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ABSTRACT. Crystals are colored directed graphs encoding information about Lie algebra rep-
resentations. Kirillov-Reshetikhin (KR) crystals correspond to certain finite-dimensional rep-
resentations of affine Lie algebras. We present a combinatorial model which realizes tensor
products of (column shape) KR crystals uniformly across untwisted affine types. A corollary
states that the Macdonald polynomials (which generalize the irreducible characters of simple
Lie algebras), upon a certain specialization, coincide with the graded characters of tensor prod-
ucts of KR modules. Some computational applications, as well as related work based on the
present one, are also discussed.

1. INTRODUCTION

Kashiwara’s crystals [Kas91] are colored directed graphs encoding the structure of certain
bases (called crystal bases) for certain representations of quantum groups U,(g) as g goes to
zero; more precisely, the edges of the crystal, given by the so-called crystal operators, encode
the action of the Chevalley generators of U,(g) on the crystal basis. The first author and A.
Postnikov [LP07, LP08] defined the so-called alcove model for highest weight crystals associated
to a semisimple Lie algebra g (in fact, the model was defined more generally, for symmetrizable
Kac-Moody algebras g). This model can be viewed as a discrete counterpart of the celebrated
Littelmann path model [Lit94, Lit95].

We present a brief survey of our work [LNS*15a, LNS*14, LNS*15b]. One of the main ob-
jectives of this work is to show that a generalization of the alcove model, constructed in [LL15a]
and called the quantum alcove model, uniformly describes tensor products of column shape
Kirillov-Reshetikhin (KR) crystals [KR90], for all untwisted affine Lie types. (KR crystals cor-
respond to certain finite-dimensional representations of affine algebras.) More precisely, the
model realizes the crystal operators on the mentioned tensor product, and also gives an efficient
formula for the corresponding energy function [HKOT99]. (The energy comes from solvable lat-
tice models in statistical mechanics, and can be viewed as an affine grading on a tensor product
of KR crystals, as explained below.) Furthermore, in [LL15b] the quantum alcove model is used
to give a uniform realization of the combinatorial R-matriz (that is, the unique affine crystal
isomorphism commuting factors in a tensor product of KR crystals).

The quantum alcove model is based on enumerating paths in the so-called quantum Bruhat
graph of the corresponding finite Weyl group. This graph originates in the quantum cohomology
theory for flag varieties [FWO04], and was first studied in [BFP99]. The path enumeration is
determined by the choice of a certain sequence of alcoves (an alcove path or, equivalently, a
A-chain of roots), like in the classical alcove model. If we restrict to paths in the Hasse diagram
of the Bruhat order, we recover the classical alcove model. In fact, in [LNS*14] we present a
second uniform model for tensor products of column shape KR crystals: the so-called quantum
Lakshmibai-Seshadri (LS) path model, which is based on piecewise-linear paths and the parabolic
analogue of the quantum Bruhat graph. A crystal isomorphism between the two models is also
given in [LNST14].
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We note that combinatorial models for all nonexceptional KR crystals were given in [FOS09]
in terms of tableau models; these are type-specific, and are based on certain fillings of Young
diagrams. The advantage of the quantum alcove model lies in the fact that it is a uniform model.
Moreover, the tableau models are more involved beyond A, and certain computations (related
to the energy function and the combinatorial R-matrix) were only worked out in special cases,
whereas they are now available in the quantum alcove model in full generality. However, the
tableau models have an advantage too: they are more explicit. Thus, it is important to relate
the two types of models, by making the corresponding crystal isomorphism explicit. In this way,
we can translate certain information (for instance, a statistic expressing the energy function, see
below) from the quantum alcove model to the tableau models. Such isomorphisms/translations
have been exhibited in types A, C, and B in [Lenl2, LS13, LL15a, BL]|. Below we describe in
detail the specialization of the quantum alcove model to type A, and the construction of the
affine crystal isomorphism between this specialization and the corresponding tableau model.

Our work has an important application to the theory of symmetric Macdonald polynomials
Py(z;q,t), which are a vast generalization of the ireducible characters of simple Lie algebras
depending on two parameters q,t. More precisely, we prove that the graded character of a ten-
sor product of column shape KR modules, denoted X (z;q), concides with the specialization
Py(z;q,t = 0) of the corresponding Macdonald polynomial. This is a corollary of our realization
of KR cystals in terms of the quantum alcove model and the Ram-Yip formula for Macdon-
ald polynomials [RY11]. An extension of the P = X result to the nonsymmetric Macdonald
polynomials E,(x;q,t) is also presented.

The context of the above P = X result has its origins in Ion’s observation [lon03] that, when
the affine simple root «q is short (which includes the duals of untwisted affine root systems),
Py (x;q,0) is the character of a Demazure module for an affine Lie algebra. (Demazure modules
are submodules of highest weight ones determined by a Borel subalgebra acting on an extremal
weight vector.) On the other hand, Fourier and Littelmann [FLO6] showed that, for simply-
laced untwisted affine Lie algebras, these Demazure characters are graded characters of tensor
products of KR modules. Combining [lon03] and [FLO6], one deduces the equality P = X in

the simply-laced untwisted cases. While the extension of both cited results to types Bﬁf), 07(11)7

F 4(1)7 Ggl) is problematic, we prove the mentioned equality for all untwisted types by different
methods.

