})=w_{0} \lambda$, where w_{\circ} is the longest element of the corresponding (finite) Weyl group. Note that this convention is opposite to the one in representation theory, where the minimum and maximum here are the so-called highest and lowest weight vertices of the \mathfrak{g}-crystal, respectively. We will study crystal posets using poset theoretic techniques. See Section 2.7 or see [33] for further background on posets.

Remarks 2.2. (1) Based on the weight function, it is easy to see that the crystal posets are graded. In addition, all the maximal chains in a given crystal poset interval have the same multiset of edge labels. We will use these facts implicitly.
(2) Finite type \mathfrak{g}-crystals are self-dual posets. More specifically, there is the so-called Lusztig involution S on the \mathfrak{g}-crystal, with the property:

$$
S\left(f_{i}(b)\right)=e_{i^{*}}(S(b)),
$$

where $i \mapsto i^{*}$ is the permutation of the simple roots determined by the longest Weyl group element: $w_{\circ}\left(\alpha_{i}\right)=-\alpha_{i^{*}}$.
(3) One subtlety deserving particular attention is that the crystal posets are not always lattices; see Example 7.4.
(4) Besides the highest weight crystals considered in this paper, there are other types of crystals. For instance, we have the Kirillov-Reshetikhin (KR) crystals for affine Lie algebras, which are finite, as opposed to the affine highest weight crystals. However, the KR crystals do not have a poset structure.
2.2. Characterization of \mathfrak{g}-crystals. We recall Stembridge's local characterization of \mathfrak{g} crystals in the case of simply laced root systems [36], as well as a similar partial result for doubly laced \mathfrak{g}-crystals appearing in [37], cf. also [5].

We start with some notation. As usual, we denote by $a_{i j}$ the entries of the corresponding Cartan matrix, i.e., $a_{i j}=\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle$. Recalling the notions of i-depth and i-rise introduced in Section 2.1, we will use the symbol Δ_{i} as follows:
$\Delta_{i} \delta(b, j):=\delta\left(b^{\prime}, j\right)-\delta(b, j)$ and $\Delta_{i} \varepsilon(b, j):=\varepsilon\left(b^{\prime}, j\right)-\varepsilon(b, j), \quad$ whenever $\quad b^{\prime}:=e_{i}(b) \neq \mathbf{0}$.
Likewise, we set
$\nabla_{i} \delta(b, j):=\delta(b, j)-\delta\left(b^{\prime}, j\right)$ and $\quad \nabla_{i} \varepsilon(b, j):=\varepsilon(b, j)-\varepsilon\left(b^{\prime}, j\right), \quad$ whenever $\quad b^{\prime}:=f_{i}(b) \neq \mathbf{0}$.
In addition to axioms (P1) and (P2) in Definition 2.1, Stembridge introduced the following axioms (P3)-(P6). For (P3) and (P4), we assume that $e_{i}(b) \neq \mathbf{0}$, whereas for (P5) and (P6) we assume that $e_{i}(b) \neq \mathbf{0}$ and $e_{j}(b) \neq \mathbf{0}$.
(P3) $\Delta_{i} \delta(b, j)+\Delta_{i} \varepsilon(b, j)=a_{i j}$ for all $i, j \in I$.
(P4) $\Delta_{i} \delta(b, j) \leq 0$ and $\Delta_{i} \varepsilon(b, j) \leq 0$ for all $i \neq j$.
(P5) $\Delta_{i} \delta(b, j)=0$ implies $e_{i} e_{j}(b)=e_{j} e_{i}(b)$ and $\nabla_{j} \varepsilon\left(b^{\prime}, i\right)=0$ where $b^{\prime}:=e_{i} e_{j}(b)=e_{j} e_{i}(b)$.
(P6) $\Delta_{i} \delta(b, j)=\Delta_{j} \delta(b, i)=-1$ implies $e_{i} e_{j}^{2} e_{i}(b)=e_{j} e_{i}^{2} e_{j}(b)$ and $\nabla_{i} \varepsilon\left(b^{\prime}, j\right)=\nabla_{j} \varepsilon\left(b^{\prime}, i\right)=$ -1 where $b^{\prime}:=e_{i} e_{j}^{2} e_{i}(b)=e_{j} e_{i}^{2} e_{j}(b)$.
Stembridge also formulated axioms ($\mathrm{P} 5^{\prime}$) and ($\mathrm{P} 6^{\prime}$) by replacing e_{i} with f_{i}; these axioms are equivalent to (P5) and (P6).

Theorem 2.3. [36] Axioms (P1)-(P6) hold for any \mathfrak{g}-crystal. These axioms characterize \mathfrak{g}-crystals in the case of simply laced root systems.

In simply laced types we have $a_{i j} \in\{0,-1\}$ for $i \neq j$, so (P3) and (P4) allow for only three possibilities:

$$
\left(a_{i j}, \Delta_{i} \delta(b, j), \Delta_{i} \varepsilon(b, j)\right)=(0,0,0),(-1,-1,0),(-1,0,-1)
$$

Thus, the local structure is controlled by (P5) and (P6), cf. the corollary below which also motivates Definition 4.1 later in the paper.

Corollary 2.4. For any cover relations $u \xrightarrow{i} v$ and $u \xrightarrow{j} w$ with $i \neq j$ in a simply laced \mathfrak{g}-crystal, we have one of the following two cases:
(i) there is x which covers both v and w with $v \xrightarrow{j} x$ and $w \xrightarrow{i} x$;
(ii) there are saturated chains $v \xrightarrow{j} v_{1} \xrightarrow{j} v_{2} \xrightarrow{i} x$ and $w \xrightarrow{i} w_{1} \xrightarrow{i} w_{2} \xrightarrow{j} x$, and no other such chains of length at most 3 .

Stembridge proposed a larger set of axioms which conjecturally characterize doubly laced \mathfrak{g}-crystals; namely, in addition to the expressions of length 2 and 4 in (P5) and (P6), there are similar expressions of length 5 and 7 . Sternberg [37] showed that these axioms are indeed satisfied by doubly laced \mathfrak{g}-crystals, so we have the following analogue of Corollary 2.4; see also [5].

Corollary 2.5. For any cover relations $u \xrightarrow{i} v$ and $u \xrightarrow{j} w$ with $i \neq j$ in a doubly laced \mathfrak{g}-crystal, there is an upper bound x of v and w in the label $\{i, j\}$-restricted subposet, with $d:=\operatorname{rank}(x)-\operatorname{rank}(u) \in\{2,4,5,7\}$. In each case, we have a complete description of all the saturated chains from v and w to x, while no similar chains of length at most $d-1$ exist (when $d \in\{2,4\}$, we have precisely the cases in Corollary 2.4).

Remarks 2.6. (1) The results of Stembridge and Sternberg mentioned above, for simply and doubly laced \mathfrak{g}-crystals, include all the corresponding finite, affine, and twisted affine cases. The only such \mathfrak{g}-crystals not covered are the triply laced ones. Calculations show that these are much more complex, involving over 40 local moves.
(2) As a word of caution, these results of Stembridge above do not guarantee that the upper (or lower) bound described in his results will be the unique least upper bound or greatest lower bound. Indeed, we construct an example of a crystal that is not a lattice in Example 7.4. The existence of such examples is what makes possible the more extensive array of relations among crystal operators constructed e.g. in Section 7, in spite of Stembridge's results.

For simplicity, from now on we will refer to \mathfrak{g}-crystals simply as crystals.
2.3. The tableau model for crystals of type A_{n-1}. In this case, a dominant weight λ can be viewed as a partition $\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n-1} \geq 0\right)$, or as the corresponding Young diagram. The vertices of $B(\lambda)$ can be indexed by all the semistandard Young tableaux (SSYT) of shape λ with entries in $[n]:=\{1, \ldots, n\}$ (i.e., the entries in the boxes of λ are weakly increasing in rows and strictly increasing in columns).

We will now describe the crystal operators on SSYT in terms of the so-called signature rule, which is just a translation of the well-known tensor product rule for arbitrary crystals [12]. To apply f_{i} (or e_{i}) on T in $B(\lambda)$, consider the word with letters i and $i+1$ formed by
recording these letters in the columns of T, which are scanned from left to right and bottom to top. We replace the letter i with the symbol + and the letter $i+1$ with - . Then, we remove from our binary word adjacent pairs -+ , as long as this is possible. At the end of this process, we are left with a word

called the i-signature of T.
Definition 2.7. (1) If $y>0$, then $e_{i}(T)$ is obtained by replacing in T the letter $i+1$ which corresponds to the leftmost - in $\rho_{i}(T)$ with the letter i. If $y=0$, then $e_{i}(T)=\mathbf{0}$.
(2) If $x>0$, then $f_{i}(T)$ is obtained by replacing in T the letter i which corresponds to the rightmost + in $\rho_{i}(T)$ with the letter $i+1$. If $x=0$, then $f_{i}(T)=\mathbf{0}$.

Example 2.8. Let $n=4$, and $T=$\begin{tabular}{|l|l|l|l|l|l|}
\hline 1 \& 2 \& 2 \& 2 \& 2 \& 3

3 \& 3 \& 4 \& \& \&

\hline

 , with 2 -signature ++ . So we have $f_{2}(T)=$

\hline 1 \& 2 \& 2 \& 2 \& 3 \& 3

\hline 3 \& 3 \& 4 \& \& \&

\hline
\end{tabular}.

2.4. Finite root systems. Let \mathfrak{g} be a complex semisimple Lie algebra, and \mathfrak{h} a Cartan subalgebra, whose rank is r. Let $\Phi \subset \mathfrak{h}^{*}$ be the corresponding irreducible root system, $\mathfrak{h}_{\mathbb{R}}^{*} \subset \mathfrak{h}^{*}$ the real span of the roots, and $\Phi^{+} \subset \Phi$ the set of positive roots. Let $\Phi^{-}:=\Phi \backslash \Phi^{+}$. For $\alpha \in \Phi$ we will say that $\alpha>0$ if $\alpha \in \Phi^{+}$, and $\alpha<0$ if $\alpha \in \Phi^{-}$. The sign of the root α, denoted $\operatorname{sgn}(\alpha)$, is defined to be 1 if $\alpha \in \Phi^{+}$, and -1 otherwise. Let $|\alpha|=\operatorname{sgn}(\alpha) \alpha$. Let $\rho:=\frac{1}{2}\left(\sum_{\alpha \in \Phi^{+}} \alpha\right)$. Let $\alpha_{1}, \ldots, \alpha_{r} \in \Phi^{+}$be the corresponding simple roots, and $s_{i}:=s_{\alpha_{i}}$ the corresponding simple reflections; the indexing set $\{1, \ldots, r\}$ for the simple roots is traditionally denoted I. We denote by $\langle\cdot, \cdot\rangle$ the nondegenerate scalar product on $\mathfrak{h}_{\mathbb{R}}^{*}$ induced by the Killing form. Given a root α, we consider the corresponding coroot $\alpha^{\vee}:=2 \alpha /\langle\alpha, \alpha\rangle$ and reflection s_{α}.

