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Abstract. We present a partial generalization to Schubert calculus on flag varieties of the classical
Littlewood-Richardson rule, in its version based on Schützenberger’s jeu de taquin. More precisely,

we describe certain structure constants expressing the product of a Schubert and a Schur polynomial.

We use a generalization of Fomin’s growth diagrams (for chains in Young’s lattice of partitions) to
chains of permutations in the so-called k-Bruhat order. Our work is based on the recent thesis of

Beligan, in which he generalizes the classical plactic structure on words to chains in certain intervals

in k-Bruhat order. Potential applications of our work include the generalization of the S3-symmetric
Littlewood-Richardson rule due to Thomas and Yong, which is based on Fomin’s growth diagrams.

1. Introduction

Classical Schubert calculus is concerned with certain enumerative problems in geometry, which can be
reduced to calculations in the cohomology of spaces such as the Grassmannian. These classical problems
have been generalized in several directions, one of them being to replace the Grassmannian by the variety
Fln of complete flags (0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn = Cn) in Cn. A natural basis for the cohomology
of the flag variety is formed by the Schubert classes, which correspond to Schubert varieties and are
indexed by permutations in the symmetric group Sn. The product of two Schubert classes is a positive
sum of Schubert classes, as the corresponding coefficients cw

uv (indexed by three permutations, and known
as Schubert structure constants) count points in a suitable triple intersection of Schubert varieties.

A famous open problem in algebraic combinatorics, known as the Schubert problem (and listed as
Problem 11 in Stanley’s survey [24]), is to find a combinatorial description of the Schubert structure
constants (and, in particular, a proof of their nonnegativity which bypasses geometry). The importance
of this problem stems from the geometric significance of the Schubert structure constants, and from
the fact that a combinatorial interpretation for these coefficients would facilitate a deeper study of
their properties (such as their symmetries, vanishing etc.). The Schubert problem proved to be a
very hard problem, resisting many attempts to be solved. The classical special case is that of the
Grassmannian, in which we have the Littlewood-Richardson rule for multiplying Schur polynomials (see,
e.g., [25][Appendix 1] or [10]). The corresponding coefficients cν

λµ, which are indexed by three partitions,
are known as Littlewood-Richardson coefficients. Currently, there are many combinatorial descriptions
of these coefficients, including a recent description that reveals their S3-symmetry [26] and is based on
Fomin’s growth diagrams [25][Appendix 1].

One usually attacks the Schubert problem for the flag variety via the multiplication of Schubert poly-
nomials, which are polynomial representatives for Schubert classes defined by Lascoux and Schützenberger
[16]. A notable known special case of the Schubert problem is the Pieri rule, which expresses the product
of an arbitrary Schubert polynomial with one indexed by the cycle (k + p, k + p− 1, . . . , k + 1, k). The
Pieri formula underlies the close connection between the Schubert problem and the combinatorics of
chains in the so-called k-Bruhat order on Sn. We note that chains in Bruhat order are crucial objects
in this area, as they underlie many of the known multiplication rules related to flag varieties (beyond
the Grassmannian), including the very general formula for the K-theory of flag varieties of arbitrary Lie
type [17]. We will make use of chains in k-Bruhat order in this paper too.
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Several attempts were made to generalize the Pieri formula. Some of these attempts were based on:
(1) iterating known multiplication formulas [4, 9, 15]; (2) proving various identities for cw

uv [3, 11, 12, 23];
(3) bijective proofs based on insertion procedures [2, 13, 14]; (4) geometric approaches [5, 6, 7, 27].
Some of the mentioned attempts led to formulas for cw

uv involving both positive and negative terms,
but no manifestly positive formula exists in general. The most general positive rule for the Littlewood-
Richardson problem is Coskun’s multiplication rule for two-step flag varieties [6], which is based on a
geometric degeneration technique. As far as generalizing this idea to the complete flag variety Fln is
concerned, the complexity of the combinatorics involved suggests that more powerful combinatorial tools
are needed.

In the joint paper with Sottile [18], we defined skew Schubert polynomials based on chains in k-Bruhat
order. The coefficients in their expansion in terms of Schubert polynomials are precisely the Schubert
structure constants. Thus, we suggested an approach to the Schubert problem based on generalizing in
the context of chains in Bruhat order a version of the classical Littlewood-Richardson rule which uses
Schützenberger’s jeu de taquin on tableaux [10, 25]. The aim of the present paper is to give more details
about this idea.

A crucial piece of information underlying this paper is Beligan’s recent thesis [1] on generalizing the
plactic structure for words (see, e.g., [10] or [20]) and chains in the weak Bruhat order [8] to chains
in k-Bruhat order. Beligan’s results apply to maximal chains in certain intervals [u, w]k in k-Bruhat
order which are said to contain no nesting. For such intervals, Beligan shows that each Knuth-type
equivalence class of chains has as a distinguished representative a strict tableau of transpositions; this is
a filling of a Young diagram with pairs (a, b), such that the first entries in the pairs make the rows and
columns strictly increasing. Beligan also describes an analog of the Schensted insertion algorithm (e.g.,
see [25, Chapter 7.11] or [10]), which transforms a chain in [u, w]k into the tableau of transpositions
equivalent to it. Finally, based on this combinatorics and the Pieri formula, he generalizes this formula
by describing the corresponding Schubert structure constants cw

u,v(λ,k) as the number of strict tableaux
of transpositions of shape λ; here v(λ, k) is a Grassmannian permutation corresponding to the partition
λ, so the mentioned Schubert structure constants correspond to multiplying a Schubert polynomial by
a Schur polynomial. In this way, Beligan generalizes the results in [13, 14].

In this paper, we introduce a generalization of Fomin’s growth diagrams for chains in Young’s lattice
of partitions (which realize Schützenberger’s jeu de taquin) to chains of permutations in k-Bruhat order.
Thus, we are able to extend the version of the classical Littlewood-Richardson rule based on jeu de
taquin, which was mentioned above, to certain structure constants cw

u,v(λ,k); more precisely, we require
that u has no descents before or after position k. If we concentrate on these structure constants, which
are among the ones considered by Beligan, our rule can be viewed as a generalization of Beligan’s.
The reason for restricting to the above structure constants is a technical one, related to the non-nesting
restriction in Beligan’s work. The special case studied here gives an indication about the possible general
form of our rule, which is conjectured and is currently being investigated.