We also mention interesting connections that our work highlights, as well as recent devel-
opments it has led to. These are related to: ¢-Whittaker functions, the quantum K-theory
of flag varieties, various properties of KR crystals, Weyl modules for current algebras, and a
categorification of Macdonald polynomials.
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2. BACKGROUND

2.1. Root systems. Let g be a complex semisimple Lie algebra, and h a Cartan subalgebra,
whose rank is r. Let ® C h* be the corresponding irreducible root system, by C b the real span
of the roots, and ®* C ® the set of positive roots. Let @~ := ®\®T. For a € ® we will say that
a>0ifa e ® and a < 0if a € ®~. The sign of the root o, denoted sgn(a), is defined to be 1
if « € ®T, and —1 otherwise. Let || = sgn(a)a. Let p:= $(3  co+ @). Let aq,...,a, € @ be
the corresponding simple roots, and s; := s,, the corresponding simple reflections. We denote
(-,-) the nondegenerate scalar product on b induced by the Killing form. Given a root o, we
consider the corresponding coroot a" := 2a/(a, @) and reflection so. If & = >, ¢;jay, then the
height of o, denoted by ht(«), is given by ht(«) := >, ¢;. We denote by & the highest root in
OT: we let = ag := —a and s := s5.
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Let W be the corresponding Weyl group and w, its longest element. The length function on
W is denoted by £(-). The Bruhat order on W is defined by its covers w < ws,, for a € % if
l(wsg) = £(w) + 1. Define w <G ws,, for a € T if £(ws,) = L(w) — 2ht(a”) + 1. The quantum
Bruhat graph [FWO04] is the directed graph on W with edges labeled by positive roots

(1) W — ws,  for w < wse or w <A WSey ;

see Example 5.2.
The weight lattice A is given by

(2) A:={xebg: (\a')€Zforany a € d}.

The weight lattice A is generated by the fundamental weights wy, . ..w;, which form the dual
basis to the basis of simple coroots, i.e., (w;, a}/) = 0;;. The set AT of dominant weights is given
by

(3) Ati={xeA: (N\aY)>0forany a € ®t}.
Let Z[A] be the group algebra of A. It has a Z-basis of formal exponents {z* : X\ € A}
with multiplication z* - 2# := z*™#, ie., Z[A] = Z[z**1, ...  2%"] is the algebra of Laurent

polynomials in r variables.
Given o € ® and k € Z, we denote by s, the reflection in the affine hyperplane

(4) Hop:={Nebp : (\a")=k}.

These reflections generate the affine Weyl group Wag for the dual root system ®¥ := {a" | a € ®}.
The hyperplanes H, j divide the real vector space hp into open regions, called alcoves. The
fundamental alcove A, is given by

(5) Ac:={Aebp|0<(NaY)<lforallaec®t}.

2.2. Kirillov-Reshetikhin (KR) crystals. A g-crystal (for a symmetrizable Kac-Moody al-
gebra g) is a nonempty set B together with maps e;, f; : B — B U {0} for i € I (I indexes
the simple roots, as usual, and 0 ¢ B), and wt : B — A. We require b’ = f;(b) if and only if
b=e;(t'), and wt(f;(b)) = wt(b) — ;. The maps e; and f; are called crystal operators and are
represented as arrows b — b’ = f;(b) colored i; thus they endow B with the structure of a colored
directed graph. For b € B, we set &;(b) := max{k | e¥(b) # 0}, and ¢;(b) := max{k | f¥(b) # 0}.
Given two g-crystals By and Bs, we define their tensor product By ® By as follows. As a set,
B ® Bs is the Cartesian product of the two sets. For b = by ® by € By ® Bs, the weight function
is simply wt(b) := wt(b1) + wt(b2). The crystal operators are given by

fi(b1) @ by if €5(b1) > pi(b2)
b1 ® fi(b2) otherwise,

(6) fi(b1 ® b) == {

and similarly for e;. The highest weight crystal B(\) of highest weight A\ € AT is a certain
crystal with a unique element uy such that e;(uy) = 0 for all ¢ € I and wt(uy) = A. It encodes
the structure of the crystal basis of the U,(g)-irreducible representation with highest weight A
as q goes to 0.

A Kirillov-Reshetikhin (KR) crystal [KR90] is a finite crystal B™® for an affine algebra,

associated to a rectangle of height r and width s, where » € I'\ {0} and s is any positive integer.
(1)

n—

We refer, throughout, to the untwisted affine types A
KR crystals B!
We now describe the tableau model for KR crystals B™! of type AN | where r € {1,2,...,n—

n—17
1}. As a classical type A, 1 crystal, the KR crystal B! is isomorphic to the corresponding
B(wy). Therefore, we can use the corresponding tableau model, as mentioned below.

In type AS_)I, an element b € B! is represented by a strictly increasing filling of a height

r column, with entries in [n] := {1,...,n}. We will now describe the crystal operators on a
tensor product of type Ale_)l KR crystals B™! in terms of the so-called signature rule, which is

just a translation of the tensor product rule (6). To apply f; (or €;) on b := b ® -+ ® b in

1= Ggl), and only consider column shape
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Bitl®...® B! consider the word with letters i and i + 1, if 1 <i < n — 1 (resp., the letters
n and 1, if ¢ = 0) formed by recording these letters in by, ..., b, which are scanned from left to
right and bottom to top; we make the convention that if ¢ = 0 and a column contains both 1
and n, then we discard this column. We replace the letter ¢ with the symbol + and the letter
i+ 1 with — (resp., n with + and 1 with —, if ¢ = 0). Then, we remove from our binary word
adjacent pairs —+, as long as this is possible. At the end of this process, we are left with a
word

(7) piB) =+ b —

called the i-signature of b.