Let W be the corresponding Weyl group. The length function on W is denoted by $\ell(\cdot)$. The longest element of W is denoted by $w_{\circ}(I)$ or just w_{\circ}; we have $\ell\left(w_{\circ}\right)=\left|\Phi^{+}\right|$(where $|\cdot|$ denotes cardinality), which is traditionally denoted N. A reduced expression $s_{i_{1}} \ldots s_{i_{N}}$ for w_{\circ} determines a so-called reflection order $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)$ on the positive roots Φ^{+}, where $\beta_{j}=s_{i_{1}} \ldots s_{i_{j-1}}\left(\alpha_{i_{j}}\right)$. The Bruhat order on W, sometimes called the strong Bruhat order, is defined by its covers $w \lessdot w s_{\alpha}$, for $\alpha \in \Phi^{+}$, if $\ell\left(w s_{\alpha}\right)=\ell(w)+1$; we write $w \xrightarrow{\alpha} w s_{\alpha}$ for the corresponding edge of the Hasse diagram. The strong Bruhat order may equivalently be defined via cover relations $w \lessdot s_{\alpha} w$ for $\ell\left(s_{\alpha} w\right)=\ell(w)+1$, yielding the same poset.

The weight lattice Λ is given by

$$
\begin{equation*}
\Lambda:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}:\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z} \text { for any } \alpha \in \Phi\right\} \tag{3}
\end{equation*}
$$

The weight lattice Λ is generated by the fundamental weights $\omega_{1}, \ldots \omega_{r}$, which form the dual basis to the basis of simple coroots, i.e., $\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}$. The set Λ^{+}of dominant weights is given by

$$
\begin{equation*}
\Lambda^{+}:=\left\{\lambda \in \Lambda:\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0 \text { for any } \alpha \in \Phi^{+}\right\} \tag{4}
\end{equation*}
$$

A dominant weight is called regular if it is not on the walls of the dominant chamber, i.e., if $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \neq 0$ for all simple roots α_{i}; otherwise, it is called non-regular.

For $J \subseteq I=\{1, \ldots, r\}$, we let W_{J}, Φ_{J}, and $w_{\circ}(J)$ be the corresponding parabolic subgroup of W, its root system, and its longest element, respectively.

Given $\alpha \in \Phi$ and $k \in \mathbb{Z}$, we denote by $s_{\alpha, k}$ the reflection in the affine hyperplane

$$
\begin{equation*}
H_{\alpha, k}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}:\left\langle\lambda, \alpha^{\vee}\right\rangle=k\right\} \tag{5}
\end{equation*}
$$

These reflections generate the affine Weyl group $W_{\text {aff }}$ for the dual root system $\Phi^{\vee}:=\left\{\alpha^{\vee}: \alpha \in \Phi\right\}$. The hyperplanes $H_{\alpha, k}$ divide the real vector space $\mathfrak{h}_{\mathbb{R}}^{*}$ into open regions, called alcoves. The fundamental alcove A_{\circ} is given by

$$
\begin{equation*}
A_{\circ}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}: 0<\left\langle\lambda, \alpha^{\vee}\right\rangle<1 \text { for all } \alpha \in \Phi^{+}\right\} \tag{6}
\end{equation*}
$$

2.5. The alcove model for crystals. We now review the alcove model [20, 21] for crystals. This model was formulated in [21] in the level of generality of symmetrizable Kac-Moody algebras, but we restrict here to the case of finite root systems, i.e., to crystals corresponding to the semisimple Lie algebras.

We say that two alcoves are adjacent if they are distinct and have a common wall. Given a pair of adjacent alcoves A and B, we write $A \xrightarrow{\beta} B$ if the common wall is of the form $H_{\beta, k}$ and the root $\beta \in \Phi$ points in the direction from A to B.

Definition 2.9. [20] An alcove path is a sequence of alcoves $\left(A_{0}, A_{1}, \ldots, A_{m}\right)$ such that A_{j-1} and A_{j} are adjacent, for $j=1, \ldots m$. We say that an alcove path is reduced if it has minimal length among all alcove paths from A_{0} to A_{m}.

Let $A_{\lambda}=A_{\circ}+\lambda$ be the translation of the fundamental alcove A_{\circ} by the weight λ.
Definition 2.10. [20] The sequence of roots $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ is called a λ-chain if

$$
A_{0}=A_{\circ} \xrightarrow{-\beta_{2}} A_{1} \xrightarrow{-\beta_{2}} \cdots \xrightarrow{-\beta_{m}} A_{m}=A_{-\lambda}
$$

is a reduced alcove path.
We now fix a dominant weight λ and an alcove path $\Pi=\left(A_{0}, \ldots, A_{m}\right)$ from $A_{0}=A_{\text {。 }}$ to $A_{m}=A_{-\lambda}$. Note that Π is determined by the corresponding λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$, which consists of positive roots. We let $r_{i}:=s_{\beta_{i}}$, and let $\widehat{r_{i}}$ be the affine reflection in the hyperplane containing the common face of A_{i-1} and A_{i}, for $i=1, \ldots, m$; in other words, $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$, where $l_{i}:=\left|\left\{j<i: \beta_{j}=\beta_{i}\right\}\right|$.

Let $F=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\}$ be a subset of $[m]$. The elements of F are called folding positions for the reason which we now explain. We "fold" Π in the hyperplanes corresponding to these positions, namely $H_{\beta_{k},-l_{k}}$ with $k=j_{s}, j_{s-1}, \ldots, j_{1}$ in this order, each time applying the corresponding affine reflection to the tail of the current sequence of alcoves, viewed as a "folded path"; see [21] for more details. Like Π, the final folded path can be recorded by a sequence of roots, namely $\Gamma(F)=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)$, where

$$
\begin{equation*}
\gamma_{k}:=r_{j_{1}} r_{j_{2}} \ldots r_{j_{p}}\left(\beta_{k}\right) \tag{7}
\end{equation*}
$$

with j_{p} the largest folding position less than k. We define $\gamma_{\infty}:=r_{j_{1}} r_{j_{2}} \ldots r_{j_{s}}(\rho)$. Upon folding, the hyperplane separating the alcoves A_{k-1} and A_{k} in Π is mapped to

$$
\begin{equation*}
H_{\left|\gamma_{k}\right|,-l_{k}^{J}}=\widehat{r}_{j_{1}} \widehat{r}_{j_{2}} \ldots \widehat{r}_{j_{p}}\left(H_{\beta_{k},-l_{k}}\right), \tag{8}
\end{equation*}
$$

for some l_{k}^{J}, which is defined by this relation.
Definition 2.11. (1) A subset $F=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\} \subseteq[m]$ (possibly empty) is an admissible subset if we have the following saturated chain in the strong Bruhat order on W :

$$
\begin{equation*}
1 \xrightarrow{\beta_{j_{1}}} r_{j_{1}} \xrightarrow{\beta_{j_{2}}} r_{j_{1}} r_{j_{2}} \xrightarrow{\beta_{j_{3}}} \cdots \xrightarrow{\beta_{j_{s}}} r_{j_{1}} r_{j_{2}} \cdots r_{j_{s}} . \tag{9}
\end{equation*}
$$

We call $\Gamma(F)$ an admissible folding.
(2) Given F as above, we let

$$
\mu(F):=-\widehat{r}_{j_{1}} \widehat{r}_{j_{2}} \ldots \widehat{r}_{j_{s}}(-\lambda), \quad \kappa(F):=r_{j_{1}} r_{j_{2}} \ldots r_{j_{s}}
$$

and call them the weight and the key of F, respectively.
We let $\mathcal{F}(\Gamma)$ be the collection of admissible subsets; when Γ is fixed, like for the rest of this section, we also use the notation $\mathcal{F}(\lambda)$.

We now define the crystal operators on $\mathcal{F}(\lambda)$. Given $F \subseteq[m]$ and $\alpha \in \Phi^{+}$, we will use the following notation:

$$
I_{\alpha}=I_{\alpha}(F):=\left\{i \in[m]: \gamma_{i}= \pm \alpha\right\}, \quad \widehat{I}_{\alpha}=\widehat{I}_{\alpha}(F):=I_{\alpha} \cup\{\infty\}
$$

and $l_{\alpha}^{\infty}:=\left\langle\mu(F), \alpha^{\vee}\right\rangle$. The following graphical representation of the heights l_{i}^{F} for $i \in I_{\alpha}$ and l_{α}^{∞} is useful for defining the crystal operators. Let

$$
\widehat{I}_{\alpha}=\left\{i_{1}<i_{2}<\cdots<i_{n}<i_{n+1}=\infty\right\} \quad \text { and } \varepsilon_{i}:=\left\{\begin{array}{rl}
1 & \text { if } i \notin F \\
-1 & \text { if } i \in F
\end{array} .\right.
$$

Given a positive root α, we define the continuous piecewise-linear function $g_{\alpha}:\left[0, n+\frac{1}{2}\right] \rightarrow \mathbb{R}$ by

$$
g_{\alpha}(0)=-\frac{1}{2}, \quad g_{\alpha}^{\prime}(x)= \begin{cases}\operatorname{sgn}\left(\gamma_{i_{k}}\right) & \text { if } x \in\left(k-1, k-\frac{1}{2}\right), k=1, \ldots, n \tag{10}\\ \varepsilon_{i_{k}} \operatorname{sgn}\left(\gamma_{i_{k}}\right) & \text { if } x \in\left(k-\frac{1}{2}, k\right), k=1, \ldots, n \\ \operatorname{sgn}\left(\left\langle\gamma_{\infty}, \alpha^{\vee}\right\rangle\right) & \text { if } x \in\left(n, n+\frac{1}{2}\right) .\end{cases}
$$

It was proved in [21] that

$$
\begin{equation*}
l_{i_{k}}^{J}=g_{\alpha}\left(k-\frac{1}{2}\right), k=1, \ldots, n, \text { and } l_{\alpha}^{\infty}:=\left\langle\mu(F), \alpha^{\vee}\right\rangle=g_{\alpha}\left(n+\frac{1}{2}\right) . \tag{11}
\end{equation*}
$$

We will need the following properties of admissible subsets, relative to a simple root α, which will be used implicitly. Note first that the function g_{α} is determined by the sequence $\left(\sigma_{1}, \ldots, \sigma_{n+1}\right)$, where $\sigma_{j}=\left(\sigma_{j, 1}, \sigma_{j, 2}\right):=\left(\operatorname{sgn}\left(\gamma_{i_{j}}\right), \varepsilon_{i_{j}} \operatorname{sgn}\left(\gamma_{i_{j}}\right)\right)$ for $1 \leq j \leq n$, and $\sigma_{n+1}=$ $\sigma_{n+1,1}:=\operatorname{sgn}\left(\left\langle\gamma_{\infty}, \alpha^{\vee}\right\rangle\right)$. It was proved in [21] that we have the following restrictions:
(C1) $\sigma_{1,1}=1$.
(C2) $\sigma_{j} \in\{(1,1),(-1,-1),(1,-1)\}$ for $j \leq n$.
(C3) $\sigma_{j, 2}=1 \Rightarrow \sigma_{j+1,1}=1$.
These restrictions imply that if g_{α} attains its maximum M at x, then $M \in \mathbb{Z}_{\geq 0}, x=m+\frac{1}{2}$ for $0 \leq m \leq n$, and $\sigma_{m+1} \in\{(1,-1), 1\}$.