Our work has applications to the approach in [18] for the Schubert problem, based on skew Schubert
polynomials. More importantly, it might lead to an S3-symmetric description of the Schubert structure
constants which would generalize the one in [26]. Possible connections with the geometric approaches in
[6, 27] are also investigated.

2. Background

2.1. The classical Littlewood-Richardson rule. Given partitions λ, µ, ν, let cν
λµ be the classical

Littlewood-Richardson coefficient, defined as a structure constant for the multiplication of Schur func-
tions:

sλ · sµ =
∑

ν

cν
λµsν .
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We briefly review the Littlewood-Richardson rule, which is a combinatorial description of cν
λµ; for more

details, we refer the reader to [25][Appendix 1] or [10].

Consider a SYT T of skew shape ν/µ, and a box b that can be added to ν/µ such that the resulting
shape is also a valid skew one; in addition, assume that b shares its lower or right edge with ν/µ. We
denote by jdtb(T ) the SYT obtained from T via Schützenberger’s jeu de taquin into b. This is given
by the following simple algorithm: we pick the minimum of the entries in the boxes immediately to the
right and below b (there might be only one such entry) and move it to b; then we continue this procedure
with the vacated box instead of b, and so on, until there is no entry to the right or below the vacated
box. By applying successive jeu de taquin moves, the SYT T can be transformed into a straight-shape
SYT. It is well-known that the resulting SYT does not depend on the particular squence of jeu de taquin
moves, so it makes sense to denote it by jdt(T ).

Theorem 2.1. (cf., e.g., [25][Appendix 1]) The Littlewood-Richardson coefficient cν
λµ is equal to the

number of SYT T of shape ν/µ for which jdt(T ) is a particular (arbitrary) SYT P of shape λ.

We will consider two choices of P , which lead to two remarkable special cases of the above theorem.
First, let P1 be the SYT obtained by placing the entries 1, . . . , |λ| into the boxes of λ row by row,
beginning with the top row. Then consider all T with jdt(T ) = P1. For each such T , define a filling
T ′ by replacing each entry i in T with the row number of the entry i in P . It is not hard to see that
T ′ is a SSYT. Moreover, it is well-known that the collection of SSYT T ′ is precisely the collection of
Littlewood-Richardson tableaux of shape ν/µ and content λ. Such a tableau is defined by the condition
that its reverse row word is a lattice permutation. One also considers the so-called companion tableau of
a Littlewood-Richardson tableau T ′, which is the SSYT of shape λ and content ν−µ obtained by placing
an entry j in row i of the shape λ, for each entry i in row j of T ′. The companion tableaux also have
a nice characterization, and a vast generalization of them is the centerpiece of Littelmann’s Littlewood-
Richardson rule for tensor products of irreducible representations of symmetrizable Kac-Moody algebras
[19].

Now let us consider another choice P2 for the SYT P in Theorem 2.1, which is generalized by Beligan’s
rule for the multiplication of Schubert polynomials. We define P2 as the SYT obtained by placing the
entries |λ|, |λ| − 1, . . . , 1 into the boxes of λ column by column from right to left, going back to the
rightmost unfilled column each time the first column is reached (the columns are filled from bottom to
top). We will now characterize the SYT T of shape ν/µ satisfying jdt(T ) = P2. For this purpose, given
a SYT T of shape ν/µ, we define its content word j1 . . . j|λ| by ji := content(bi) + k, where bi is the box
containing i in T and k := ν′

1 (recall that the content of a box is the difference between its column and
its row). It can be shown, and it is also a special case of the results below, that a SYT T of shape ν/µ
satisfies jdt(T ) = P2 if and only if its content word is the row word of a row and column strict tableau
T ′ of shape λ. Thus, we have the following rule.

Theorem 2.2. The coefficient cν
λµ is the number of SYT of shape ν/µ whose content word is the row

word of a row and column strict tableau of shape λ.

Example 2.3. We continue the example in [25][Appendix 1] referring to P = P1, by considering
λ = (4, 3, 1), µ = (2, 1) and ν = (4, 4, 2, 1). We have

P2 =
1 3 4 8
2 6 7
5

.

There are two tableaux T , which are shown below, together with the corresponding straight-shape SYT
T ′.

1 4
3 7 8

2 6
5

,

3 4
1 7 8

2 6
5

,
1 3 5 6
2 4 7
6

,
1 3 5 6
2 6 7
4

.
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In order to better understand the definition of the content word of a SYT T with shape ν/µ, let us
view T as a maximal chain µ = µ0 < µ1 < . . . < µ|λ| = ν in Young’s lattice (start with µ and add to
it the boxes of ν/µ in the order indicated by the entries of T ). Let n := ν1 + ν′

1 − 1 = ν1 − 1 + k. To
each partition µi corresponds a Grassmannian permutation vi = v(µi, k) in Sn with unique descent at k
(recall that this correspondence associates to the Grassmannian permutation w = w1 . . . wn with unique
descent at k the partition (wk − k, . . . , w1 − 1)). It turns out that we obtain a chain in the left weak
Bruhat order of Grassmannian permutations v0 < v1 < . . . < v|λ|, where vi = sjivi−1, with sji being the
adjacent transposition (ji, ji + 1) and ji being defined as above.

We conclude this section by recalling Fomin’s realization of jeu de taquin via growth diagrams. Let T
be a SYT of shape ν/µ, and S a SYT of shape µ; note that the latter tableaux determine the sequences of
jeu de taquin moves for the former ones. Now consider a matrix of partitions λi,j with i = 0, . . . , p := |λ|
and j = 0, . . . , q := |µ|, such that its left column (λ0,j)j and its top row (λi,q)i are the maximal chains
in Young’s lattice corresponding to S and T , respectively; in particular, λ0,0 is the empty partition,
λ0,q = µ, and λp,q = ν. The other partitions are determined by the local rule below, which specifies
λi+1,j based on λi,j , λi,j+1, and λi+1,j+1. In order to specify this rule, let

(2.1) σi,j := λi+1,j − λi,j and τi,j := λi,j+1 − λi,j .

We call σi,j and τi,j horizontal and vertical transpositions, respectively.

Rule 2.4. If the two boxes of λi+1,j+1 \ λi,j are not adjacent, then σi,j = σi,j+1 (and τi+1,j = τi,j);
otherwise, σi,j = τi,j (and τi+1,j = σi,j+1).