Definition 2.1. (1) If y > 0, then e;(b) is obtained by replacing in b the letter ¢ + 1 which
corresponds to the leftmost — in p;(b) with the letter i (resp., the letter 1 with n, after which
we sort the column, if ¢ = 0). If y = 0, then e;(b) = 0.

(2) If z > 0, then f;(b) is obtained by replacing in b the letter ¢ which corresponds to the
rightmost + in p;(b) with the letter ¢ + 1 (resp., the letter n with 1, after which we sort the
column, if ¢ = 0). If z = 0, then f;(b) = 0.

_[2[1]1] — _ as its O-si
=515 +—>®®, and has + as its O-signature. So

b
Wehavefo(§ ; 1‘) = ; % 1‘.

We refer again to (column shape) KR crystals of arbitrary (untwisted) type. Given a com-
position p = (p1, ..., pk), we define the tensor product of KR crystals

k
(8) B =B := (X) B
=1

Example 2.2. Let n = 3,

Remarks 2.3. (1) It is known that B is connected as an affine crystal, but disconnected as a
classical crystal (i.e., with the 0-arrows removed); see Example 2.8.

(2) Let p’ be a composition obtained from p by permuting its parts. There is an affine crystal
isomorphism betwee B®P and B®P', which is unique by the previous remark. This isomorphism
is called the combinatorial R-matriz.

We need to distinguish certain arrows in B, which are related to affine Demazure crystals, as
we shall explain.

Definition 2.4. An arrow b — f;(b) in B is called a Demazure arrow if i # 0, or i« = 0 and
go(b) > 1. An arrow b — f;(b) in B is called a dual Demazure arrow if ¢ # 0, or i = 0 and
¢i(b) = 2.

Remarks 2.5. (1) By Fourier-Littelmann [FLO6], in simply-laced types, the tensor product of
KR crystals B is isomorphic, as a classical crystal (discard the affine 0-arrows) with a certain
Demazure crystal for the corresponding affine algebra. (Recall that Demazure modules are
submodules of highest weight ones determined by a Borel subalgebra acting on an extremal
weight vector.) Moreover, by [FSS07], the 0-arrows in the latter correspond precisely to the
Demazure arrows in B.

(2) In the case when all of the tensor factors in B are perfect crystals [HKO00], B remains
connected upon removal of the non-Demazure (resp. non-dual Demazure) 0-arrows.

(3) In classical types, B¥! is perfect as follows: in types A(l_)1 and DS) for all k, in type B,(Ll)

n
only for k # n, and in type C,Sl) only for k = n (using the standard indexing of the Dynkin
diagram); in other words, for all the Dynkin nodes in simply-laced types, and only for the nodes
corresponding to the long roots in non-simply-laced types, see [FOS10]. It was conjectured in
[HKO™'99] that the same is true in the exceptional types. In type Ggl) this was confirmed in
[Yam98]. For the other exceptional types, see Section 7.
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The energy function D = Dp is a function from B to the integers, defined by summing
the so-called local energies of all pairs of tensor factors; it is used to express one-dimensional
configuration sums in statistical mechanics [HKO™02, HKO99]. We will only refer here to the
so-called left energy [LNS'14], so we will not make this specification. (There are two conventions
in defining the local energy of a pair of tensor factors: commuting the right one towards the
head of the tensor product, or the left one towards the tail; the left energy corresponds to the
second choice, and the right energy to the first.) We will only need the following property of
the energy function, which defines it as an affine grading on B.

Theorem 2.6. [NS08, ST12] The energy is preserved by the classical crystal operators f;, i.e.,
i #0. If b — fo(b) is a dual Demazure arrow, then D(fo(b)) = D(b) — 1.

Remark 2.7. Theorem 2.6 shows that the energy is determined up to a constant on the connected
components of the subgraph of the affine crystal B containing only the dual Demazure arrows.
See also Remark 2.5 (2).

Example 2.8. The crystal B®(LL1 = (BL1H®3 ip type Agl) is plotted in Figure 1, using the
tableau model. All the arrows labeled 1 and 2 are displayed, but only some arrows labeled 0;
the dotted arrows are non-dual Demazure arrows, as they are at the end of a 0-string. One can
see that the 33 = 27 vertices of the crystal are divided into four classical components, in which
the energy is 0, —1, —2, and —3, by Theorem 2.6.

1®lel 1®2®1 201l 3®2®1

L o ‘2 ‘2 o
19102 28201 1®3®1 .......... 3191 201®2
1 ‘2 2 -------------- 1 1 2
1®2®2 1®1®3 0 203®1 1®3®2 IR1I®2 201®3 ()
1\ 1 2 1 1 2
20202 10293 5@3@1 20302 3202 301®3
‘2 1 ‘2 1 /2 ‘2 1
29203 1®3®3 303®2 30203
\2 | .
203®3
3®3®(3

FIGURE 1. The crystal B®(1:1.1)

3. THE QUANTUM ALCOVE MODEL

In this section we recall from [LL15a] the construction of the quantum alcove model and its
main properties.
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3.1. A-chains and admissible subsets. We say that two alcoves are adjacent if they are

distinct and have a common wall. Given a pair of adjacent alcoves A and B, we write A 2. B
if the common wall is of the form Hg; and the root 3 € ® points in the direction from A to B.