We will now define the crystal operators on an admissible subset F. Fix p in $\{1, \ldots, r\}$, so α_{p} is a simple root. Let $M=M(F, p) \geq 0$ be the maximum of $g_{\alpha_{p}}$ corresponding to F. Assuming that $M>0$, let m be the minimum index i in $\widehat{I}_{\alpha_{p}}$ for which we have $l_{i}^{J}=M$ (cf. the remarks above). We have either $m \in F$ or $m=\infty$; furthermore, m has a predecessor k in $\widehat{I}_{\alpha_{p}}$, and it turns out that $k \notin F$. We define

$$
f_{p}(F):= \begin{cases}(F \backslash\{m\}) \cup\{k\} & \text { if } M>0 \tag{12}\\ 0 & \text { otherwise }\end{cases}
$$

Now we define e_{p}. Again let M be the maximum of $g_{\alpha_{p}}$. Assuming that $M>\left\langle\mu(F), \alpha_{p}^{\vee}\right\rangle$, let k be the maximum index i in $I_{\alpha_{p}}$ for which we have $l_{i}^{J}=M$, which always exists. Let m be the successor of k in $\widehat{I}_{\alpha_{p}}$. It turns out that $k \in F$, and either $m \notin F$ or $m=\infty$. Define

$$
e_{p}(F):= \begin{cases}(F \backslash\{k\}) \cup\{m\} & \text { if } M>\left\langle\mu(F), \alpha_{p}^{\vee}\right\rangle \tag{13}\\ 0 & \text { otherwise } .\end{cases}
$$

In the above definitions, we use the convention that $F \backslash\{\infty\}=F \cup\{\infty\}=F$.
It was shown in [21] that, whenever $f_{p}(F)$ and $e_{p}(F)$ are not equal to $\mathbf{0}$, they are also admissible subsets. The main result of [21], cf. also [18], is that the combinatorially defined crystal $\mathcal{F}(\lambda)$ is isomorphic to the crystal corresponding to the highest weight representation $V(\lambda)$; we stress that this is true for any λ-chain. We will also need the following expressions of the rise and the depth (see Section 2.1) in terms of the alcove model, based on the above notation:

$$
\begin{equation*}
\varepsilon(F, p)=M(F, p), \quad \delta(F, p)=\left\langle\mu(F), \alpha_{p}^{\vee}\right\rangle-M(F, p) . \tag{14}
\end{equation*}
$$

2.6. The key of a crystal. Let us now discuss the (right) key, viewed as a map from the crystal to the Weyl group W. More specifically, it is a poset map to the left weak Bruhat order. Recall that the left weak Bruhat order is defined by its cover relations $w \lessdot s_{i} w$ which holds whenever $\ell\left(s_{i} w\right)>\ell(w)$. In what follows, the context will always specify whether we refer to the strong or the left weak Bruhat order.

The (right) key was first defined in type A by Lascoux and Schützenberger [17] as a special SSYT (with the entries in each column contained in the previous one) associated to an arbitrary SSYT of the same shape λ. This can be viewed in a natural way as a permutation in S_{n}^{λ}, that is, the subset of S_{n} consisting of lowest coset representatives modulo the stabilizer of λ. The construction is in terms of the corresponding plactic monoid. See also [28].

The key was later defined in arbitrary symmetrizable Kac-Moody type in terms of the model for crystals based on Lakshmibai-Seshadri (LS) paths [23]. Here it is known as the initial direction of a path. In the alcove model (in the finite case), the key appears in Definition $2.11(2)$; we will use the notation there, namely $\kappa(b)$ is the key of a crystal vertex b. It is not hard to see that the chain (9) consists of lowest coset representatives modulo the stabilizer W_{λ} of λ, so the key map takes values in this set, denoted W^{λ}.

The importance of the key lies in the fact that it describes the Demazure subcrystal $B_{w}(\lambda)$ as consisting of those vertices b in $B(\lambda)$ with $\kappa(b) \leq w$ in strong Bruhat order. In other words, the key of b in $B(\lambda)$ can be interpreted as giving the smallest Demazure subcrystal $B_{w}(\lambda)$ of $B(\lambda)$ containing b. We immediately get a combinatorial formula for Demazure characters generalizing (1).

The following two properties of the key map, which hold in symmetrizable Kac-Moody generality, are well-known, see [23, Lemma 5.3] and the discussion below. First, if $f_{p}(F) \neq \mathbf{0}$, then

$$
\kappa\left(f_{p}(F)\right)= \begin{cases}\kappa(F) & \text { if } e_{p}(F) \neq \mathbf{0} \tag{15}\\ s_{p} \kappa(F) \text { or } \kappa(F) & \text { if } e_{p}(F)=\mathbf{0}\end{cases}
$$

Secondly, if $e_{p}(F)=\mathbf{0}$, then

$$
\begin{equation*}
s_{p} \kappa(F)>\kappa(F) . \tag{16}
\end{equation*}
$$

Remark 2.12. Properties (15) and (16) immediately imply that the key map is a projection from the crystal poset to the left weak Bruhat order on W, and in particular is a poset map - a property we will make extensive use of later.

It is not immediately clear that, without a model for the crystal, one can distinguish between the two cases in (15) corresponding to a vertex at the beginning of a p-string, i.e., that a recursive construction of the key map based only on the crystal structure exists. In Section 3, we will develop and justify such a construction that does not refer to the choice of a model, by expressing the key exclusively in terms of the crystal structure (i.e. the poset equipped with an edge coloring for its cover relations). We should note that there are easy criteria in terms of various models for deciding which case we are in, when we wish to apply (15); for instance, in the alcove model, f_{p} changes the key if and only if $m=\infty$ (expressed in terms of the notation above).

Some further references to the literature on the key map are needed at this point. In [21], the LS path model (as a crystal isomorphism) is bijected to the alcove model corresponding to a particular λ-chain, called the lex λ-chain; this bijection maps the initial direction of a path to the key. In [18] the second author showed that the alcove model is independent of the choice of λ-chain, and exhibited crystal isomorphisms between any two (combinatorial) crystals $\mathcal{F}(\Gamma)$; the second author also showed that these isomorphisms are compatible with the key. In type A, in [19], an explicit crystal isomorphism is constructed, called the filling map, between the alcove model for a particular λ-chain (not the lex one) and the model based on SSYT. The filling map leads to an easy construction of the key of a SSYT, see [19]. Willis [38] showed that the filling map is compatible with the keys (where on the SSYT side we use the right key of Lascoux-Schützenberger, see Section 2.3). In fact, an efficient construction of the right key of a SSYT, called the scanning method, was given earlier by Willis (see [38]), and shown in [38] to be closely related to the method mentioned above, related to the filling map.

Now we turn to the dual notion of left key. Lascoux and Schützenberger also defined the left key of a SSYT. A vast generalization of it, in the symmetrizable Kac-Moody setup, is the final direction of an LS path [23]. In a similar way to the initial direction, the final one detects membership in an opposite Demazure crystal (see Section 2.1). We now recall from [18] the construction of the left key for the alcove model (in the finite case), that is, the image of the final direction of an LS path under the bijection between LS paths and the alcove model mentioned in the previous paragraph. We always refer to the left key by the full name (to distinguish it from the key $\kappa(\cdot)$), and we denote it by $\bar{\kappa}(\cdot)$.

We now use the finite case setup in Section 2.5. We fix a dominant weight λ, an index set $I:=\{\overline{1}<\ldots<\bar{q}<1<\ldots<m\}$, and a corresponding λ-chain $\Gamma:=\left(\beta_{\overline{1}}, \ldots, \beta_{\bar{q}}, \beta_{1}, \ldots, \beta_{m}\right)$ such that $l_{i}=0$ if and only if $i \in \bar{I}:=\{\overline{1}<\ldots<\bar{q}\}$. In other words, the second occurrence of a root can never be before the first occurence of another root. We recall the notation $r_{i}:=s_{\beta_{i}}$ for $i \in I$.

Definition 2.13. Let F be an admissible subset (with respect to the special λ-chain Γ above). Let $F \cap \bar{I}=\left\{\bar{\jmath}_{1}<\ldots<\bar{\jmath}_{a}\right\}$. The left key $\bar{\kappa}(F)$ of F is the Weyl group element defined by

$$
\bar{\kappa}(F):=r_{\bar{\jmath}_{1}} \ldots r_{\bar{\jmath}_{a}} .
$$

We clearly have $\bar{\kappa}(F) \leq \kappa(F)$ (in strong Bruhat order) and, like $\kappa(F)$, the left key $\bar{\kappa}(F)$ also belongs to W^{λ}. By [18, Corollary 6.2], the Lusztig involution (see Remark 2.2 (2))
relates the left and the right key as follows; here $\lfloor w\rfloor$ denotes the lowest representative of the coset $w W_{\lambda}$, and $w_{\circ}(\lambda)$ the longest element of W_{λ}.
Theorem 2.14. [18] For any admissible subset F, we have

$$
\bar{\kappa}(S(F))=\left\lfloor w_{\circ} \kappa(F)\right\rfloor=w_{\circ} \kappa(F) w_{\circ}(\lambda), \quad \kappa(S(F))=\left\lfloor w_{\circ} \bar{\kappa}(F)\right\rfloor=w_{\circ} \bar{\kappa}(F) w_{\circ}(\lambda) .
$$

2.7. Posets and poset topology. A partially ordered set (poset) is generated by cover relations or covers, denoted $u \lessdot v$ or $u \prec v$, namely ordered pairs (u, v) satisfying $u \leq v$ where $u \leq z \leq v$ implies $z=u$ or $z=v$. A saturated chain from u to v is a series of cover relations $u=u_{0} \lessdot u_{1} \lessdot \cdots \lessdot u_{k}=v$. A finite poset is graded if for each $u \leq v$, all saturated chains from u to v have the same number of cover relations, with this number called the rank of the interval. An open interval, denoted (u, v), in a poset P is the subposet comprised of elements z satisfying $u<z<v$, while the closed interval $[u, v]$ is the subposet of elements z satisfying $u \leq z \leq v$. When a poset has a unique minimal element, we denote this by $\hat{0}$, while the unique maximal element, when it exists, is denoted $\hat{1}$.

Recall that the Möbius function $\mu_{P}(x, y)$ of a partially ordered set (poset) P is defined recursively as follows: $\mu_{P}(x, x)=1$ for $x \in P$ and $\mu_{P}(x, y)=-\sum_{x \leq z<y} \mu_{P}(x, z)$ for each $x<y$. Sometimes we simply write $\mu(x, y)$ suppressing the P when it is clear from context which poset is intended. The order complex $\Delta(P)$ of a poset P is the abstract simplicial complex whose i-dimensional faces are the chains $x_{0}<x_{1}<\cdots<x_{i}$ of comparable elements in P. Denote by $|\Delta(P)|$ a geometric realization of $\Delta(P)$. Let $\Delta_{P}(x, y)$, again with the P sometimes suppressed, denote the order complex of the subposet (x, y) comprising the open interval from x to y.