Note that in the first case of the rule, the interval [λi,j , λi+1,j+1] in Young’s lattice is a product of two
chains of length 1, whereas in the second case it is a chain of length 2. It turns out that the bottom row
of the above matrix of partitions, namely (λi,0)i, is precisely the chain corresponding to jdt(T ). Thus,
the SYT T in Theorem 2.1 are determined by the condition that (λi,0)i corresponds to the fixed SYT
P (in particular, λp,0 = λ).

2.2. Beligan’s rule for multiplying Schubert polynomials. Given a permutation w in the sym-
metric group Sn, we denote by Sw(x) the Schubert polynomial indexed by w. This is a homogeneous
polynomial in x1, . . . , xn−1 with nonnegative integer coefficients and degree `(w) (the length of w). For
more information on Schubert polynomials, we refer the reader to [10, 16, 21, 22].

The main outstanding problem in the theory of Schubert polynomials is the Littlewood-Richardson
problem [24, Problem 11]: Determine the structure constants cw

uv defined by the polynomial identity

Su(x) ·Sv(x) =
∑
w

cw
uvSw(x) .

Since every Schur polynomial is a Schubert polynomial, this problems asks for the generalization of
the classical Littlewood-Richardson rule. The Littlewood-Richardson coefficients cw

uv for Schubert poly-
nomials are important since they are intersection numbers of Schubert varieties; more precisely, cw

uv

enumerates flags in a suitable triple intersection of Schubert varieties indexed by u, v, and w◦w (where
w◦ is the longest permutation in Sn).

Beligan [1] gave a combinatorial interpretation for certain coefficients cw
uv when u = u(λ, k) is a

Grassmannian permutation (with unique descent at k, cf. the previous section). In other words, this
rules gives certain coefficients in the multiplication of a Schubert polynomial by a Schur polynomial. It
is known from [3] that cw

u(λ,k),v = 0 unless v < w in the so-called k-Bruhat order on the symmetric group
Sn and `(w) − `(v) = |λ|. This highlights the importance of the k-Bruhat order, which we now recall.
The Bruhat order is the partial order on Sn with covering relations vlw = v(a, b), where `(w) = `(v)+1
and (a, b) denotes the transposition of a < b. A permutation v admits a cover v l v(a, b) with a < b
and v(a) < v(b) if and only if whenever a < c < b, then either v(c) < v(a) or else v(b) < v(c). This is
known as the cover condition; it is both explicitly and implicitly used several times in this paper. The
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k-Bruhat order, denoted <k, is the suborder of the Bruhat order where the covers are restricted to those
v l v(a, b) with a ≤ k < b.

A crucial role in Beligan’s rule is played by maximal chains in k-Bruhat order w0 l w1 l w2 l . . ..
We denote these chains by words of transpositions αβγδ . . ., where w1 = (α, β)w0, w2 = (γ, δ)w1, while
α < β, γ < δ etc. Note that, as opposed to the definition of the k-Bruhat order, here we use left
multiplication. An interval in the k-Bruhat order, denoted [v, w]k, is said to contain no nesting if none
of its maximal chains contains a segment of the form αδβγ or βγαδ, where α < β < γ < δ. Beligan’s
rule refers to those structure constants cw

u(λ,k),v for which [v, w]k contains no nesting. Some criteria for
the non-nesting property of [v, w]k are given in [1]. The only ones that involve only v or only w seem to
be the following:

(1) v has no descents after position k (i.e., it is a k-semi-shuffle);
(2) v has no descents before position k;
(3) w has no ascents after position k;
(4) w has no ascents before position k.

The following simple lemma about intervals containing no nesting will be useful.

Lemma 2.5. If αβγδ is a subchain of a maximal chain in an interval in k-Bruhat order containing no
nesting, then the following are equivalent: (i) α < γ; (ii) β < δ; (iii) β ≤ γ.

In order to state Beligan’s rule, we need to consider tableaux of transpositions, that is, fillings of
Young diagrams with transpositions. If the first entries in the transpositions are (strictly) increasing in
rows and columns, the tableau is called strict. The row word of a tableau is defined as usual.

Theorem 2.6. [1] If [v, w]k contains no nesting, then cw
u(λ,k),v is equal to the number of strict tableaux

of transpositions of shape λ whose row word is a maximal chain in [v, w]k.

Remark 2.7. Let us assume that v and w are Grassmannian permutations with unique descents at k,
that is, v = v(µ, k) and w = w(ν, k). A maximal chain in k-Bruhat order from v to w (which is, in fact,
a chain in the left weak Bruhat order) corresponds to a maximal chain in Young’s lattice from µ to ν,
that is, to a SYT of shape ν/µ. Thus, Theorem 2.2 is a special case of Theorem 2.6.

A crucial ingredient in the proof of the above theorem is the so-called plactic structure on the maximal
chains in intervals [v, w]k containing no nesting (the latter condition is implicit from now on). The
mentioned plactic structure generalizes the classical plactic structure on words (see, e.g., [10]), which
is relevant to the classical Littlewood-Richardson rule. The plactic relations for maximal chains in
k-Bruhat order are the following:

(KB1) αγγδβγ ∼ βγαββδ ,
(KB2) βγγδαγ ∼ βδαββγ , where α < β < γ < δ;
(KB3) αβεϕγδ ∼ εϕαβγδ ,
(KB4) γδεϕαβ ∼ γδαβεϕ , where α < β ≤ γ < δ ≤ ε < ϕ.

As usual, one defines the plactic equivalence of maximal chains in [v, w]k as the equivalence relation
generated by (KB1)-(KB4). Then we have the following generalization of the corresponding classical
result.

Theorem 2.8. [1] Each plactic equivalence class contains a unique chain which is the row word of a
strict tableau of transpositions.

As in the classical case, the tableau P (Γ) equivalent to a chain Γ can be obtained from Γ by an
insertion procedure, which is described in detail in [1]. It is shown that this procedure can be reduced
to a sequence of substitutions of the right-hand sides of (KB1)-(KB4) for the corresponding left-hand
sides. Moreover, we can form a recording SYT Q(Γ) of the same shape as P (Γ), as usual. As expected,
we have the following generalization of the corresponding classical result.
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Theorem 2.9. [1] The correspondence Γ 7→ (P (Γ), Q(Γ)) is a bijection between maximal chains in
[v, w]k and pairs consisting of a strict tableau of transpositions (for a maximal chain in [v, w]k) and a
SYT of the same shape.