Definition 3.1. [LP07] An alcove path is a sequence of alcoves (Ao, A1, ..., Am) such that A;_
and A; are adjacent, for j = 1,...m. We say that an alcove path is reduced if it has minimal
length among all alcove paths from Ag to A,,.

Let Ay = Ao + X be the translation of the fundamental alcove A, by the weight A.
Definition 3.2. [LP07] The sequence of roots (51, B2, ..., m) is called a A\-chain if

Ap=Ae DA, B g, = A,
is a reduced alcove path.

We now fix a dominant weight A and an alcove path II = (Ay,...,4,,) from Ay = A, to
A, = A_y. Note that II is determined by the corresponding A-chain I' := (f4, ..., ), which
consists of positive roots. A specific choice of a A-chain, called a lex \-chain, is given in [LP08,
Proposition 4.2]; this choice depends on a total order on the simple roots. We let r; := sg,,
and let 7; be the affine reflection in the hyperplane containing the common face of A;_; and
A;, for i = 1,...,m; in other words, 7; := sg, _;,, where l; := |{j < i; B; = B;}|. We define
lLi=W\B) —li=1{i>i; 8 =Bi} |
Example 3.3. Consider the dominant weight A = 3e1+2¢5 in the root system Ay (cf. Section 5
and the notation therein). A A-chain is I' = (a3, a3, a3, a3, a2, az). The corresponding
l; are (0,0,1,1,0,2) and 1; are {2,3,1,2,1,1}. The alcove path is shown in Figure 2a; here A,
is shaded, and A_) is the alcove at the end of the path.

23 ! 12 23 & 12
€, €, I
3 €; =-ud)
—A
(A) T for A = 3e1 + 2¢2 (B) I'(J) for J =
{1’ 27 37 5}

FI1GURE 2. Unfolded and folded A\-chain

Let J = {j1 < jo < --- < js} be asubset of [m]. The elements of J are called folding positions.
We fold II in the hyperplanes corresponding to these positions and obtain a folded path, see
Example 3.6 and Figure 2b. Like II, the folded path can be recorded by a sequence of roots,
namely I'(J) = (y1,72, - - -, Ym), Where
(9) Ve =TTy -5, (Bk) 5
with j, the largest folding position less than k. We define v := rj,75, ...7;,(p). Upon folding,
the hyperplane separating the alcoves A;_1 and Ag in II is mapped to
(10) H|'y;€|,fl,‘v’ = ?jl%\]ﬁ T ?jp(Hﬁkv—lk) )

for some lg , which is defined by this relation.
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Given i € J, we say that ¢ is a positive folding position if v; > 0, and a negative folding
position if y; < 0. We denote the positive folding positions by JT, and the negative ones by
J~. We call wt(J) := —7},Tj, ...7j,(—A) the weight of J. We define the height and coheight of
J by

(11) ht(J) =Y I, cht(J) =Y I;.

JjeEJ ™ JjeJ~
Definition 3.4. A subset J = {j1 < jo <--- < js} C [m] (possibly empty) is an admissible
subset if we have the following path in the quantum Bruhat graph on W:

(12) 1 i)?"jl %le'f‘jz % %7‘]‘17"]‘2“-7“]'3 =: ¢(J)

We call T'(J) an admissible folding, and ¢(J) its final direction. We let A(T") be the collection
of admissible subsets.

Remarks 3.5. (1) Positive and negative folding positions correspond to up and down steps (in
Bruhat order) in the chain (12), respectively.

(2) If we restrict to admissible subsets for which the path (12) has no down steps, we recover
the classical alcove model in [LP07, LP0g].

Example 3.6. We continue Example 3.3. Let J = {1,2, 3,5}, then I'(J) = (a3, 12, as1, aas,
as1, a13). The folded path is shown in Figure 2b. We have J* = {1,2}, J= = {3,5}, wt(J) =
—e3, ht(J) = ls+ls=1+1= 2, and cht(J) =Il3 415 =140 = 1. In Section 5 we will describe
an easy way to verify that J is admissible.

3.2. Crystal operators. In this section we define the crystal operators on A(T"). Given J C [m]
and a € @, we will use the following notation:
L=1()={icm]|vi==%a}, In=1Ia(J):=1,U{c0},
and I := (wt(.J),sgn(a)a"). The following graphical representation of the heights I/ for i € I,
and [2° is useful for defining the crystal operators. Let
> . . . . 1 ifigd
In={i1 <ig <+ <ip <ipy1 =00} and g; := {_1 ifz’iJ'

If & > 0, we define the continuous piecewise linear function g, : [0,n + %] — R by

) sgn (i, ) fee(k-1,k—1%),k=1,...,n
(13) ga(O)z—g, gh(z) = < g sen(v;,) ifxe(k—%,k), k=1,...,n
sgn((Veo, V) ifx € (n,n—i—%).
If @ < 0, we define g, to be the graph obtained by reflecting g_,, in the z-axis. By [LP0S,
Propositions 5.3 and 5.5], for any « we have
1 1

(14) sgn(a)l;]k = Jo <k — 2> Jk=1,...,n, and sgn(a)l5° := (wt(J),a") = ga <n+ 2) .

