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Abstract

We give an explicit and computable description, in terms of the parabolic quantum

Bruhat graph, of the degree function defined for quantum Lakshmibai-Seshadri paths,

or equivalently, for “projected” (affine) level-zero Lakshmibai-Seshadri paths. This,

in turn, gives an explicit and computable description of the global energy function

on tensor products of Kirillov-Reshetikhin crystals of one-column type, and also of

(classically restricted) one-dimensional sums.

1 Introduction.

Let g be an affine Lie algebra with index set I for the simple roots, and let U ′q(g) be the

quantum affine algebra (without the degree operator) associated to g. Set I0 := I \{0}, where
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0 ∈ I corresponds to the “extended” vertex in the Dynkin diagram of g. In [NS1, NS2, NS3],

Naito and Sagaki gave a combinatorial realization of the crystal bases of tensor products of

level-zero fundamental representationsW ($i), i ∈ I0, over U
′
q(g), where the$i’s are the level-

zero fundamental weights; the U ′q(g)-modules W ($i) are often called Kirillov-Reshetikhin

(KR for short) modules of one-column type, and accordingly their crystal bases are called KR

crystals of one-column type. In the papers above, they realized elements of the crystal bases

as projected (affine) level-zero Lakshmibai-Seshadri (LS for short) paths. Here a projected

level-zero LS path is obtained from an ordinary LS path of shape λ by factoring out the null

root δ of the affine Lie algebra g, where λ is a level-zero dominant integral weight of the

form λ =
∑

i∈I0 mi$i, with mi ∈ Z≥0. However, from the nature of the definition above of

projected level-zero LS paths, their description of these objects in [NS1, NS2, NS3] is not as

explicit as the one of usual LS paths given by Littelmann in [L1].

By contrast, in our previous paper [LNS33], we proved that (in the case that g is an

untwisted affine Lie algebra) a projected level-zero LS path is identical to what we call a

quantum LS path, which is described quite explicitly in terms of the parabolic quantum

Bruhat graph, instead of (the Hasse diagram of) the usual Bruhat graph.

Also, in [NS5], we defined a certain integer-valued function, called the degree function, on

the set B(λ)cl of projected level-zero LS paths of shape λ =
∑

i∈I0 mi$i, and proved that it

is identical to the global “energy function” on the tensor product
⊗

i∈I0 B($i)
⊗mi
cl under the

isomorphism B(λ)cl ∼=
⊗

i∈I0 B($i)
⊗mi
cl of U ′q(g)-crystals; recall that for each i ∈ I0, the crystal

B($i)cl is isomorphic, as a U ′q(g)-crystal, to a KR crystal of one-column type. However, again

from the nature of the definition of projected level-zero LS paths, our description in [NS5] is

not very explicit, and hence it is difficult to compute the value of the degree function at a

given projected level-zero LS path.

In [LNS32], we give an explicit and computable description, in terms of the parabolic

quantum Bruhat graph, of the degree function defined for quantum LS paths, or equivalently,

for projected level-zero LS paths [LNS33]. This, in turn, gives a new description of the global

energy function on tensor products of KR crystals of one-column type, and also of (classically

restricted) one-dimensional sums arising from the study of solvable lattice models in statistical

mechanics through Baxter’s corner transfer matrix method (for details, see [S]).

The purpose of this paper is to give a new proof of the description above, in terms of the

parabolic quantum Bruhat graph, of the degree function. We should mention that our proof

in this paper is completely different from the one in [LNS32] in that (at least in appearance)

we do not make use of root operators; it is based on a technical lemma (Lemma 2.3.2) about

the decomposition of B(λ) into connected components, and also on our results in [LNS31],

where B(λ) denotes the crystal of (not projected) LS paths of shape λ.

This paper is organized as follows. In §2, we fix our basic notation, and review some

fundamental facts about level-zero path crystals. Also, we recall the definition of the degree
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function, and then prove a technical lemma (Lemma 2.3.2), which plays an important rule in

the proof of our main result (Theorem 4.1.1). In §3, we recall the notion of parabolic quantum

Bruhat graph, and then give the definition of quantum LS paths. In §4, we state and prove our

main result about the description of the degree function in terms of the parabolic quantum

Bruhat graph.
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was supported by Grant-in-Aid for Scientific Research (C), No. 24540010, Japan. D.S. was
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2 Lakshmibai-Seshadri paths and the degree function.