One reason for interest in poset order complexes is the interpretation of the Möbius function given by $\mu_{P}(x, y)=\tilde{\chi}\left(\Delta_{P}(x, y)\right)$ (cf. [29]). Thus, proving that $\Delta_{P}(x, y)$ is homotopy equivalent to a ball or a sphere will imply that $\mu_{P}(x, y)$ must equal either 0 (in the case of a ball) or ± 1 in the case of a sphere. The face poset $F(\Delta)$ of a simplicial complex Δ is the partial order on the faces of Δ by inclusion of the associated sets of vertices comprising the faces. See e.g. [33] for further background regarding posets and their Möbius functions.

A poset map is a map $f: P \rightarrow Q$ from a poset P to a poset Q such that $x \leq y$ in P implies $f(x) \leq f(y)$ in Q. In this paper, the main poset map of interest will be the key, regarded as a poset map from a crystal to the weak Bruhat order. The next result, due to Quillen, appears in [27].
Theorem 2.15 (Quillen Fiber Lemma). For $f: P \rightarrow Q$ a poset map such that $f_{\leq x}^{-1}=\{z \in$ $P: f(z) \leq x\}$ is contractible for each $x \in Q$, then $\Delta(P)$ is homotopy equivalent to $\Delta(Q)$.

A sufficient condition for contractibility is that $f^{-1}(x)$ has a unique maximal element for each $x \in Q$. One point requiring case is that we are typically studying the topology of an open interval in a poset, which means there is not a maximal element or a minimal element in one or both of the posets P and Q between which we construct a map.
Remark 2.16. The Quillen fiber lemma also has a dualized version with $f_{\leq x}^{-1}$ replaced by $f_{\geq x}^{-1}$ throughout, reflecting the fact that the order complex of a poset is the same abstract simplicial complex as the order complex of the dual poset.

3. A NEW RECURSIVE ALGORITHM TO CALCULATE THE KEY

In this section, we develop a recursive approach to calculating the (right) key map directly from the crystal graph, which works in the level of generality of symmetrizable Kac-Moody
algebras. This algorithm proceeds from lower to higher ranks in the poset, assuming the key is known for all lower ranks and then showing how to deduce it for the next rank. This algorithm and the proof of its validity will rely on the following properties of the key map, which we treat here as axioms:
(1) $\kappa(\hat{0})=1$;
(2) for each u that covers $\hat{0}$, we have $\kappa(u)=s_{i}$ where i is the color on the cover relation from $\hat{0}$ to u;
(3) property (16) from Section 2.6, namely that $e_{j}(u)=\mathbf{0}$ implies $s_{j} \kappa(u)>\kappa(u)$;
(4) property (15) from Section 2.6, which together with (3) implies that κ is a poset map.

Axiom (2) is immediate, either based on a combinatorial model (like the alcove model) or the representation-theoretic interpretation of the key in terms of Demazure subcrystals (see Section 2.6).

Other facts that follow are listed below.
Lemma 3.1. If both u and u^{\prime} are covered by v with $\kappa(u) \neq \kappa\left(u^{\prime}\right)$, then $\kappa(v)=\kappa(u) \vee \kappa\left(u^{\prime}\right)$ where this join is taken in the weak order. In particular, if the length of $\kappa(u)$ is less than the length of $\kappa\left(u^{\prime}\right)$ then $\kappa(v)=\kappa\left(u^{\prime}\right)$, and on the other hand if $\kappa(u)$ has the same length as $\kappa\left(u^{\prime}\right)$ then $\kappa(v)$ must have length one more than each of these.

Proof. This follows from κ being a poset map.
Lemma 3.2. If both u and u^{\prime} are covered by v with $\kappa(u)=\kappa\left(u^{\prime}\right)$ then $\kappa(v)=\kappa(u)=\kappa\left(u^{\prime}\right)$.
Proof. If $\kappa(v)>\kappa(u)=\kappa\left(u^{\prime}\right)$ then $\kappa(v)=s_{i} \kappa(u)=s_{j} \kappa\left(u^{\prime}\right)=s_{j} \kappa(u)$ where the cover relation from u to v is colored i and the cover relation from u^{\prime} to v is colored j, but this is a contradiction since $s_{i} \kappa(u)$ does not equal $s_{j} \kappa(u)$ for $i \neq j$.

Lemma 3.3. Suppose u is covered by v and there are no other elements u^{\prime} also covered by v. Let j be the color of the cover relation from u to v. Then $\kappa(v)=\kappa(u)$ if $e_{j}(u) \neq \mathbf{0}$, while $\kappa(v)=s_{j} \kappa(u)$ otherwise.

Proof. Since u is the only element covered by v, we have $s_{i} \kappa(v)>k(v)$ for all $i \neq j$, by (16). If $e_{j}(u) \neq \mathbf{0}$, then $\kappa(v)=\kappa(u)$ by (15), so consider the case when $e_{j}(u)=\mathbf{0}$. Assume for contradiction that $\kappa(v)=\kappa(u)$ (recall that we want to prove the opposite in this case, namely $\left.\kappa(v)=s_{j} \kappa(u)\right)$. Using (16) again and the above assumptions, specifically using the assumption that $\kappa(v)=\kappa(u)$, we deduce $s_{j} \kappa(v)>\kappa(v)$. We conclude that $\kappa(v)=1$, so $v=\hat{0}$ (by the above axioms), which is a contradiction.

Putting together these lemmas yields the desired algorithm:
Theorem 3.4. The key is fully determined by the crystal via the following rules:
(1) $\kappa(\hat{0})=1$;
(2) $\kappa(a)=s_{i}$ for each atom a with cover relation $\hat{0} \lessdot a$ colored i;
(3) $\kappa(v)=\vee_{\{u \mid u<v\}} \kappa(u)$ with join taken in the left weak Bruhat order, provided that v covers two or more elements;
(4) $\kappa(v)=\kappa(u)$ if u is the unique element of the crystal covered by v, provided that the cover relation $u \lessdot v$ is colored i and there is also a cover relation $u^{\prime} \lessdot u$ colored i;
(5) $\kappa(v)=s_{i} \kappa(u)$ if u is the unique element of the crystal covered by v, provided that the cover relation $u \lessdot v$ is colored i while there are no cover relations $u^{\prime} \lessdot u$ colored i.

Corollary 3.5. Axioms (1)-(4) determine the key. Isomorphic crystal posets have identical keys; they are identified by the isomorphism (which is unique).

Remarks 3.6. (1) Typically in the literature the key has been described in terms of data associated to a choice of model for the crystal, for instance the SSYT model in type A or the alcove model more generally. We have just shown that it can be calculated without reference to such data coming from a model for the crystal.
(2) Corollary 3.5 has the following application. We often construct crystal isomorphisms between two different models for crystals; an example is the filling map mentioned in Section 2.6, which maps the type A alcove model to the SSYT model, see [19, Theorem 4.7]. However, the key constructions in the two models are often quite different, like in the mentioned example; in this case, it could be hard to show, based on these constructions, that the crystal isomorphism identifies the keys. This fact is now immediate.
(3) One may construct a similar algorithm to calculate the left key in a finite type crystal by proceeding instead from top to bottom through the crystal. This is based on similar axioms to (1)-(4). Indeed, $\bar{\kappa}(\hat{1})$ is the lowest representative of the coset $w_{0} W_{\lambda}$ (see, e.g., [18, Proposition 5.1]), and the analogues of (15) and (16) are also standard (see, e.g., [22, Proposition 3.19]).

4. Connectedness of saturated chains for lower and upper intervals in a CRYSTAL POSET

In this section, we will prove a crystal theoretic analogue of the statement that any two reduced expressions for the same Coxeter group element are connected by a series of braid moves. Results of Stembridge, and in particular Corollary 2.4, lead us to establish Definition 4.1 below to serve as a suitable analogue for braid moves in the simply laced case. Results of Sternberg will allow this notion and the subsequent Theorem 4.2 to be extended to the doubly laced case using exactly the same line of argument (cf. Remark 4.3, part (2)).

Definition 4.1. Let us define a Stembridge move on a simply laced crystal as either the replacement of a saturated chain segment $x \lessdot f_{c_{2}}(x) \lessdot f_{c_{1}}\left(f_{c_{2}}(x)\right)$ by the saturated chain segment $x \lessdot f_{c_{1}}(x) \lessdot f_{c_{2}}\left(f_{c_{1}}(x)\right)$ in the event that $f_{c_{1}}\left(f_{c_{2}}(x)\right)=f_{c_{2}}\left(f_{c_{1}}(x)\right)$ or the replacement of a saturated chain segment

$$
x \lessdot f_{c_{2}}(x) \lessdot f_{c_{1}}\left(f_{c_{2}}(x)\right) \lessdot f_{c_{1}}\left(f_{c_{1}}\left(f_{c_{2}}(x)\right)\right) \lessdot f_{c_{2}}\left(f_{c_{1}}\left(f_{c_{1}}\left(f_{c_{2}}(x)\right)\right)\right)
$$

with the saturated chain segment

$$
x \lessdot f_{c_{1}}(x) \lessdot f_{c_{2}}\left(f_{c_{1}}(x)\right) \lessdot f_{c_{2}}\left(f_{c_{2}}\left(f_{c_{1}}(x)\right)\right) \lessdot f_{c_{1}}\left(f_{c_{2}}\left(f_{c_{2}}\left(f_{c_{1}}(x)\right)\right)\right)
$$

in the event that $f_{c_{2}}\left(f_{c_{1}}\left(f_{c_{1}}\left(f_{c_{2}}(x)\right)\right)\right)=f_{c_{1}}\left(f_{c_{2}}\left(f_{c_{2}}\left(f_{c_{1}}(x)\right)\right)\right)$.
Theorem 4.2. In the simply laced case, any two saturated chains in a lower interval $[\hat{0}, v]$ are connected by a series of Stembridge moves. In addition, in finite type, the same result holds for upper intervals $[v, \hat{1}]$.

Proof. Use induction on the rank of v, which is well-defined by virtue of Remark 2.2 (1). Now consider m_{1}, m_{2} maximal chains with $x \lessdot v$ in m_{1} colored c_{1} and $y \lessdot v$ in m_{2} colored c_{2}. Denote by $x \wedge y$ the unique element that either (a) is covered by x and y with $f_{c_{1}}(x \wedge y)=y$ and $f_{c_{2}}(x \wedge y)=x$ or (b) is less than both x and y with $f_{c_{2}}\left(f_{c_{2}}\left(f_{c_{1}}(x \wedge y)\right)\right)=x$ and $f_{c_{1}}\left(f_{c_{1}}\left(f_{c_{2}}(x \wedge y)\right)\right)=y$. Now $\hat{0} \leq x \wedge y$, so let n be any saturated chain from $\hat{0}$ to $x \wedge y$. Let m_{3} (resp. m_{4}) be a saturated chain from $\hat{0}$ to v which includes n and includes $x \lessdot v$
(resp. $y \lessdot v$). By induction on the rank of v, we are given that m_{1} (resp. m_{2}) is connected by Stembridge moves to m_{3} (resp. m_{4}). By construction, m_{3} is connected to m_{4} by a single Stembridge move. Thus, m_{1} is connected to m_{3} is connected to m_{4} is connected to m_{2} by Stembridge moves, implying that m_{1} is connected to m_{2} by Stembridge moves, completing the proof for lower intervals.