3. Main results and conjectures

We now define our new jeu de taquin on maximal chains in k-Bruhat order, which generalizes
Schützenberger’s jeu de taquin in Fomin’s realization, based on growth diagrams.

We begin with an arbitrary maximal chain ∆ = (v0 ll v1 ll . . . ll vq = v) in l-Bruhat order starting
at the identity, followed by a maximal chain Γ = (v = w0 lk w1 lk . . . lk wp = w) in k-Bruhat order.
As in the classical case, we form a matrix of permutations wi,j given by a local rule to be specified and
the following boundary conditions:

w0,j := vj , wi,q := wi , for i = 0, . . . , p and j = 0, . . . , q .

We then set
jdt∆(Γ) := (w0,0, w1,0, . . . , wp,0) .

Let us now specify the local rule, which amounts to specifying wi+1,j based on wi,j , wi,j+1, and
wi+1,j+1. Note that the interval [wi,j , wi+1,j+1] in Bruhat order is always a product of two chains of
length 1. Let us denote by x the unique permutation in the corresponding open interval that is different
from wi,j+1. It is possible define the local rule as follows.

Rule 3.1. Set wi+1,j := x or wi+1,j := wi,j+1 such that wi,j lk wi+1,j and wi+1,j ll wi+1,j+1. If both
choices work, give preference to the first one.

Thus, all the horizontal chains are in k-Bruhat order, while all the vertical ones are in l-Bruhat order;
in particular, jdt∆(Γ) is a chain in k-Bruhat order. Let us now discuss in detail all the cases that can
appear, in order to justify the claim that the rule can always be applied; we will see that, compared
to the classical (Grassmannian) case, we have an increase from 2 (in fact, 3) to 13 cases. Recalling the
notation for chains as words of transpositions which are applied on the left, we define the transpositions
σi,j and τi,j as in (2.1):

(3.1) σi,j := wi+1,j(wi,j)−1 and τi,j := wi,j+1(wi,j)−1 .

We will specify the 13 cases as τi,jσi,j+1 7→ σi,jτi+1,j (cf. Rule 2.4), depending on some condition on
w = wi,j . In all the cases except the first one, it is assumed that α < β < γ.

(J0) αβγδ 7→ γδαβ if α, β, γ, δ are all distinct;
(J1) αβαγ 7→ βγαβ ;
(J2) αγαβ 7→ αββγ ;
(J3) βγαγ 7→ αββγ ;
(J4) αγβγ 7→ βγαβ ;
(J5) αββγ 7→ βγαγ if w−1(β) ≤ k < w−1(γ);
(J5′) αββγ 7→ αββγ if k < w−1(β) < w−1(γ);
(J6) αββγ 7→ αγαβ if w−1(γ) ≤ l < w−1(β);
(J6′) αββγ 7→ αββγ if l < w−1(γ) < w−1(β);
(J7) βγαβ 7→ αβαγ if w−1(α) ≤ k < w−1(β);
(J7′) βγαβ 7→ βγαβ if w−1(α) < w−1(β) ≤ k;
(J8) βγαβ 7→ αγβγ if w−1(β) ≤ l < w−1(α);
(J8′) βγαβ 7→ βγαβ if w−1(β) < w−1(α) ≤ l.

Remarks 3.2. (1) By inspecting the above cases, we can see that there is a unique choice in Rule 3.1 as
long as τi,j and σi,j+1 do not commute. Otherwise, we can have one or two choices.
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(2) The Grassmannian cases (when k = l) fall under (J0), (J5′) − the two adjacent boxes are in the
same row, and (J7′) − the two adjacent boxes are in the same column (cf. Rule 2.4).

(3) The above jeu de taquin can be generalized by letting ∆ and Γ be concatenations of maximal
chains in k-Bruhat order for various k; such chains will be called mixed Bruhat chains. This more general
version of jeu de taquin will be needed below.

Example 3.3. Let w0,0 := 2143, l = 1, k = 2, ∆ = 24, Γ = 1223. We have jdt∆(Γ) = 1423, where the
applied transformations are (J8) and (J2). We can indicate the growth diagram pictorially, as follows
(the arrows indicate the increasing direction in Bruhat order).

4123 4213 4312

2143 2413 3412

-12 -23

6
24

-
14

6
24

-
23

6
34

By Remark 3.2 (1), our jeu de taquin for chains in k-Bruhat order is symmetric, in the sense stated
below.

Proposition 3.4. Consider the input of jeu de taquin to be the pair (∆,Γ) and the output the pair
(Γ′,∆′), where Γ′ := jdt∆(Γ) and ∆′ = (wp,0 ll w

p,1 ll . . .ll w
p,q). Then if we input (Γ′,∆′), the output

is (∆,Γ).

We now state our main conjecture, which is the natural generalization of Theorem 2.1, by Remark
3.2 (2).

Conjecture 3.5. Consider permutations v ≤k w and a Grassmannian permutation u(λ, k). There is a
mixed Bruhat chain ∆ from the identity to v such that the Littlewood-Richardson coefficient cw

u(λ,k),v is
equal to the number of maximal chains Γ in k-Bruhat order from v to w for which jdt∆(Γ) is a particular
(arbitrary) maximal chain Γ′ in k-Bruhat order from the identity to u(λ, k).

Remarks 3.6. (1) In Conjecture 3.5, Γ′ can be thought of as a maximal chain in Young’s lattice from
the empty partition to λ, or simply as a SYT of shape λ.

(2) It is not true that all mixed Bruhat chains from the identity to v satisfy the condition in Conjecture
3.5. The reasons for this will be discussed in detail in Section 4. This situation is different from the
Grassmannian case, where the jeu de taquin moves can be performed in any order (i.e., along any chain
in Young’s lattice).

We will now prove two special cases of this conjecture, which should give an idea about the general
case. Our work is based on the results of Beligan about the plactic structure of intervals in k-Bruhat
order containing no nesting. The main problem in attacking the general case is that the plactic structure
is only understood in the non-nesting case so far, while the fact that [v, w]k contains no nesting does not
guarantee that jdt∆(Γ) is a maximal chain in an interval with the same property (say, for a chain ∆ of
length 1, as Example 3.3 shows). On the other hand, the only known simple criteria for the non-nesting
property are those in Section 2.2. Therefore, our main results are related to the cases when v has no
descents before or after position k, and are based on mixed Bruhat chains ∆ = (v0 l v1 l . . . l vq = v)
with the following properties.