Example 3.7. We continue Example 3.6. The graphs of g,, and gg are given in Figure 3.

Let J be an admissible subset. Let ¢;; be the Kronecker delta function. Fix p in {0,...,7},
so ap is a simple root if p > 0, or § if p = 0. Let M be the maximum of g,,. Let m be the
minimum index 4 in I, for which we have sgn(ap)l;-] = M. It turns out that, if M >, 0, then

we have either m € J or m = oo; furthermore, if M > 6,0, then m has a predecessor k in I,,,
and we have k € J. We define

(15) fp(J) = {

Now we define e,. Again let M := maxg,,. Assuming that M > (wt(J), ), let k be the
maximum index ¢ in I,, for which we have sgn(ap)l{ = M, and let m be the successor of k

(J\{m}) U{k} if M > épo
0 otherwise .
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FIiGURE 3

in fap. Assuming also that M > §, 0, it turns out that we have k € J, and either m ¢ J or
m = oo. Define

(16) ep(J) = {(J\ {k})u{m} i M > (wt(J),ap) and M > dp0

0 otherwise.

In the above definitions, we use the convention that J\ {oo} = J U {o0} = J.

Example 3.8. We continue Example 3.7. We find f»(.J) by noting that faz ={1,4,00}. From
Jas, in Figure 3 we can see that the heights l;] and [g corresponding to these positions are 0,0, 1,
so k=4, m = oo, and fo(J) = JU{4} = {1,2,3,4,5}. We can see from Figure 3 that the
maximum of gy = 1, hence fo(J) = 0. To compute eg(.J) observe that Iy = {3,6} with k = 3
and m = 6. So eg(J) = (J\{k}) U{m} = {1,2,5,6}.

The following theorem is the main result of [LL15a].

Theorem 3.9. [LL15a]

(1) If J is an admissible subset and if f,(J) # 0, then fy(J) is also an admissible subset.
Similarly for e,(J). Moreover, fp(J) = J" if and only if ep(J') = J.
(2) We have wt(fy(J)) = wt(J) — ap. Moreover, if M > 6,0, then

op(J) =M —dp0, ep(J) =M — (wt(J), o),
while otherwise wp(J) = ep(J) = 0.
4. MAIN RESULTS

We summarize the main results in [LNST14], ¢f. also [LNS*15a, LL15b]. The setup is that
of untwisted affine root systems.

Theorem 4.1. [LNS*14, LL15b] Consider a composition p = (p1,...,p) and the correspond-
ing crystal B := ®f:1 BPil. Let A\ :=wy, +...+wy,, and let T be any A\-chain (see Section 3 ).
(1) The (combinatorial) crystal A(L') is isomorphic to the subgraph of B consisting of the
dual Demazure arrows, via a specific bijection which preserves the weights of the vertices.
(2) If the vertex b of B corresponds to J under the isomorphism in part (1), then the energy
is given by Dp(b) — DE* = —ht(J), where DEY is a global constant.

The proof proceeds as follows. Based on earlier work of Naito and Sagaki [NS05, NSO06,
NSO08] on crystal bases for tensor products of column-shape KR modules (also called level-zero
fundamental representations), we first derive a combinatorial model for the entire crystal B
above (including the dual Demazure arrows), in terms of so-called quantum Lakshmibai-Seshadri
(LS) paths; these are piecewise-linear paths constructed in terms of the parabolic analogue of
the quantum Bruhat graph. In order to achieve this, we also rely on the results in [LNST15a]
related to the quantum Bruhat graph and its parabolic analogue. Then we exhibit a crystal
isomorphism from the quantum alcove model to the quantum LS path model based on the lex
A-chain. In fact, this map is a very natural one, as it is the “forgetful map” on the quantum
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alcove model (whose structure is richer than that of quantum LS paths). The passage between
the quantum alcove models based on the lex A-chain and an arbitrary A-chain is investigated in
[LL15b], and is discussed below.

Remarks 4.2. (1) Based on the above crystal isomorphism between the quantum LS path model
and the quantum alcove model, we can construct the non-dual Demazure arrows in the latter.
However, this construction is considerably more involved than (15)-(16).

(2) Although the quantum alcove model so far misses the non-dual Demazure arrows, it has
the advantage of being a discrete model. Therefore, combinatorial methods are applicable, for
instance in the realization of the combinatorial R-matrix, see below. This should be compared
with the continuous arguments used for the similar purpose in the Littelmann path model
[Lit95].

(3) In a similar way to Theorem 4.1 (2), the right energy (see Section 2.2) is given by the
coheight statistic. These two expressions have the advantage of using only the local combinato-
rial data indexing a crystal vertex, whereas the recursive calculation of energy in Theorem 2.6
is less efficient, especially for large crystals.

In [LL15b] we enhance the quantum alcove model in order to give a uniform realization of
the combinatorial R-matrix. The construction is based on certain combinatorial moves called
quantum Yang-Bazxter moves, which generalize their alcove model versions defined in [Len07].
These moves are explicitly described in all Lie types by reduction to rank 2 root subsystems.
Note that, as far as existing realizations of the combinatorial R-matrix are concerned, they
are limited in scope and type-specific. For instance, in terms of the tableau model, there is
a construction in type A based on Schiitzenberger’s jeu de taquin (sliding algorithm) on two
columns [Ful97], whereas the extensions of this procedure to types B and C' are involved and
not transparent. By contrast, our construction is easy to formulate, and is related to more
general concepts (especially the shellability property of the quantum Bruhat graph [BFP99]).
We also show that, like the alcove model, its quantum generalization does not depend on the
choice of a A-chain, cf. Theorem 4.1 (1); in fact, we identify A(T") and A(T”) for two A-chains
I' and I based on quantum Yang-Baxter moves.