2.1 Basic notation. Let g be an untwisted affine Lie algebra over C with Cartan matrix

A = (aij)i, j∈I ; throughout this paper, the elements of the index set I are numbered as in

[Kac, §4.8, Table Aff 1]. Take a distinguished vertex 0 ∈ I as in [Kac], and set I0 := I \ {0}.
Let h =

(⊕
j∈I Cα∨j

)
⊕ Cd denote the Cartan subalgebra of g, where Π∨ :=

{
α∨j
}
j∈I ⊂ h is

the set of simple coroots, and d ∈ h is the scaling element (or degree operator). We denote

by 〈· , ·〉 : h∗ × h→ C the duality pairing between h∗ := HomC(h, C) and h. Denote by Π :={
αj

}
j∈I ⊂ h∗ := HomC(h,C) the set of simple roots, and by Λj ∈ h∗, j ∈ I, the fundamental

weights; note that 〈αj, d〉 = δj,0 and 〈Λj, d〉 = 0 for j ∈ I. Let δ =
∑

j∈I ajαj ∈ h∗ and

c =
∑

j∈I a
∨
j α
∨
j ∈ h denote the null root and the canonical central element of g, respectively.

The Weyl group W of g is defined as W := 〈rj | j ∈ I〉 ⊂ GL(h∗), where rj ∈ GL(h∗) denotes

the simple reflection associated to αj for j ∈ I, with ` : W → Z≥0 the length function on W .

Denote by ∆re the set of real roots, i.e., ∆re := WΠ, and by ∆+
re ⊂ ∆re the set of positive

real roots; for β ∈ ∆re, we denote by β∨ the dual root of β, and by rβ ∈ W the reflection

associated to β. We take a dual weight lattice P∨ and a weight lattice P as follows:

P∨ =

(⊕
j∈I

Zα∨j

)
⊕ Zd ⊂ h and P =

(⊕
j∈I

ZΛj

)
⊕ Zδ ⊂ h∗. (2.1.1)

It is clear that P contains the root lattice Q :=
⊕

j∈I Zαj, and that P ∼= HomZ(P
∨,Z).

Let W0 denote the subgroup of W generated by rj, j ∈ I0. Set Q0 :=
⊕

j∈I0 Zαj,

Q+
0 :=

∑
j∈I0 Z≥0αj, ∆0 := ∆re∩Q0, ∆

+
0 := ∆re∩Q+

0 , and ∆−0 := −∆+
0 . Note that W0 (resp.,

∆0, ∆
+
0 , ∆

−
0 ) can be thought of as the (finite) Weyl group (resp., the set of roots, the set

of positive roots, the set of negative roots) of the finite-dimensional simple Lie subalgebra of

g corresponding to the subset I0 of I. Also, we denote by θ ∈ ∆+
0 the highest root of the

(finite) root system ∆0; note that α0 = −θ + δ and α∨0 = −θ∨ + c.
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Definition 2.1.1.

(1) An integral weight λ ∈ P is said to be of level zero if 〈λ, c〉 = 0.

(2) An integral weight λ ∈ P is said to be level-zero dominant if 〈λ, c〉 = 0, and 〈λ, α∨j 〉 ≥ 0

for all j ∈ I0 = I \ {0}.

Remark 2.1.2.

(1) If λ ∈ P is of level zero, then 〈λ, α∨0 〉 = −〈λ, θ∨〉.

(2) For h ∈ Q∨0 :=
⊕

j∈I0 Zα
∨
j , we denote by th ∈ W the translation with respect to h (see

[Kac, §6.5]). If λ is of level-zero, then thλ = λ − 〈λ, h〉δ for h ∈ Q∨0 . Because W is

the semidirect product of W0 and the abelian (normal) subgroup T =
{
th | h ∈ Q∨0

}
of translations by [Kac, Proposition 6.5], we deduce (see also [NS4, Lemma 2.6] for

example) that if λ is level-zero dominant, thenWλ = W0Tλ ⊂ W0λ+Zδ ⊂ λ−Q+
0 +Zδ;

we define dλ ∈ Z>0 by:
{
n ∈ Z | λ+ nδ ∈ Tλ

}
= dλZ.