For upper intervals in finite type, a completely similar argument works. Alternatively, we reduce to lower intervals via Lusztig's involution on the corresponding crystal, see Remark 2.2 (2).
Remarks 4.3. (1) The proof of Theorem 4.2 is similar to the proofs of Theorem 3.3.1 in [3] and Lemma 4.4 in [10], dealing with the weak order and with more general posets admitting so-called $S B$-labelings, respectively.
(2) Whenever there are local moves induced by $x \lessdot v$ and $y \lessdot v$, this proof above will hold. In particular, this will allow a similar result in the doubly laced case via results of Sternberg providing the requisite moves in that setting.
(3) The proof of Theorem 4.2 can easily be turned into a recursive algorithm for determining the sequence of moves connecting any pair of saturated chains by proceeding from top to bottom so as to determine the requisite Stembridge moves.

5. The fibers of the key map

We work in the generality of a root system Φ of rank r for a symmetrizable Kac-Moody algebra \mathfrak{g}, and consider a highest weight \mathfrak{g}-crystal $B(\lambda)$. Let W_{K}, for $K \subseteq I=\{1, \ldots, r\}$, be the stabilizer of λ (as a parabolic subgroup of W), which was previously denoted W_{λ}; in particular, $K=\emptyset$ if and only if λ is regular. Recall the notation $\lfloor w\rfloor$ for the lowest representative of the coset $w W_{\lambda}=w W_{K}$, and let K^{c} denote the complement of K in I. Fix a subset J of I such that Φ_{J} is a finite root system, and recall the notation $w_{\circ}(J)$ for the longest element in the parabolic subgroup W_{J} of W. We denote by \mathfrak{g}_{J} the Lie algebra corresponding to Φ_{J}, and by λ_{J} the projection of λ to the weight lattice corresponding to Φ_{J}. If Φ is a finite root system, let w_{\circ}^{J} be the lowest representative $w_{\circ}(I) w_{\circ}(J)$ of the coset $w_{0} W_{J}$.

Theorem 5.1. The fiber of the key map at $w_{\circ}(J)$ is non-empty if and only if $J \subseteq K^{c}$. Assuming this, the fiber has a minimum and a maximum, relative to the induced order from the crystal poset.

We will need the following two lemmas. For the first one, we consider a reflection order $\left(\beta_{1}, \ldots, \beta_{N}\right)$ on the positive roots of a finite root system Φ, and let $r_{i}:=s_{\beta_{i}}$.

Lemma 5.2. The root

$$
r_{1} r_{2} \ldots r_{j-1}\left(\beta_{j}\right)=-w_{\circ} r_{N} r_{N-1} \ldots r_{j+1}\left(\beta_{j}\right)
$$

is a simple root.
Proof. Recall that a reflection order is determined by a reduced word $s_{i_{1}} \ldots s_{i_{N}}$ for w_{o}, in the sense that $\beta_{j}=s_{i_{1}} \ldots s_{i_{j-1}}\left(\alpha_{i_{j}}\right)$. It follows that $r_{j}=s_{i_{1}} \ldots s_{i_{j-1}} s_{i_{j}} s_{i_{j-1}} \ldots s_{i_{1}}$ and

$$
r_{1} \ldots r_{j-1}\left(\beta_{j}\right)=s_{i_{j-1}} \ldots s_{i_{1}}\left(s_{i_{1}} \ldots s_{i_{j-1}}\left(\alpha_{i_{j}}\right)\right)=\alpha_{i_{j}} .
$$

Furthermore, since $r_{1} \ldots r_{N}=w_{\circ}$, we also have $w_{\circ} r_{N} \ldots r_{j+1}=r_{1} \ldots r_{j}$, which leads to the conclusion of the proof.

For the second lemma, we need the generalization of the alcove model to the symmetrizable Kac-Moody case in [21]. This looks formally the same as the model in the finite case, described in Section 2.5. The main difference is that the λ-chain is infinite, and is no longer defined in terms of alcoves (but in terms of an equivalent condition, which generalizes to the infinite case).
Lemma 5.3. The Demazure \mathfrak{g}-crystal $B_{w_{0}(J)}(\lambda)$ is isomorphic to the highest weight $\mathfrak{g}_{J^{-}}$ crystal $B\left(\lambda_{J}\right)$.
Proof. Consider the restriction of $B(\lambda)$ to $U_{q}\left(\mathfrak{g}_{J}\right)$, that is, to edge labels in J. Let $B(\lambda, J)$ be the component of the highest weight vertex of $B(\lambda)$ in the restriction. By comparing highest weights, it is clear that $B(\lambda, J) \simeq B\left(\lambda_{J}\right)$ as \mathfrak{g}_{J}-crystals.

Let us now compare the \mathfrak{g}_{J}-crystal $B(\lambda, J)$ to the Demazure \mathfrak{g}-crystal $B_{w_{0}(J)}(\lambda)$. We first check that their vertex sets coincide as subsets of $B(\lambda)$, by using the generalized alcove model to describe the latter (see above). The elements $F \in B(\lambda)$ which belong to $B_{w_{0}(J)}(\lambda)$ are described by the condition $\kappa(F) \leq w_{\circ}(J)$ in strong Bruhat order (see Section 2.6). This condition implies (and is in fact equivalent to the fact) that the roots of the λ-chain corresponding to F are all in $\Phi_{J .}$. Indeed, all elements w in the chain (9) are below $w_{\circ}(J)$, which implies that they are in W_{J} (by the subword property of the strong Bruhat order).

On the other hand, the elements F of the crystal $B(\lambda, J)$ are also described by the condition mentioned above. To prove this, first note that any such F is obtained by acting on the highest weight vertex \emptyset of $B(\lambda)$ with f_{j} for $j \in J$. We use induction to check that if F has the mentioned property, then so does $f_{j}(F)$. To see this, we recall the construction of $f_{j}(F)$ in Section 2.5, particularly (7) and (12). With this notation, we have $w\left(\beta_{k}\right)=\alpha_{j}$ for some w in the chain (9), where we know that $w \in W_{J}$ by the induction hypothesis. It follows that $\beta_{k}=w^{-1}\left(\alpha_{j}\right)$ lies in Φ_{J}. Moreover, a similar reasoning shows that any F with the mentioned property lies in $B(\lambda, J)$; more precisely, we apply to F a sequence of crystal operators e_{j} with $j \in J$, until we reach \emptyset.

It is clear that all the edges of $B(\lambda, J)$ are in $B_{w_{0}(J)}(\lambda)$. To show that the two crystals are isomorphic, we need to check that, for $j \notin J$ and $F \in B_{w_{0}(J)}(\lambda)$, we cannot have $f_{j}(F) \in B_{w_{0}(J)}(\lambda)$. This is done based on the above description of the vertices of $B_{w_{0}(J)}(\lambda)$, and by using again, in a similar way, the description of the crystal operators in Section 2.5; in particular, the relation $w\left(\beta_{k}\right)=\alpha_{j}$ now implies $\beta_{k} \notin \Phi_{J}$.

We will implicitly use the well-known fact that the sequence of roots corresponding to an alcove path from A_{\circ} to $w_{\circ}\left(A_{\circ}\right)=-A_{\circ}$ (see Definition 2.10) is a reflection order on Φ^{+}; see [21, Remark 10.4 (2)].
Proof of Theorem 5.1. Since the key is an element of the set W^{K} of lowest coset representatives modulo W_{K}, it follows that $w_{\circ}(J)$ can be a key if and only if $J \subseteq K^{c}$.

By Lemma 5.3, it suffices to assume that Φ is a finite root system, λ is a regular weight, and $J=I$, so we can use the alcove model in the finite case. Indeed, the fiber of the key map at $w_{\circ}(J)$ is contained in $B_{w_{\circ}(J)}(\lambda)$ (cf. the description of the Demazure crystal, recalled in Section 2.6), and the crystal isomorphism in Lemma 5.3 preserves keys (by Corollary 3.5). Since in the above special case $B(\lambda)$ has a maximum, whose key is $w_{\circ}=w_{\circ}(I)$, this is also the maximum in the fiber of the key map at w_{0}. Thus, it suffices to prove that the mentioned fiber has a minimum.

It follows from definitions that $\lambda^{\prime}:=\lambda-\rho$ is a dominant weight. Based on the above discussion, we can choose an alcove path from $A_{0}:=A_{\circ}$ to $A_{m}:=A_{\circ}-\lambda$ which contains the
alcoves $A_{k}:=A_{\circ}-\lambda^{\prime}$ and $A_{l}:=w_{\circ}\left(A_{\circ}\right)-\lambda^{\prime}$. The hyperplanes separating A_{k} and A_{l} are all the hyperplanes through $-\lambda^{\prime}$ orthogonal to the roots in Φ^{+}. Let $F_{*}:=\{k+1, k+2, \ldots, l\}$. Clearly, F_{*} is an admissible subset and $\kappa\left(F_{*}\right)=w_{\circ}$.

We will show that F_{*} is the desired minimum. We can see that none of the hyperplanes separating A_{l} and A_{m} are orthogonal to a simple root; indeed, the sequence $\left(\beta_{k+1}, \beta_{k+2}, \ldots, \beta_{m}\right)$ contains each simple root α_{i} precisely once, as $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1$, but there is such an occurrence in $\left(\beta_{k+1}, \beta_{k+2}, \ldots, \beta_{l}\right)$. Now consider an arbitrary admissible subset $F \neq F_{*}$ with $\kappa(F)=w_{\circ}$. By the above remark concerning the hyperplanes separating A_{l} and A_{m}, we have $F \subseteq\{1,2, \ldots, l\}$, because the last element of F must clearly be a simple root (recall Definition 2.11 (1) of an admissible subset). As $F \neq F_{*}$, the set $\{k+1, k+2, \ldots, l\} \backslash F$ is non-empty, so let t be its maximum. Let $F=\left\{j_{1}<j_{2}<\ldots<j_{a}<\ldots<j_{s}\right\}$ where $j_{a}<t<j_{a+1}$ (if $a=s$ then we drop j_{a+1}). Recall the definition (7) of the root γ_{t}, namely

$$
\gamma_{t}=r_{j_{1}} r_{j_{2}} \ldots r_{j_{a}}\left(\beta_{t}\right)=w_{\circ} r_{j_{s}} \ldots r_{j_{a+1}}\left(\beta_{t}\right)
$$

Due to the choice of t, Lemma 5.2 applies, so $\gamma_{t}=-\alpha_{p}$, where α_{p} is a simple root.
Now recall from Section 2.5 the definition of the crystal operator e_{p}, which is based on the sequence $\left(\sigma_{1}, \ldots, \sigma_{n+1}\right)$. We have $\left\langle\gamma_{\infty}, \alpha_{p}^{\vee}\right\rangle=\left\langle\rho, w_{\circ}\left(\alpha_{p}^{\vee}\right)\right\rangle<0$, since $w_{\circ}\left(\alpha_{p}\right)$ is a negative root, so $\sigma_{n+1}=-1$. Moreover, due to the choice of t and the fact that $\gamma_{t}=-\alpha_{p}$, we have $\sigma_{n}=$ $(1,-1), \ldots, \sigma_{q+1}=(1,-1), \sigma_{q}=(-1,-1)$, for some q. By property (C3) of the sequence $\left(\sigma_{1}, \ldots, \sigma_{n+1}\right)$, we can now deduce $\sigma_{q-1,2}=-1$. By (11) and (14), we see that $-\delta(F, p) \geq 2$, so we can apply e_{p} at least twice to F. By (15), we have $\kappa\left(e_{p}(F)\right)=\kappa(F)=w_{\circ}(J)$, so $e_{p}(F)$ is still in the considered fiber. We can repeat the whole procedure above for $e_{p}(F)$ instead of F, and continue in this way; the process finishes (because the crystal has a minimum), and at that point it is clear that we reached F_{*}. We conclude that $F \geq F_{*}$ in the crystal poset, as desired.