(PL) For each i, vi is a k-semi-shuffle. Furthermore, if vi+1 = vi(l, · ), then l is the smallest non-fixed
point of vi+1, and vi ll vi+1.

(PR) For each i, vi has no descents before k. Furthermore, if vi+1 = vi( · , l), then l is the largest
non-fixed point of vi+1, and vi ll−1 vi+1.
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Remarks 3.7. (1) Clearly, if v is a k-semi-shuffle, then there exists a mixed Bruhat chain from the
identity to v with property (PL). Moreover, this chain is a concatenation ∆k . . .∆1, where ∆l is a chain
in l-Bruhat order. Similarly, if v has no descents before position k, then there exists a mixed Bruhat
chain from the identity to v with property (PR), and this chain is a concatenation ∆k+1 . . .∆n−1.

(2) If the chain ∆ in a growth diagram satisfies property (PL), resp. (PR), then all permutations
in the growth diagram are k-semi-shuffles, resp. have no descents before k. This remark will be used
implicitly below.

With this notation, we can state our main result.

Theorem 3.8. (1) If v is a k-semi-shuffle, then any mixed Bruhat chain ∆ from the identity to v with
property (PL) satisfies the condition in Conjecture 3.5.

(2) The same is true if v has no descents before k for ∆ having property (PR).

In both cases, jdt∆(Γ) does not depend on the chains ∆ having the mentioned properties.

Remark 3.7 (1) leads us to defining property (PLR) as the natural generalization of properties (PL)
and (PR) for chains ∆. We use the above notation.

(PLR) The chain ∆ is a concatenation ∆′∆′′ (resp. ∆′′∆′), where ∆′ has property (PL) and ∆′′ =
∆k+1 . . .∆n−1 (resp. ∆′′ has property (PR) and ∆′ = ∆k . . .∆1). Furthermore, given vi ll vi+1

in ∆′′ (resp. ∆′), we have vi+1 = vi( · , l + 1) (resp. vi+1 = vi(l, · )).

Remark 3.9. For any permutation v, there exists a mixed Bruhat chain from the identity to v with
property (PLR). Indeed, the goal is to go down in Bruhat order from v along the reverse of a chain
∆′′ (resp. ∆′) with the properties above, until we reach a k-semi-shuffle (resp. a permutation with no
descents before position k).

Theorem 3.8 suggests the following stronger version of Conjecture 3.5, which we currently investigate,
and which was so far confirmed by several computer tests.

Conjecture 3.10. There exists a mixed Bruhat chain ∆ from the identity to v with property (PLR)
which satisfies the condition in Conjecture 3.5.

Theorem 3.8 (and, in fact, the Conjecture 3.5 in general) can be proved based on the following result.

Proposition 3.11. A chain ∆ satisfies the condition in Conjecture 3.5 if

(3.2) Q(jdt∆(Γ)) = Q(Γ)

for any maximal chain Γ in [v, w]k. In this case, jdt∆(Γ) does not depend on ∆.

Proof. Clearly, a maximal chain in k-Bruhat order starting at the identity consists only of Grassmannian
permutations. Moreover, it is well-known that all maximal chains in an interval [1, u(λ, k)]k have the
same P -tableau, which is of shape λ. (In fact only the relations (KB3) and (KB4) are needed here to
get the plactic equivalence.) So a chain in the mentioned interval is determined by its Q-tableau. If
an arbitrary maximal chain Γ′ in [1, u(λ, k)]k is fixed, then, by (3.2) and Theorems 2.8-2.9, the number
of maximal chains Γ in [v, w]k satisfying jdt∆(Γ) = Γ′ is just the number of plactic classes in [v, w]k
represented by tableaux of shape λ. But the latter number is cw

u(λ,k),v, by Theorem 2.6. �

Remark 3.12. The proof of Proposition 3.11 clarifies the way in which Theorem 3.8 is a generalization
of Theorem 2.6 for the considered permutations v. More precisely, the maximal chains in the latter
theorem are are precisely the chains Γ in Conjecture 3.5 when Γ′ is the SYT P2 considered in Section
2.1 (upon the identification of chains and SYT in Remark 3.6 (1)).
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The next lemma is our main tool for proving Theorem 3.8 via Proposition 3.11. The lemma will be
proved in the following section based on a detailed case by case analysis of the interaction between the
plactic relations (KB1)-(KB4) and the local rules (J0)-(J8′) for growth diagrams.

Lemma 3.13. Let (∆,Γ) 7→ (Γ
′
,∆

′
) be a height 1 fragment of a growth diagram for which ∆ has

properties (PL) or (PR). If Γ is the left-hand side of a plactic relation, then so is Γ′; moreover, if Γ ∼ Γr

and Γ
′ ∼ Γ

′
r, then (∆,Γr) 7→ (Γ

′
r,∆

′
). On the other hand, if Γ = αβγδ and Γ

′
= α′

β′γ′
δ′ , then α < γ if

and only if α′ < γ′.

We have the following corollary to the above lemma.

Corollary 3.14. Let (∆,Γ) 7→ (Γ′,∆′) be a growth diagram for which ∆ has properties (PL) or (PR).
Then we have

jdt∆(P (Γ)) = P (Γ′) , and Q(Γ) = Q(Γ′) .

Proof. It suffices to consider ∆ of length 1. Recall that the insertion algorithm in [1] can be reduced to
successively replacing the left-hand sides of relations (KB1)-(KB4) with the corresponding right-hand
sides; more precisely, a nontrivial insertion in a row of length n amounts to applying the mentioned
relations in positions n− 1, n− 2, . . . , 1, just like in the usual Schensted insertion − see [1][Section 4.3].
Based on this and Lemma 3.13, the corollary follows. Indeed, Lemma 3.13 says that each time we apply
a plactic relation in the insertion algorithm for the top row of a growth diagram, we can apply the
corresponding plactic relation in the bottom row, and still have a growth diagram. The chains Γ of
length 2 in Lemma 3.13 are needed to take care of the usual comparison test for inserting a letter at the
end of a row. �

Proof of Theorem 3.8. Immediate by Corollary 3.14 and Proposition 3.11. �

4. Proof of Lemma 3.13

The goal is to verify all the instances of Lemma 3.13 in the two cases considered, namely when ∆ has
property (PL) and (PR). We start with some simple lemmas.

Lemma 4.1. Relation (KB1) can be applied only to a permutation for which β precedes α, both entries
being in positions 1 through k. Relation (KB2) can be applied only to a permutation for which δ precedes
γ, both entries being in positions larger than k.