5. THE QUANTUM ALCOVE MODEL IN TYPE A

In this section we specialize the quantum alcove model to type A, and construct an affine
crystal isomorphism between this specialization and the usual tableau model for the tensor
products of type A KR crystals (see Section 2.2).

We start with the basic facts about the root system of type A,_1. We can identify the
space by with the quotient V :=R"/R(1,...,1), where R(1,...,1) denotes the subspace in R"

spanned by the vector (1,...,1). Let €1,...,&, € V be the images of the coordinate vectors
in R™. The root system is ® = {a;; :=¢; —¢; : @ # j, 1 < i,j < n}. The simple roots
are o = 441, for @ = 1,...,n — 1. The highest root a = ay,. We let ap = 0 = a,1. The

weight lattice is A = Z"/Z(1,...,1). The fundamental weights are w; = ¢; + ... + ¢;, for
i=1,...,n—1. A dominant weight A = Aje1 + ...+ A\y,_16,_1 is identified with the partition
(A1 > X2 > ... > A1 > Ay = 0) having at most n— 1 parts. Note that p = (n—1,n—2,...,0).
Considering the Young diagram of the dominant weight A as a concatenation of columns, whose
heights are A}, Ay, . . ., corresponds to expressing A as wy, +wy, +... (as usual, A’ is the conjugate
partition to ).

The Weyl group W is the symmetric group S,,, which acts on V' by permuting the coordinate
vectors €1,...,e,. Permutations w € S, are written in one-line notation w = w(l)...w(n).
For simplicity, we use the same notation (4, j) with 1 < i < j < n for the root «;; and the
reflection sq,;, which is the transposition ¢;; of i and j. We recall a criterion for the edges of
the type A quantum Bruhat graph. We need the circular order <; on [n] starting at i, namely
1<, 1+1<;...<;,n=<;1<;...<;1—1. It is convenient to think of this order in terms of
the numbers 1,...,n arranged on a circle clockwise. We make the convention that, whenever
we write a < b < ¢ < ..., we refer to the circular order <==,.
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Proposition 5.1. [Lenl2] For 1 < i < j < n, we have an edge w N w(i, j) if and only if
there is no k such that i < k < j and w(i) < w(k) < w(y).

Example 5.2. The quantum Bruhat graph of type As, i.e., on the symmetric group Sj, is
indicated in Figure 4.

321

(S
231
<13
213
a12

FIGURE 4. The quantum Bruhat graph for Sj

We now consider the specialization of the quantum alcove model to type A. For any k =
1,...,n —1, we have the following wg-chain, from A, to A_,, , denoted by I'(k) [LP07]:

(kk+1),  (hk+2) ..., (ko)
- (:k1,k;+1), (:kl,k+2) (:k:l,n),
(LE+1),  (LE+2) ..., (Ln).

Example 5.3. We specialize (17) ton =4 and k = 1,2,3. It is best to visualize I'(k) based on
a column of height n broken into two pieces, with the top part of height k£ and the bottom one
of height n — k; then I'(k) is obtained by pairing row numbers in the top and bottom parts, in
the prescribed order.

, F<1) = ((1,2),(1,3>,(1,4)); 7 F(S) = ((374)7(274)7(174));
) F(Q) = ((2,3),(2,4),(1,3),(1,4))~

Fix a dominant weight/partition A for the remainder of this section. We construct a -
chain T' = (1,52, ..., Bm) as the concatenation T' := I'' ... ", where IV = F(/\;-). Let J =
{j1 < --- < js} be a set of folding positions in I', not necessarily admissible, and let T" be the
corresponding list of roots of I', also viewed as transpositions. The factorization of I' induces
a factorization of T as T' = T'T?...T™, and of A = T'(J) as A = Al... AM. Recalling that
the roots in A were denoted -y, we use the notation v, € A? to indicate that the kth root in A



AFFINE CRYSTALS, MACDONALD POLYNOMIALS, AND COMBINATORIAL MODELS 11

falls in the segment AY (rather than the fact that A? contains a root equal to ). We denote
by T'...T7 the permutation obtained by composing the transpositions in T",...,T7 left to
right. For w € W, let w; = w(i). For w written in one-line notation as w = wjws ... wy, let

We now recall from [Lenl2] the construction of the correspondence between the type A
quantum alcove model and tableau model.

Definition 5.4. Let m; = m;(T) := T'...T7. We define the filling map, which associates with
each J C [m] a filling of the Young diagram A, by

(18) f11(J) = fill(T) := C; ...Cy,, where C; == m[1,\],

see the notation above. We define the sorted filling map sfill(J) by sorting ascendingly the
columns of fill(.]).

In other words, the ith column C; of fill(J) consists of the first A, entries of the permutation
m;, written in one-line notation; see Example 5.5.