Remark 5.4. In the case of a finite type crystal, the existence of the minimum in the fiber cannot be deduced from that of the maximum, via the Lusztig involution on the crystal (see Remark 2.2 (2)). Indeed, this involution does not map a fiber to another fiber. Instead, as Theorem 2.14 shows, it maps a fiber of the (right) key map anti-isomorphically to one of the left key map, and viceversa. This implies that the fibers of the left key map at $\left\lfloor w_{\circ}^{J}\right\rfloor$ also have a minimum and a maximum if $J \subseteq K^{c}$.

We will now give an example to show that Theorem 5.1 fails for fibers of arbitrary Weyl group elements; in fact, a fiber can even be disconnected, as shown below. This justifies our focus on longest elements of parabolic subgroups.

Example 5.5. Consider type A_{3}, with $\lambda=(3,2)$ and $w=2413$ in the symmetric group S_{4}. The fiber of the key map at w has the structure shown in Figure 1, as an induced poset from the crystal poset $B(\lambda)$.

6. MÖbius Function and homotopy type for Lower and upper intervals in a CRYSTAL POSET

In this section, we will determine the Möbius function for lower and upper intervals of a crystal as well as the homotopy type of the order complex of the proper part of each such interval. These results will rely on Theorem 5.1, namely the result that each fiber $\kappa^{-1}\left(w_{\circ}(J)\right)$ has a unique smallest and unique largest element in a crystal. Unless otherwise specified, we

Figure 1
continue to work in the symmetrizable Kac-Moody setup at the beginning of Section 5, and we use the notation introduced there.

First let us recall a result that we will need that appears as Lemma 3.2.3 in [3]. It is important to note that this result does not require W to be of finite type:

Theorem 6.1 (Lemma 3.2.3 of [3]). Let $J \subseteq S$. Then $\vee_{j \in J} a_{j}$ exists if and only if W_{J} is finite, in which case $\vee_{j \in J} a_{j}=w_{\circ}(J)$. Otherwise, there is no upper bound for the elements of J.

In particular, this result directly implies that $w \in W$ is the longest element $w_{\circ}(J)$ of a finite parabolic subgroup of W if and only if each simple reflection appearing in a reduced expression for w appears as the leftmost letter in a reduced expression for w which in turn is true if and only if each such simple reflection also appears as the rightmost letter in some reduced expression for w. It may also be helpful to note that the closed interval $[\hat{0}, w]$ in weak Bruhat order includes exactly the same elements as the closed interval $[\hat{0}, w]$ in strong Bruhat order if and only if $w=w_{\circ}(J)$ for some parabolic subgroup W_{J}.

We will also need the following consequence of Lemma 3.2.3 from [3] that is closely related to ideas discussed in [3].

Corollary 6.2. For each element $w \in W$, there is a unique maximal element below w in the weak Bruhat order among the longest elements $w_{\circ}(J)$ of parabolic subgroups.

Proof. Simply note that J must be exactly the simple reflections s corresponding to those atoms a_{s} satisfying $a_{s} \leq w$, since w is an upper bound for the set of atoms below it.

In what follows, we will also use the following result that appears in [15], cf. also [24, Section 1]. This result also follows directly from the contrapositive of implication (16) described in Section 2.6, as explained in Remark 6.4 below.

Theorem 6.3. Consider any element x with key $w=\kappa(x)$ in a crystal for a symmetrizable Kac-Moody algebra. Let $s_{i_{1}} \cdots s_{i_{d}}$ be any reduced expression for w. Then there is a saturated chain proceeding downward from x to $\hat{0}$ in the crystal as follows. One first applies $e_{i_{1}}$ as many times as possible to x while the result remains nonzero; then likewise one applies $e_{i_{2}}$ as many times as possible while staying nonzero, and one continues in this manner from left to right through the reduced expression, thereby obtaining a saturated chain which begins at x and proceeds downward to $\hat{0}$.

The above string of crystal operators e_{i} mapping x to $\hat{0}$ is known as an adapted string (associated to the fixed reduced expression for w).

Remark 6.4. The contrapositive of (16), which holds in the level of generality of symmetrizable Kac-Moody algebras, ensures that each $e_{i_{j}}$ in turn may be applied at least once in the setting of Theorem 6.3 while still yielding nonzero elements of the crystal. Only the final step in any such i_{j}-string proceeding downward can change the key, but the fact that w has length d ensures that each such step does change the key. Thus, the key must be the identity permutation after the last application of $e_{i_{d}}$, ensuring that the lowest element in the saturated chain is $\hat{0}$.

Lemma 6.2 together with Theorem 6.3 allows us to deduce:
Corollary 6.5. For each crystal vertex x, there is a unique maximal element $z \leq x$ among the minima of the fibers $\kappa^{-1}\left(w_{\circ}(J)\right)$ for the various choices of $J \subseteq I$.

Proof. First we calculate the key of x, namely $\kappa(x) \in W$. Then we use Corollary 6.2 to ensure the existence of a unique maximal element $w_{\circ}(J)$ satisfying $w_{\circ}(J) \leq \kappa(x)$ in weak Bruhat order. We will show that the minimal element z of the fiber $\kappa^{-1}\left(w_{\circ}(J)\right)$ satisfies $z \leq x$. To this end, first we show that there exists an element $x^{\prime} \in \kappa^{-1}\left(w_{\circ}(J)\right)$ such that $x^{\prime} \leq x$, by virtue of having $w_{\circ}(J) \leq \kappa(x)$ in weak Bruhat order, since it is known by Theorem 6.3 that we may obtain a saturated chain from $\hat{0}$ to x by taking any reduced expression $s_{i_{1}} \cdots s_{i_{d}}$ for $\kappa(x)$ and first applying $e_{i_{1}}$ as many times sequentially as possible to x while staying nonzero, proceeding downward in the saturated chain, then likewise applying $e_{i_{2}}$ as many times as possible, and continuing in this fashion through the reduced expression from left to right; we choose $s_{i_{1}} \cdots s_{i_{d}}$ so that a final segment of it gives a reduced expression $s_{i_{r}} \cdots s_{i_{d}}$ for $w_{\circ}(J)$, which means that just after applying the final copy of $e_{i_{r-1}}$ we will have reached a crystal element x^{\prime} satisfying $\kappa\left(x^{\prime}\right)=w_{\circ}(J)$, as desired. In particular, this implies $x^{\prime} \leq x$. But we proved for finite crystals in Theorem 5.1 that each $w_{\circ}(J)$ has a unique minimal element z with $k(z)=w_{\circ}(J)$, implying $z \leq x^{\prime} \leq x$, giving the desired element as z.

Theorem 6.6. Every nonempty open interval $(\hat{0}, x)$ in a crystal $B(\lambda)$ given by a symmertrizable Kac-Moody algebra has order complex which is homotopy equivalent to a ball or a sphere. Specifically, $\Delta(\hat{0}, x) \simeq S^{|J|-2}$ if x is the lowest element satisfying $\kappa(x)=w_{\circ}(J)$ for some J with $|J| \geq 2$, while $\Delta(\hat{0}, x)$ is contractible (or empty) otherwise.

Proof. For each y in the crystal, let $f(y)=z$ be the maximal element z such that $z \leq y$ for z the minimal element of the fiber of the longest element of a parabolic subgroup W_{J}, using that such z is guaranteed to exist by Corollary 6.5. Thus, f gives a poset map to the subposet of minimal elements of fibers $\kappa^{-1}\left(w_{\circ}(J)\right)$ for J the various subsets of the set of atoms of the crystal.

Now the Quillen fiber lemma implies that $\Delta(\hat{0}, x)$ is homotopy equivalent to the order complex of the subposet comprised of the minimal elements of the fibers of longest elements $w_{0}(J)$ of parabolics for those J which are subsets of the set of atoms below x, namely a Boolean algebra $B_{|J|}$ with $\hat{0}$ removed and possibly also with $\hat{1}$ removed. More specifically, $\hat{1}$ is absent from this truncated Boolean algebra if and only if x is itself the minimal element of a fiber of a longest element of a parabolic subgroup of W. Finally, we use that the order complex of a Boolean algebra B_{d} with both $\hat{0}$ and $\hat{1}$ removed is homotopy equivalent to a sphere S^{d-2}, due to being the barycentric subdivision of the boundary of a $(d-1)$-simplex, while the order complex for a Boolean algebra with $\hat{0}$ removed and with $\hat{1}$ present is homotopy equivalent to a ball (due to having a cone point at $\hat{1}$).

Recall that $\lfloor w\rfloor$ denotes the lowest representative of the coset $w W_{\lambda}=w W_{K}$ in our analysis below of the crystal $B(\lambda)$.

Corollary 6.7. Every nonempty upper interval ($x, \hat{1}$) in a finite type crystal $B(\lambda)$ satisfies $\Delta(x, \hat{1}) \simeq S^{|J|-2}$ if x is the highest element satisfying $\bar{\kappa}(x)=\left\lfloor w_{\circ}^{J}\right\rfloor$ for some $J \subseteq K^{c}$ with $|J| \geq 2$, and it is contractible (or empty) otherwise.

Proof. This immediately follows via the Lusztig involution (see Remark 2.2 (2)), based on Theorem 2.14 and Remark 5.4.

By the well-known relationship $\mu_{P}(u, v)=\tilde{\chi}(\Delta(u, v))$ appearing e.g. as Proposition 3.8.6 in [33], Theorem 6.6 immediately yields:
Corollary 6.8. For crystals given by symmetrizable Kac-Moody algebras, $\mu(\hat{0}, x)=(-1)^{|J|-2}$ for x the lowest element in the fiber of the key map at $w_{\circ}(J)$; otherwise $\mu(\hat{0}, x)=0$. Likewise, in a finite type crystal, $\mu(x, \hat{1})=(-1)^{|J|-2}$ for x the highest element in the fiber of the left key map at $\left\lfloor w_{\circ}^{J}\right\rfloor$ for some $J \subseteq K^{c}$; otherwise, $\mu(x, \hat{1})=0$.