Proof. This is immediate by the cover condition. �

We first concentrate on property (PL). By Lemma 4.1, only the plactic relations (KB1), (KB3), and
(KB4) can be applied in this case.

Lemma 4.2. If a chain ∆ has property (PL), then rules (J3), (J4), (J6), (J6′), (J7), and (J8′) are never
applied.

Proof. For the first five rules, the statement is clear because some permutation in the matrix of per-
mutations would not be a k-semi-shuffle. Assume that (J8′) is applied and that ∆ has length 1; thus
τi,0σi,1 = σi,0τi+1,0 = βγαβ with α < β < γ, for some i. Let r := (wi,0)−1(β) and s := (wi,0)−1(α),
where r < s, by the condition for rule (J8′). The vertical chains are in l-Bruhat order, where l ≥ s,
again by the condition for rule (J8′); in fact, r < s ≤ l ≤ k. We have w0,0(r) > w0,0(s), since inversions
of entries in positions 1 through k are preserved upon going down in a maximal chain in k-Bruhat order.
Since τ0,0 exchanges the entry in position l of w0,0 with an entry to its right, while a previous entry (in
position r) is inverted with an entry to its right, property (PL) is contradicted. �

The next lemma provides the main criterion for ruling out the cases that contradict Lemma 3.13.
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Lemma 4.3. Consider ∆ having property (PL), and assume it has length 1. Then it is not possible to
have τi,0 = (α, · ) for some i, and an entry β > α in wi,0 to the left of α.

Proof. Let r := (wi,0)−1(β) and s := (wi,0)−1(α), where r < s. Upon a case by case examination, based
on Lemma 4.2, we see that the left entries in the vertical transpositions τj,0 with j ≤ i are in positions
greater or equal to s. Thus l ≥ s. We now have an identical situation with the one in the proof of
Lemma 4.2, so property (PL) is contradicted. �

4.1. Preserving monotonicity. From now on we will use the notation in Lemma 3.13 freely. We start
by examining 2 by 1 fragments of growth diagrams. The following remark will be useful throughout.

Remark 4.4. If αβγδ 7→ γ′
δ′α′

β′ by one of the rules (J0)-(J8′), then each of the intersections {α, β}∩{α′, β′}
and {γ, δ}∩{γ′, δ′} contains at least an element. This remark will be used implicitly, often in conjunction
with Lemma 2.5.

Lemma 4.5. Let Γ = αβγδ and Γ
′
= α′

β′γ′
δ′ . If α < γ, then α′ < γ′.

Proof. By Remark 4.4, it suffices to consider the case β = γ. Assume that α′ > γ′. This can only
happen if α′ = δ′ = β. By inspecting the jeu de taquin rules, we conclude that the fragment of the
growth diagram has the following form.

w

-
αβ -βδ

6
ββ′

-
ββ′

6
αβ

-
αβ

6
βδ

In other words, the two rules applied are (J7′) and (J5′). The entries α and β are in positions 1
through k of the permutation w in the bottom left corner of the growth diagram, while β′ and δ are
in positions larger than k. It is easy to see that we cannot have β′ = δ. If β′ > δ, then β′ is to the
right of δ in w (since w is a k-semi-shuffle), and the transposition (β, β′) applied to w violates the cover
condition. Thus, we must have β′ < δ. By rule (J7′), α precedes β in w. Since we have the chain in
k-Bruhat order ββ′αββδ, Lemma 4.1 tells us that β precedes α in w, which is a contradiction. �

Lemma 4.6. Let Γ = αβγδ and Γ
′
= α′

β′γ′
δ′ . If α > γ, then α′ > γ′.

Proof. Like in the proof of the previous lemma, it suffices to consider a special case, namely α = δ.
Assume that α′ < γ′. This can only happen if β′ = γ′ = α. By inspecting the jeu de taquin rules, we
conclude that the fragment of the growth diagram has the following form.

w

-
αβ -γα

6
α′

α

-
α′

α

6
αβ

-
αβ

6
γα

In other words, the two rules applied are (J5′) and (J7′). The entries α′ and γ are in positions 1
through k of the permutation w in the bottom left corner of the growth diagram, while α and β are
in positions larger than k. It is easy to see that we cannot have α′ = γ. The case α′ > γ is ruled out
by Lemma 4.1, since we have the chain α′

ααβγα in k-Bruhat order starting at w. Thus, we must have
α′ < γ. By rule (J7′), γ precedes α′ in w. Then we obtain a contradiction by Lemma 4.3. �

Lemmas 4.5 and 4.6 verify Lemma 3.13 for 2 by 1 fragments of growth diagrams.
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4.2. The relation (KB3). The following lemma prepares the case when Γ is the left-hand side of a
relation (KB3).

Lemma 4.7. Let Γ = αβγδ and Γ
′
= α′

β′γ′
δ′ , where β < γ. The only cases when β′ = γ′ are the ones

shown in the diagrams below; in the first case, w has the form . . . α . . . β . . . | . . . γ . . . δ . . ., while in the
second one it has the form . . . β . . . α . . . | . . . γ . . . δ . . . (the vertical bar is between positions k and k + 1).

(4.1)

w

-
αβ -γδ

6
βγ

-
βγ

6
αβ

-
γδ

6
αβ

w

-
αβ -γδ

6
βγ

-
αγ

6
βγ

-
γδ

6
βδ

If β′ < γ′, then there is only one case when none of the two jeu de taquin rules is (J0), namely the
growth diagram below.

(4.2)

w

-
αβ -γδ

6
αγ

-
αβ

6
βγ

-
γδ

6
βδ

Proof. We check that we cannot have β′ = γ′ if the first jeu de taquin rule applied is one of (J0), (J1),
(J2), (J5), or (J5′). All cases except (J2) are straightforward, involving the application of a rule (J0).
In the case of (J2), we have ∆ = αx. The subcase x 6= γ is straightforward (the second rule applied is
(J0)), while if x = γ we necessarily have the growth diagram (4.2), because the second rule applied has
to be (J5). Indeed, it cannot be (J5′), because β and γ are in positions 1 through k of (α, β)w by (J2),
where w is the permutation in the bottom left corner of the growth diagram.