Example 5.5. Let n = 3 and A = (4,3,0), which is identified with 4e; 4+ 32 = 3ws + w1, and

corresponds to the Young diagram ‘ We have

I =T'T°I°T* = T(2)L(2)T(2)(1) = ((2,3), (1,3) | (2,3), (1,3) [ (2,3), (1,3) | (1,2),(1,3)),
where we underlined the roots in positions J = {1,2,3,5,7}. Then
T=1((23),(1,3)(2,3)](23)](1,2), and

(19)  T(J))=A=AMNAA"=((2,3),(1,2) | (3,1),(2,3) | (1,3),(2,1) | (2,3),(3,1)),

where we again underlined the folding positions, and indicated the factorizations of T" and A by
vertical lines. It is easy to check that J is admissible; indeed, the sequence of permutations (12)
corresponding to J is a path in the quantum Bruaht graph, cf. Proposition 5.1 and Example
5.2:

o IIIIIII"

Here each permutation in (12) is written Vertlcally in one-line notatlon, with the entries in bold
to be transposed; moreover, if the transposition to be applied lies in "%, then the corresponding
permutation is represented as a broken column with the top part of height A.; see the structure
of I'" in (17) and Example 5.3. By considering the top part of the last column in each segment

2[2[2]3]
3113

and by concatenating these columns left to right, we obtain fill(.J), i.e., fill(J) =

We now state the main result of this section.

Theorem 5.6. [LL15a] The map sfill is an affine crystal isomorphism between A(I') and the
subgraph of B®Y consisting of the dual Demazure arrows. In other words, given sfill(J) = b,
there is a dual Demazure arrow b — fp(b) if and only if f,(J) # 0, and we have f;(b) =
still(fi(J))-

Remarks 5.7. (1) The affine crystal isomorphism in Theorem 5.6 is unique, by Remarks 2.5 (2),
(3).

(2) In [Lenll] it was proved that the map sfill preserves weights. Furthermore, in [Lenl12]
it was shown this map translates the height statistic to the Lascoux-Schiitzenberger charge
statistic [LS79], which is known to express the energy function in the tableau model. This
should be compared with Theorem 4.1 (2), where the constant D% is 0 in this case.

(3) A similar affine crystal isomorphism in type C (between the quantum alcove model and
the corresponding tableau model, based on Kashiwara-Nakashima columns [KIN94]) is also given
n [LL15a]. The height statistic is translated to a type C' analogue of the charge statistic in
[Len12, LS13]. Type B is under investigation in [BL].
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6. MACDONALD POLYNOMIALS

The Macdonald polynomials [Ma95, Ma03] are a remarkable family of orthogonal polynomials
associated to a finite root system, which depend on two parameters ¢, t; more precisely, they are
polynomials in the group algebra of the weight lattice whose coefficients are rational functions
in ¢,t. There are two families of Macdonald polynomials: the symmetric ones (under the Weyl
group action) Py(z;¢,t), and the nonsymmetric ones E,(x;q,t); here X is a dominant weight
(i.e., a partition in type A), and p is an arbitrary weight (i.e., a composition in type A) — a
convention we adopt for the rest of this paper. The symmetric Macdonald polynomials specialize
to the Hall-Littlewood polynomials (or spherical functions for a Chevalley group over a p-adic
field) upon setting ¢ = 0. They further specialize to the corresponding irreducible characters
upon setting ¢ = t = 0. By contrast, the nonsymmetric Macdonald polynomials become the
characters of Demazure modules when ¢ =t = 0.

The importance of Macdonald polynomials is due to their deep connections to many areas
of mathematics, such as: p-adic and real reductive groups, Kac-Moody algebras, double affine
Hecke algebras, Hilbert schemes, integrable quantum systems, conformal field theory, harmonic
analysis, special functions, multivariate statistics etc.

Ram and Yip [RY11] gave a combinatorial formula for both the symmetric and the nonsym-
metric Macdonald polynomials in terms of alcove walks. The specialization of this formula upon
setting ¢ = 0 was worked out in [Lenl12] and [OS13], in the symmetric and nonsymmetric cases,
respectively. More precisely, in the symmetric case we have the following formula in terms of
the quantum alcove model, where I' is any A-chain for a dominant weight .

Theorem 6.1. [RY11, Lenl2] We have

Pa(x35,0 Z "t
JEA(T

Note also that, for t = 0, the symmetric Macdonald polynomial coincides with a particular
nonsymmetric one (see [LNST14]):

(21) Py\(x;¢,0) = Ey,A(234,0) .

Now define the graded character corresponding to the KR crystal B in (8) (see for exam-
ple [HKO 02, HKO"99]) by

(22) Xa(wiq) = 3 PO P ),

beB

where wt(b) is the weight of the crystal element b. From Theorems 4.1 and 6.1, we immediately
derive one of our main results.

Corollary 6.2. [LNST14] We have
Px(z;47,0) = Xx(x39).

We will now present another result which follows from our work (and the result in [OS13]
mentioned above), namely a combinatorial formula for the specialization of a nonsymmetric
Macdonald polynomial at ¢ = 0 in terms of the quantum alcove model. This formula can be
viewed as the nonsymmetric analogue of Theorem 6.1. Furthermore, it generalizes the formula
for Demazure characters in terms of the alcove model in [Len07, Theorem 6.3].

Let A be a dominant weight, whose stabilizer is denoted by W). Let u = v(\), where v is
assumed to be a lowest coset representative modulo Wy. Given a Weyl group element u, we
denote by |u| the lowest coset representative of uW). Consider also an arbitrary A-chain T,
and recall the relevant notation from Section 3.