Remark 6.9. Our approach to crystals above is closely related to the viewpoint taken in [3] for the weak Bruhat order, with our poset map for crystals used in conjunction with the Quillen fiber lemma above specializing to a poset map given in [3] for weak Bruhat order, and with our usage of the Quillen fiber lemma accomplishing the same thing as the usage of properties of (dual) closure maps in [3].

Remark 6.10. In the case of non-finite type, $\Delta(\hat{0}, u)$ is nearly always contractible, implying that $\mu(\hat{0}, u)$ is nearly always 0 . The point is that a set J of atoms will not have any upper bound unless W_{J} is finite, meaning that very few elements in a non-finite type crystal will have key that is the longest element of a parabolic with the further property of minimality amongst elements with this key.

We also have the following corollary of Theorem 6.6.
Corollary 6.11. Given a rank $r \geq 2$ simple Lie algebra \mathfrak{g} of finite type, the order complex of the proper part of the crystal poset $B(\lambda)$ is homotopy equivalent to the sphere S^{r-2} if $\lambda=\rho$, and to a ball otherwise.

Proof. By Theorem 6.6, the order complex of $B(\lambda) \backslash\{\hat{0}, \hat{1}\}$ is homotopy equivalent to a ball or a sphere, and we have a precise condition for when the latter happens, which we now assume. It is well known (see, e.g., [18, Proposition 5.1]) that $\kappa(\hat{1})$ is the lowest representative
$w_{\circ}^{K}=w_{\circ}(I) w_{\circ}(K)$ of the coset $w_{\circ} W_{\lambda}$. We can assume that $K^{c} \neq \emptyset$, as $K=I$ would imply $\lambda=0$. We necessarily have $w_{\circ}^{K}=w_{\circ}(J)$ for some $J \subseteq K^{c}$. We claim that this implies $K=\emptyset$, so λ is regular. Indeed, assuming the contrary and using the fact that $\ell\left(w_{\circ}(J)\right)=\left|\Phi_{J}^{+}\right|$, we derive the following contradiction from $w_{\circ}=w_{\circ}(J) w_{\circ}(K)$:

$$
\left|\Phi^{+}\right| \leq\left|\Phi_{J}^{+}\right|+\left|\Phi_{K}^{+}\right| \leq\left|\Phi_{K}^{+}\right|+\left|\Phi_{K^{c}}^{+}\right|<\left|\Phi^{+}\right| .
$$

Here the last strict inequality is justified as follows. The corresponding weak inequality is clear since Φ_{K}^{+}and $\Phi_{K^{c}}^{+}$are disjoint, so assume that they partition Φ^{+}. It follows that each s_{α} for α in K (resp. K^{c}) permutes $\Phi_{K^{c}}\left(\right.$ resp. $\left.\Phi_{K}\right)$, so α is orthogonal to all the roots of $\Phi_{K^{c}}\left(\right.$ resp. $\left.\Phi_{K}\right)$. But this is impossible since Φ is an irrreducible root system.

Under the assumption at the beginning, we proved that $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 1$ for each simple root α_{i}. It remains to prove that in each case we have equality, which means that $\lambda=\rho$. Indeed, assume that $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 2$ for some α_{i}. From Theorem 6.6 we know that $\hat{0}$ is the highest element in the fiber of the left key map at the identity in W. We claim that $\bar{\kappa}\left(f_{i}(\hat{0})\right)=1$, which contradicts the previous fact. Indeed, consider one of the special λ-chains in Definition 2.13 (see the related notation), which contains the root α_{i} in positions $\bar{\jmath}<j_{1}<\ldots<j_{s}$, with $s=\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle-1 \geq 1$. By the definition of the action of f_{i} in (12), we have $f_{i}(\hat{0})=f_{i}(\emptyset)=\left\{j_{s}\right\}$, which makes the claim obvious once we recall Definition 2.13.

Conversely, the order complex of $B(\rho) \backslash\{\hat{0}, \hat{1}\}$ is homotopy equivalent to a sphere since

$$
\bar{\kappa}(\hat{0})=1=w_{\circ}^{I}, \quad \bar{\kappa}\left(f_{i}(\hat{0})\right)=s_{i}>1 \text { for all } i \in I .
$$

The second property is proved in the same way as the similar one above.
Let us comment on the meaning of Corollary 6.11. It shows that the crystals $B(\rho)$ are special, in the sense that they behave, up to homotopy, in the same way as the weak Bruhat order on the corresponding Weyl group. This is not the case for $B(\lambda)$ for regular $\lambda \neq \rho$, which can be thought of as "fattened" versions of $B(\rho)$. It is also not the case for $B(\lambda)$ for non-regular λ, which can be thought of as degenerate versions of $B(\lambda)$ for regular λ.

7. Negative results for arbitrary intervals in (type A) crystal posets

This section constructs explicit examples in type A to exhibit intervals with arbitrarily large Möbius function, as well as open intervals of arbitrarily large rank that are disconnected. In both cases, we use the SSYT model to describe our constructions.

The starting point for obtaining all of our counterexamples is the interval shown in Figure 2, in the type A crystal poset corresponding to the partition $(4,3)$. Note that the Möbius function of this interval is 2 . We will construct two different infinite families of examples, each of which has this example as its based case.

Theorem 7.1. No finite set of moves suffices to connect the sets of maximal chains in all closed intervals $[u, v]$ of type A crystal posets. In particular, there are disconnected open intervals (u, v) of arbitrarily large rank.

Proof. We proceed by constructing a series of examples of disconnected open intervals (u, v) of arbitrarily large rank within type A crystal posets. More precisely, for each rank $n \geq 3$, we consider the two-row partition $(n+1, n)$, and the interval between the two SSYT below,

Figure 2
cf. Figure 2:

$u:=$| 1 | 1 | 1 | 2 | \cdots | $n-2$ | $n-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 4 | 5 | \cdots | $n+1$ | |,$\quad v:=$| 1 | 1 | 2 | \cdots | $n-2$ | $n-1$ | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 | \cdots | $n+1$ | $n+1$ | |

Note that v is obtained from u by incrementing by 1 the entries $1,2, \ldots, n-1$ in row 1 (we refer to the rightmost entry 1), as well as the entries $2,3, \ldots, n$ in row 2. Also note that there is a label increasing and a label decreasing chain from u to v, with the following sequences of labels:

$$
(1,2,2,3,3, \ldots, n-1, n-1, n), \quad(n, n-1, n-1, \ldots, 3,3,2,2,1) .
$$

Indeed, f_{1} on u increments the rightmost entry 1 in row $1, f_{2}^{2}$ increments the entries 2 in rows 1 and 2 of u, \ldots, f_{n-1}^{2} increments the entries $n-1$ in rows 1 and 2 of u, and finally f_{n} increments the entry n in row 2 of u; in each case, there is a single -+ pair (see Section 2.3). Similarly for the weakly decreasing chain.

To prove for each $n \geq 3$ that (u, v) is disconnected, we show that the connected component containing the saturated chain with labels $(1,2,2,3,3, \ldots, n-1, n-1, n)$ only contains saturated chains starting with the label 1 and ending with the label n. In particular,
this connected component does not include the saturated chain with labels ($n, n-1, n-$ $1, \ldots, 3,3,2,2,1$). It suffices to prove two things: (1) that there do not exist saturated chains starting with a label $k \neq 1$ and ending with the label n; in fact, we can also assume $k \neq n$, cf. Remark 2.2 (1)), in this part; and (2) that there do not exist saturated chains starting with the label 1 and ending with a label $k \notin\{1, n\}$.

Let us now turn to the first case, carrying this out in detail for $k=2$ and explaining how this can be modified to handle any k with $1<k<n$, since we already ruled out $k=n$. It will suffice in this $k=2$ case to prove that the following two elements, denoted u^{\prime}, v^{\prime}, are incomparable:

1	1	1	2	\cdots	$n-4$	$n-3$	$n-2$	$n-1$
3	3	4	5	\cdots	$n-1$	n	$n+1$	

1	1	2	\cdots	$n-3$	$n-2$	$n-1$	n
3	4	5	\cdots	n	n	$n+1$	

To generalize this case to larger k satisfying $2<k<n$, the point will be to replace u^{\prime} by a tableau obtained from u by applying the operator f_{k} in place of f_{2}, which was applied to u to obtain $u^{\prime}=f_{2}(u)$ above. Then one may easily check that the reasoning below will still apply to show that $f_{k}(u)$ is also incomparable to v^{\prime} above.

Throughout the following argument, we denote by i_{j} the rightmost entry i in row j of u^{\prime}. Suppose by way of contradiction the existence of a saturated chain from u^{\prime} to v^{\prime}, which means that the entries $1_{1}, 2_{1}, \ldots,(n-1)_{1}$ and $3_{2}, 4_{2}, \ldots,(n-1)_{2}$ are incremented by 1 , in some order. We write $i_{j} \prec i_{j^{\prime}}^{\prime}$ if i_{j} is incremented before $i_{j^{\prime}}^{\prime}$.

We first observe that we have

$$
\begin{equation*}
(n-2)_{1} \prec(n-1)_{1}, \quad \text { and }\left((i-1)_{1} \prec i_{1} \text { or }(i+1)_{2} \prec i_{1} \text {, for } i=3,4, \ldots, n-2\right) . \tag{17}
\end{equation*}
$$

Indeed, if neither $(i-1)_{1}$ nor $(i+1)_{2}$ were incremented when i_{1} is considered, then $(i+1)_{2}$ is paired with i_{1} at this moment, so the latter cannot be incremented, as it is supposed to be. Now consider (17) for $i=n-2$. Suppose that $(n-1)_{2} \prec(n-2)_{1}$, which implies, based on the first precedence in (17), that $(n-1)_{2} \prec(n-2)_{1} \prec(n-1)_{1}$; but then, when $(n-1)_{1}$ is considered, this entry and the incremented $(n-2)_{1}$ to its immediate left are paired with the incremented $(n-1)_{2}$ and the not-to-be-changed n_{2}, respectively, which makes it impossible for $(n-1)_{1}$ to be incremented. This gives a contradiction to our assumption that $(n-1)_{2} \prec(n-2)_{1}$.

Recalling (17) for $i=n-2$, this implies that

$$
\begin{equation*}
(n-3)_{1} \prec(n-2)_{1} \prec(n-1)_{2} . \tag{18}
\end{equation*}
$$

Now consider (17) for $i=n-3$ and assume that $(n-2)_{2} \prec(n-3)_{1}$, which implies, based on (18), that $(n-2)_{2} \prec(n-3)_{1} \prec(n-2)_{1} \prec(n-1)_{2}$; but then, when $(n-2)_{1}$ is considered, this entry and the incremented $(n-3)_{1}$ to its left are paired with the incremented $(n-2)_{2}$ and the not-yet-incremented $(n-1)_{2}$, respectively, which makes it impossible for $(n-2)_{1}$ to be incremented. Recalling (17) for $i=n-3$, this implies that

$$
(n-4)_{1} \prec(n-3)_{1} \prec(n-2)_{2} .
$$

Now consider (17) for $i=n-4$, repeating the same argument, then continue in this manner for $i=n-j$ for each successively larger j in turn. Continuing in this way, we eventually deduce that $2_{1} \prec 3_{2}$. This means that, when 2_{1} is considered, it is paired with 3_{2} or the 3 to its left, so it cannot be incremented. This concludes the proof by contradiction in the first case.