This leaves us with the cases when the first jeu de taquin rule applied is (J7′) or (J8). In these cases
we have ∆ = βx. In the first case we have Γ

′
= βxγδ, so we obtain the first growth diagram in (4.1) if

x = γ. In the second case, we clearly cannot have β′ = γ′ if x 6= γ (the second jeu de taquin rule applied
is (J0)); but if x = γ we obtain the second growth diagram, because we cannot use (J5′) as the second
rule (it leads to β′ = δ′, which is forbidden), so we have to use (J5). �

We now consider the case when Γ is the left-hand side of a relation (KB3).

Lemma 4.8. Assume that Γ is the left-hand side of a relation (KB3), that is, Γ = αβεϕγδ, where
α < β ≤ γ < δ ≤ ε < ϕ. Let Γ

′
= α′

β′ε′ϕ′γ′
δ′ . Then the only cases when β′ = ε′ are the ones shown

below, in which the bottom rows are the left-hand sides of relations (KB4) and (KB1), respectively.

(4.3)

w

-
αβ -εϕ -βε

6
βε

-
βε

6
αβ

-
εϕ

6
αβ

-
αβ

6
βε

w

-
αβ -εϕ -βε

6
βε

-
αε

6
βε

-
εϕ

6
βϕ

-
βε

6
εϕ

Moreover, if Γ ∼ Γr and Γ
′ ∼ Γ

′
r, then (∆,Γr) 7→ (Γ

′
r,∆

′
).

Proof. We will show that β′ = ε′ implies γ = β and δ = ε. Then Lemma 4.7 immediately leads to the
two growth diagrams in (4.3). Moreover, replacing Γ by Γr in the mentioned diagrams, we obtain the
corresponding diagrams below; this proves the second part of the lemma.

w

-εϕ -
αβ -βε

6
βε

-
βε

6
εϕ

-
αβ

6
εϕ

-
εϕ

6
βε

w

-εϕ -
αβ -βε

6
βε

-
βε

6
εϕ

-
αβ

6
εϕ

-
βϕ

6
εϕ

We now show that, under the assumption β′ = ε′, we can rule out the cases when at least one weak
inequality in α < β ≤ γ < δ ≤ ε < ϕ is a strict inequality. Let w be, as above, the permutation in the
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bottom left corner of the growth diagram. As above, by Lemma 4.7, we know that ∆ = βε. Assume
first that δ < ε. By the k-semi-shuffle condition, (β, ε)w has the form . . . | . . . β . . . δ . . . ϕ . . .. But then
w is not a k-semi-shuffle. So we are left with the case β < γ and δ = ε. Now β and γ are in positions
1 through k of w, while ε is in a position greater than k. The entry β cannot precede γ in w because
the transposition (β, ε) would violate the cover condition. It means that γ precedes β, which leads to a
contradiction by Lemma 4.3. �

We can now prove Lemma 3.13 when Γ is the left-hand side of a relation (KB3).

Lemma 4.9. Let (∆,Γ) 7→ (Γ
′
,∆

′
) be a height 1 fragment of a growth diagram for which ∆ has property

(PL) and Γ is the left-hand side of a relation (KB3). Then Γ
′
is the left-hand side of a relation (KB3),

(KB4), or (KB1). Moreover, if Γ ∼ Γr and Γ
′ ∼ Γ

′
r, then (∆,Γr) 7→ (Γ

′
r,∆

′
).

Proof. As usual, we let Γ = αβεϕγδ, where α < β ≤ γ < δ ≤ ε < ϕ, and Γ
′
= α′

β′ε′ϕ′γ′
δ′ . By Lemma

4.8, it suffices to consider the case when β′ < ε′. By Lemma 4.6, we have γ′ < δ′ ≤ ε′ < ϕ′. Let
Γ
′
r := ε′ϕ′α′

β′γ′
δ′ . Consider first the case when at least one of the first two jeu de taquin rules applied in

the diagram (∆,Γ) 7→ (Γ
′
,∆

′
) is (J0). Then, it is easy to see that (∆,Γr) 7→ (Γ

′
r,∆

′
). Indeed, if ∆ = xy

and the first rule used is (J0), then {α, β}∩{x, y, ε, ϕ} = ∅, and we have a similar property if the second
rule is (J0). By Lemma 4.5, we now have α′ < β′ ≤ γ′ < δ′, so Γ

′
is the left-hand side of a relation

(KB3) and Γ
′ ∼ Γ

′
r, as sought.

It remains to investigate the case when none of the first two jeu de taquin rules applied in the diagram
(∆,Γ) 7→ (Γ

′
,∆

′
) is (J0). By the second part of Lemma 4.7, the corresponding growth diagram must be

the one below, where w has the form . . . α . . . ε . . . | . . . β . . . ϕ . . ..

w

-
αβ -εϕ -γδ

6
αε

-
αβ

6
βε

-
εϕ

6
βϕ

-
γ′

δ′

6

But then we also have the following diagram.

w

-εϕ -
αβ -γδ

6
αε

-
εϕ

6
αϕ

-
αβ

6
βϕ

-
γ′

δ′

6

Hence, we have (∆,Γr) 7→ (Γ
′
r,∆

′
) as in the above case, and the same reasoning as before concludes the

proof. �

4.3. The relation (KB4). The proof of Lemma 3.13 when Γ is the left-hand side of a relation (KB4)
is completely similar to the proof for the relation (KB3), and therefore is omitted. Nevertheless, let us
mention that the new proof is based on the two lemmas below, which are the analogs of Lemmas 4.7
and 4.9, respectively.

Lemma 4.10. Let Γ = γδαβ and Γ
′
= γ′

δ′α′
β′ , where β < γ. The only case when β′ = γ′ is the one

shown in the diagram below.

(4.4)

-γδ -
αβ

6
βγ

-
βγ

6
γδ

-
αβ

6
γδ
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If β′ < γ′, then there is only one case when none of the two jeu de taquin rules is (J0), namely the
growth diagram below, which is the pair of (4.2).

(4.5)

-γδ -
αβ

6
αγ

-
γδ

6
αδ

-
αβ

6
βδ

Lemma 4.11. Let (∆,Γ) 7→ (Γ
′
,∆

′
) be a height 1 fragment of a growth diagram for which ∆ has property

(PL) and Γ is the left-hand side of a relation (KB4). Then Γ
′
is always the left-hand side of a relation

(KB4). Moreover, if Γ ∼ Γr and Γ
′ ∼ Γ

′
r, then (∆,Γr) 7→ (Γ

′
r,∆

′
).