Theorem 6.3. [LNST15b] With the above notation, we have
E .Z' :q,0 Z qcht J) wi ( )

JEA(T)
Lo(N)]<v



AFFINE CRYSTALS, MACDONALD POLYNOMIALS, AND COMBINATORIAL MODELS

13

Macdonald Braverman—-Finkelberg '12  g-Whittaker
polynomials —< lon '03 functions
lon '03 PA(X’q'O) A
affine Braverman-
Demazure LNSSS Finkelberg
characters 11
Fourier—
Littelmann '06 same
ch%L:ﬁ:ﬁrg_ (graded ch ) f combinatorial Y
- raged characters o
Shimozono '07 g - - _model » quantum K- theory

tensor products of
Kirillov—Reshetikhin
modules

L.-Postnikov'07  Of flag varieties

FicURE 5. Connections highlighted by our work

A similar formula for E,(z;¢,0) in terms of quantum LS paths is also given in [LNST15b].
Furthermore, it is shown that this specialized nonsymmetric Macdonald polynomial can be
interpreted as the graded character of a Demazure-type submodule of the tensor product of KR
modules whose crystal is B in (8).

7. OTHER APPLICATIONS AND RELATED DEVELOPMENTS

In this section, we summarize other applications of our work, some interesting connections
that it highlights, as well as recent developments it has led to.

Braverman and Finkelberg [BF14b] have recently shown that, for simply-laced untwisted
affine root systems, the characters of the duals of certain current algebra modules, called global
Weyl modules, coincide with the characters W) (x;q) of the spaces of global sections of line
bundles on quasi-maps spaces; in this case, it is also shown that the function ¥y (z;q) is equal
to Py(x;q,0) times an explicit product of geometric series whose ratios are powers of ¢, and
these functions are called q- Whittaker functions due to their appearance in the quantum group
version of the Kostant-Whittaker reduction of Etingof and Sevostyanov for the ¢-Toda inte-
grable system. More precisely, the functions W) (x;q) are eigenfunctions of the ¢-Toda differ-
ence operators, and their generating function yields the K -theoretic J-function of Givental and
Lee [BF14a]. Note, however, that in the non-simply-laced untwisted cases, the situation differs
considerably: indeed, the proof in [BF14b] of the equality between ¥y (z; q) and Py(z;q,0) times
the explicit product above does not carry over; this is mainly because X (x;¢q) is not a single
affine Demazure character. Finally, the quantum alcove model arises in Lenart and Postnikov’s
conjectural description of the quantum product by a divisor in the quantum K-theory of flag
varieties G/B [LP07] (quantum K-theory is a K-theory analogue of quantum cohomology).
Note that, in principle, one can derive the structure constants in the quantum K-theory of
G/B from the K-theoretic J-function mentioned above, although this is hard. In Figure 5
we summarize the connections discussed above, as well as the related work of Ion [lon03] and
Fourier-Littelmann [FLO6] mentioned in Section 1.

The quantum LS path model and the quantum alcove model were implemented in the com-
puter algebra system Sage [Sage]. Using this implementation, we verified some conjectures
related to KR crystals in the exceptional types (except for two Dynkin nodes for type Eél)),
see [LNST14]; these conjectures, which had been previously proved only in the classical types
in [FOS10], are concerned with the perfectness property of KR crystals [HKO"02], and with
their graded classical decompositions [HKO799].
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There have been several developments related to our work. Starting from our results, a
combinatorial realization of the crystal basis of a level 0 extremal weight module and the
corresponding Demazure modules (over a quantum affine algebra) is exhibited in [INS14, NS14],
in terms of so-called semi-infinite LS paths. (An extremal weight module is generated by an
extremal weight vector of some affine weight A; while for \ of positive or negative level, this is
just the corresponding integrable highest, respectively lowest weight module, for A of level 0 its
structure is much more complicated.) As a corollary, a crystal-theoretic interpretation of the
relation between local and global Weyl modules is given in [NS14].

A formula for the specialized Macdonald polynomial Ey, »(z;q,t = c0) in terms of quantum
LS paths is given in [NNS15], by analogy with the one for E,(z;¢,0) mentioned in Section 6.
Furthermore, a representation-theoretic interpretation of F,,_x(x;q,00) is given in terms of a
Demazure submodule of the level 0 extremal weight module mentioned above. This is again
somewhat similar to the representation-theoretic interpretation of E,,(z;¢,0) discussed in Sec-
tion 6.

On another hand, our work was used in [CSS™14] to provide the character of a stable level-
one Demazure module associated to type Bq(zl) as an explicit combination of suitably specialized
Macdonald polynomials. In addition, our results were used in a crucial way by Chari and Ion
in [CI15, Theorem 4.2] to show that Macdonald polynomials at ¢ = 0 are characters of local
Weyl modules for current algebras. Based on this, they prove a Bernstein-Gelfand-Gelfand
(BGG) reciprocity theorem for the category of representations of a current algebra. In related
work, Khoroshkin [Khol3] exhibits a categorification of Macdonald polynomials, by realizing
them as the Euler characteristic of bigraded characters for certain complexes of modules over a
current algebra. This realization simplifies considerably if BGG reciprocity holds (the mentioned
complexes become actual modules concentrated in homological degree zero).
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