Now let us indicate how the second case follows by a similar chain of implications. Let $u^{\prime}=f_{1}(u)$ and $v^{\prime}=e_{k}(v)$, for any k satisfying $1<k<n$. We will show that there is no saturated chain from u to v which includes both u^{\prime} and v^{\prime}, in the case $k=n-1$, by an argument that will work equally well for each $1<k<n$. This will involve deducing a series of relations $i_{j} \prec k_{l}$ similar to the first case. Now let us provide the series of such relations, generally leaving it to the reader to justify the corresponding implications. By the definition of u^{\prime}, we have $1_{1} \prec 2_{2}$, which then implies $2_{1} \prec 2_{2}$. But this implies $2_{2} \prec 3_{2}$ (hence by transitivity also implies $2_{1} \prec 3_{2}$). But then $2_{1} \prec 3_{2}$ implies $3_{1} \prec 3_{2}$ and $3_{2} \prec 4_{2}$ (which by transitivity also yields $3_{1} \prec 4_{2}$). Continuing in this fashion, we get $i_{1} \prec i_{2}$ for each i satisfying $1<i<n$. But this contradicts the assumption that $v^{\prime}=e_{n-1}(v)$, since applying e_{n-1} to v will decrement the value n from the first row. This completes the proof.

Remark 7.2. Using the setup and the method in the proof of Theorem 7.1, one can give an explicit description of all the saturated chains from u to v in the connected component of the one labeled $(1,2,2,3,3, \ldots, n-1, n-1, n)$. Beside the fact that the first label in such a chain is 1 and the last one is n (as shown above), this description is best given in terms of the precedence relations on the pairs i_{j}, with $i=2, \ldots, n-1$ and $j=1,2$, specifying an entry i in row j of u to be incremented. The poset formed by the necessary and sufficient precedence relations is the Cartesian product of the chain $2 \prec 3 \prec \ldots \prec n-1$ corresponding to the values of i and the chain $1 \prec 2$ corresponding to the values of j. The saturated chains from u to v are in bijection with the linear extensions of this poset, so they are counted by the Catalan number C_{n-2}.

Theorem 7.3. There are type A crystal poset intervals with arbitrarily large Möbius function.

Proof. The plan is to take the interval (u, v) in Figure 2 with $\mu(u, v)=2$, where the SSYT corresponding to u, v are denoted T_{1} and T_{2}, and then construct new SSYT $T_{1}^{(r)}$ and $T_{2}^{(r)}$ so that $\mu\left(T_{1}^{(r)}, T_{2}^{(r)}\right)=2^{r}$. To this end, it will suffice (by Proposition 3.8.2 in [33]) to show that $\left[T_{1}^{(r)}, T_{2}^{(r)}\right]$ is isomorphic to an r-fold product of closed intervals each isomorphic to $\left[T_{1}, T_{2}\right]$.

The shape $\lambda^{(r)}$ for $T_{1}^{(r)}$ and $T_{2}^{(r)}$ will have $2 r$ rows and $4 r$ columns. Specifically, $\lambda^{(r)}$ is the smallest shape that contains the skew shape $\nu^{(r)}=\lambda^{(r)} \backslash \rho^{(r)}$ obtained by taking r copies of λ arranged so that the lower left corner of one copy of λ touches the upper right corner of the next copy of λ at a single point, with the r copies of λ thus arranged from top right to lower left. Now both $T_{1}^{(r)}$ and $T_{2}^{(r)}$ will have the letter i in each box in row i that belongs to the shape $\rho^{(r)}$ that is deleted from the skew shape. Thus, $T_{1}^{(r)}$ will coincide with $T_{2}^{(r)}$ in all these entries. On the other hand, the upper right copy of λ gets filled in with the same values in $T_{1}^{(r)}$ that it has in T_{1} and with the same values in $T_{2}^{(r)}$ that it gets in T_{2}. Now each time we move down from one copy of λ to the next, as we proceed from top to bottom and from right to left through our skew shape, we fill the new copies of λ with the same values as those in the previous copy of λ, except that we add a fixed, sufficiently large constant (e.g. 100) to all the entries, in the new copy of λ in comparison to their values in the previous copy of λ. This will ensure that the interval $\left[T_{1}^{(r)}, T_{2}^{(r)}\right]$ is isomorphic to the r-fold product $\left[T_{1}, T_{2}\right] \times \cdots \times\left[T_{1}, T_{2}\right]$ with one copy of $\left[T_{1}, T_{2}\right]$ coming from each copy of the shape λ along the lower right boundary of the shapes for $T_{1}^{(r)}$ and $T_{2}^{(r)}$.

Example 7.4. Next we exhibit an example to show that the crystal posets are not always lattices. Consider the crystal of SSYT of shape $(4,3)$ filled with $\{1,2,3,4\}$, and its elements

$$
T=\begin{array}{|l|l|l|l}
\hline & 1 & 2 & 2 \\
2 & 3 & 4 & \\
\hline
\end{array}, \quad S=\begin{array}{|l|l|l|l}
1 & 1 & 1 & 2 \\
3 & 3 & 4 & \\
\hline
\end{array}, \quad \text { covering } \begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 2 \\
\hline 2 & 3 & 4 & \\
\hline
\end{array} .
$$

Now recall the structure of the interval $\left[\begin{array}{lllll}\hline 1 & 1 & 1 & 2 \\ \hline 2 & 3 & 4 \\ \hline\end{array}, \begin{array}{|l|l|l|l}\hline 1 & 1 & 2 & 3 \\ \hline 3 & 4 & 4 & \\ \hline\end{array}\right]$ in Figure 2. We can see that \begin{tabular}{|l|l|l|l}
1 \& 1 \& 2 \& 3

\hline \& 4 \& 4 \&

\hline

 is a minimal upper bound for T and S. However, we have the incomparable (also minimal) upper bound

\hline \& 2 \& 2 \& 3

\hline 3 \& 3 \& 4 \&

\hline
\end{tabular}$=f_{1} f_{2}^{2}(T)=f_{2} f_{1}^{2}(S)$. Thus, the many techniques available for studying lattices are not at our disposal.

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), 159-183
[2] A. Björner, Orderings of Coxeter Groups, Combinatorics and algebra (Boulder, CO, 1983), 175-195, Contemp. Math. 34, Amer. Math. Soc, Providence, RI, 1984.
[3] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics 231, Springer, 2005.
[4] A. Björner and M. Wachs, On lexicograhpically shellable posets, Trans. Amer. Math. Soc. 277 (1983), 323-341.
[5] V. Danilov, A. Karzanov, and G. Koshevoy, B_{2}-crystals: Axioms, structure, models, J. Combin. Theory Ser. A 116 (2009), 265-289.
[6] J. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), 265-275.
[7] P. Edelman, A partial order on the regions of \mathbb{R}^{n} dissected by hyperplanes, Trans. Amer. Math. Soc. 283, no. 2, (1984), 617-631.
[8] P. Edelman and J. Walker, The homotopy type of hyperplane posets, Proc. Amer. Math. Soc. 94 (1985), 221-225.
[9] A. Garsia, The saga of reduced factorizations of elements of the symmetric group, Publications du Laboratoire de Combinatoire et d'Informatique Mathématique, 29, Montreal, 2002.
[10] P. Hersh and K. Mészáros, $S B$-labelings and posets with each interval homotopy equivalent to a sphere or a ball, preprint 2014.
[11] J. Herzog, V. Reiner, V. Welker, The Koszul property in affine semigroup rings, Pacific J. Math. 186 (1998), 39-65.
[12] J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., 2000.
[13] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, 1990.
[14] J. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, 21, SpringerVerlag, 1975.
[15] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math J. 71 (1993), 839-858.
[16] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-414.
[17] A. Lascoux and M.-P. Schützenberger, Keys and standard bases, Tableaux and Invariant Theory, D. Stanton, IMA Volumes in Math and its Applications, Vol. 19, 1990, Southend on Sea, UK, 125-145.
[18] C. Lenart, On the combinatorics of crystal graphs, I. Lusztig's involution, Adv. Math. 211 (2007), 324-340.
[19] C. Lenart and A. Lubovsky, A generalization of the alcove model and its applications, J. Algebraic Combin. 41 (2015), 751-783.
[20] C. Lenart and A. Postnikov, Affine Weyl groups in K-theory and representation theory, Int. Math. Res. Not., Art. ID rnm038 (2007), 1-65.
[21] C. Lenart and A. Postnikov, A combinatorial model for crystals of Kac-Moody algebras, Trans. Amer. Math. Soc. 360 (2008), 4349-4381.
[22] C. Lenart and M. Shimozono, Equivariant K-Chevalley rules for Kac-Moody flag manifolds, Amer. J. Math. 136 (2014), 1175-1213.
[23] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346.
[24] P. Littelmann, Cones, crystals and patterns, Transf. Groups 3 (1998), 145-179.
[25] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Math. 227, Springer-Verlag, New York, 2004, xiv +417 pp.
[26] I. Peeva, Graded Syzygies, Algebra and Applications, 14 Springer-Verlag, London Ltd., London, 2011, xii + 302 pp.
[27] D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group, $A d v$. Math. 28 (1978), 101-128.
[28] V. Reiner and M. Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), 107-143.
[29] G.-C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrschleinlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368.
[30] J. Shareshian, On the shellability of the order complex of the subgroup lattice of a finite group, Trans. Amer. Math. Soc. 353 (2001), 2689-2703.
[31] J. Shareshian and R. Woodroofe, A new subgroup lattice characterization of finite solvable groups, J. Algebra 351 (2012), 448-458.
[32] S. Smith, Subgroup complexes, Mathematical Surveys and Monographs, 179, American Mathematical Society, Providence, RI, 2011, xii +364 pp.
[33] R. Stanley, Enumerative Combinatorics, Vol. 1, Second edition, Cambridge Univ. Press, 2012.
[34] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, New York/Cambridge, 1999, xii +581 pages.
[35] R. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.
[36] J. Stembridge, A local characterization of simply laced crystals, Trans. Amer. Math. Soc. 355 (2003), 4807-4823.
[37] P. Sternberg, On the local structure of doubly laced crystals, J. Combin. Theory Ser. A, 114 (2007), 809-824.
[38] M. Willis, Relating the type A alcove path model to the right key of a semistandard Young tableau, with Demazure character consequences, arXiv:1506.04756.
E-mail address: plhersh@ncsu.edu
E-mail address: clenart@albany.edu

[^0]: The first author was funded by NSF grants DMS-1200730 and DMS-1500987. The second author was funded by NSF grants DMS-1101264 and DMS-1362627.
 Keywords: crystal graph, weak Bruhat order, key map, Stembridge moves, order complex MSC: 05E10, 06A06, 20F55, 20G42, 57N60.