4.4. The relation (KB1). We now prove Lemma 3.13 when Γ is the left-hand side of a relation (KB1),
namely Γ = αγγδβγ with α < β < γ < δ. Let ∆ = xy, and let w be the permutation in the top left
corner of the diagram. By Lemma 4.1, w has the form . . . β . . . α . . . | . . . γ . . . δ . . ..

We have a nontrivial case only when {x, y} ∩ {α, β, γ, δ} is nonempty. We will consider separately
the cases when this intersection contains α, β, γ, and δ. An important observation is that, if x ∈
{α, β, γ, δ} and y 6∈ {α, β, γ, δ}, then y has to precede β in w, due to Lemma 4.3; so w has the form
. . . y . . . β . . . α . . . | . . . γ . . . δ . . .. Below we represent growth diagrams in pairs: (∆,Γ) 7→ (Γ

′
,∆

′
) and

(∆,Γr) 7→ (Γ
′
r,∆

′
).

Case 1: x or y is α. Consider first the case x = α, with y 6∈ {α, β, γ, δ}. We must have α < y < β,
because y > β would violate the cover condition. This leads to the following growth diagrams.

w -αγ -γδ -βγ

6
αy

-
yγ

6
αy

-
γδ

6
αy

-
βγ

6
αy

-βγ -
αβ -βδ

6
αy

-
βγ

6
αy

-
yβ

6
αy

-
βδ

6
αy

We cannot have y = α, because it contradicts Lemma 4.3. So the only other possibility is ∆ = αβ ,
which leads to the following growth diagrams; the latter case is the only one when Γ

′
is not the left-hand

side of a relation (KB1), being instead the left-hand side of a relation (KB4).

w -αγ -γδ -βγ

6
αβ

-
βγ

6
αβ

-
γδ

6
αβ

-
αβ

6
βγ

-βγ -
αβ -βδ

6
αβ

-
βγ

6
αγ

-
αβ

6
βγ

-
γδ

6
βγ

Case 2: x or y is β. One possibility is that y = β, so x < β. Assuming x 6= α, w has the form
. . . β . . . x . . . α . . . | . . . γ . . . δ . . . by the cover condition, so we obtain the following growth diagrams.

w -αγ -γδ -βγ

6
xβ

-
αγ

6
xβ

-
γδ

6
xβ

-
βγ

6
xγ

-βγ -
αβ -βδ

6
xβ

-
βγ

6
xγ

-
αβ

6
xγ

-
βδ

6
xγ

The other possibility is x = β. Below we consider separately the cases β < y < γ and y > γ (in the
latter case, y 6= δ).

w -αγ -γδ -βγ

6
βy

-
αγ

6
βy

-
γδ

6
βy

-
yγ

6
βy

-βγ -
αβ -βδ

6
βy

-
yγ

6
βy

-
αy

6
βy

-
yδ

6
βy
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w -αγ -γδ -βγ

6
βy

-
αγ

6
βy

-
γδ

6
βy

-
βγ

6
γy

-βγ -
αβ -βδ

6
βy

-
βγ

6
γy

-
αβ

6
γy

-
βδ

6
γy

Case 3: x or y is γ. Here we are forced to have x = γ and γ < y < δ. This leads to the following
growth diagrams.

w -αγ -γδ -βγ

6
γy

-
αy

6
γy

-
yδ

6
γy

-
βy

6
γy

-βγ -
αβ -βδ

6
γy

-
βy

6
γy

-
αβ

6
γy

-
βδ

6
γy

Case 4: x or y is δ. Here we are forced to have x = δ and y > δ. This leads to the following growth
diagrams.

w -αγ -γδ -βγ

6
δy

-
αγ

6
δy

-
γy

6
δy

-
βγ

6
δy

-βγ -
αβ -βδ

6
δy

-
βγ

6
δy

-
αβ

6
δy

-
βy

6
δy

We have now proved Lemma 3.13 when Γ is the left-hand side of a relation (KB1). We make a more
precise statement below.

Lemma 4.12. Let (∆,Γ) 7→ (Γ
′
,∆

′
) be a height 1 fragment of a growth diagram for which ∆ has property

(PL) and Γ is the left-hand side of a relation (KB1). Then Γ
′
is the left-hand side of a relation (KB1)

or (KB4). Moreover, if Γ ∼ Γr and Γ
′ ∼ Γ

′
r, then (∆,Γr) 7→ (Γ

′
r,∆

′
).

4.5. The property (PR). It is possible to reduce the part of Lemma 3.13 related to property (PR) to
the one related to (PL). The idea is to use the automorphism w 7→ w◦ww◦ of the Bruhat order on Sn,
where w◦ is the longest permutation in Sn. Notice that this automorphism interchanges

• chains in k-Bruhat order with chains in (n− k)-Bruhat order,
• k-semi-shuffles with permutations having no descents before n− k,
• chains having properties (PL) and (PR),
• one side of (KB1) with the opposite side of (KB2), as well as the two sides of (KB3) and (KB4)

among themselves,
• the jeu de taquin relations as follows: J0 with itself, J1 with J3, J2 with J4, J5 with J7, J5′ with

J7′, J6 with J8, and J6′ with J8′.

References

[1] M. Beligan. Insertion for Tableaux of Transpositions. A Generalization of Schensted’s Algorithm. PhD thesis, York
University, Canada, 2007.

[2] N. Bergeron and S. Billey. RC-graphs and Schubert polynomials. Experimental Math., 2:257–269, 1993.
[3] N. Bergeron and F. Sottile. Schubert polynomials, the Bruhat order, and the geometry of flag manifolds. Duke Math.

J., 95:373–423, 1998.
[4] N. Bergeron and F. Sottile. Skew Schubert functions and the Pieri formula for flag manifolds. Trans. Amer. Math.

Soc., 354:651–673, 2002.
[5] S. Billey and R. Vakil. Intersections of Schubert varieties and other permutation array schemes. In Algorithms in

algebraic geometry, volume 146 of IMA Vol. Math. Appl., pages 21–54. Springer, New York, 2008.
[6] I. Coskun. A Littlewood-Richardson rule for two-step flag varieties. http://www-math.mit.edu/~coskun.

[7] H. Duan. Multiplicative rule of Schubert class. Invent. Math., 159:407–436, 2005.
[8] P. Edelman and C. Greene. Balanced tableaux. Adv. Math., 63:42–99, 1987.
[9] S. Fomin and A. Kirillov. Quadratic algebras, Dunkl elements, and Schubert calculus. In Advances in Geometry, pages
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