For each i ∈ I0, we define a level-zero fundamental weight $i ∈ P by

$i := Λi − a∨i Λ0. (2.1.2)

The weights$i for i ∈ I0 are actually level-zero dominant integral weights; indeed, 〈$i, c〉 = 0

and 〈$i, α
∨
j 〉 = δi,j for i, j ∈ I0.

Let cl : h∗ � h∗/Cδ denote the canonical projection from h∗ onto h∗/Cδ, and define Pcl

and P∨cl by

Pcl := cl(P ) =
⊕
j∈I

Z cl(Λj) and P∨cl :=
⊕
j∈I

Zα∨j ⊂ P∨. (2.1.3)

We see that Pcl
∼= P/Zδ, and that Pcl can be identified with HomZ(P

∨
cl ,Z) as a Z-module by

〈cl(λ), h〉 = 〈λ, h〉 for λ ∈ P and h ∈ P∨cl . (2.1.4)

Also, there exists a natural action of the Weyl group W on h∗/Cδ induced by the one on h∗,

since Wδ = δ; it is obvious that w ◦ cl = cl ◦w for all w ∈ W .

Remark 2.1.3. Let λ ∈ P be a level-zero integral weight. It is easy to check that cl(Wλ) =

W0 cl(λ) (see the proof of [NS4, Lemma 2.3.3]). In particular, we have cl(r0λ) = rθλ since

α0 = −θ + δ and α∨0 = −θ∨ + c.

For simplicity of notation, we often write β instead of cl(β) ∈ Pcl for β ∈
⊕

j∈I Zαj; note

that α0 = −θ in Pcl since α0 = −θ + δ in P .
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2.2 Lakshmibai-Seshadri paths. Here we recall the definition of Lakshmibai-Seshadri

(LS for short) paths from [L2, §4]. In this subsection, we fix a level-zero dominant integral

weight λ ∈
∑

i∈I0 Z≥0$i.

Definition 2.2.1. For µ, ν ∈ Wλ, let us write µ ≥ ν if there exists a sequence µ =

µ0, µ1, . . . , µn = ν of elements in Wλ and a sequence ξ1, . . . , ξn ∈ ∆+
re of positive real

roots such that µk = rξk(µk−1) and 〈µk−1, ξ
∨
k 〉 < 0 for k = 1, 2, . . . , n. If µ ≥ ν, then we

define dist(µ, ν) to be the maximal length n of all possible such sequences µ0, µ1, . . . , µn for

(µ, ν).

Remark 2.2.2. Keep the notation of Definition 2.2.1. We see that

ν − µ =
n∑

k=1

(µk − µk−1) = −
n∑

k=1

〈µk−1, ξ
∨
k 〉︸ ︷︷ ︸

<0

ξk ∈
∑
j∈I

Z≥0αj.

It is obvious that µ covers ν in the poset Wλ if and only if µ > ν with dist(µ, ν) = 1. In

this case, we write µm ν.

Remark 2.2.3. Let µ, ν ∈ Wλ be such that µ m ν, and let ξ ∈ ∆+
re be the positive real root

such that rξµ = ν. We know from [NS4, Lemma 2.11] that ξ ∈ ∆+
0 t

{
−γ + δ | γ ∈ ∆+

0

}
.

Definition 2.2.4. For µ, ν ∈ Wλ with µ > ν and a rational number 0 < σ < 1, a σ-chain

for (µ, ν) is, by definition, a sequence µ = µ0 m µ1 m · · · m µn = ν of elements in Wλ such

that σ〈µk−1, ξ
∨
k 〉 ∈ Z<0 for all k = 1, 2, . . . , n, where ξk is the positive real root such that

rξkµk−1 = µk.

Definition 2.2.5. An LS path of shape λ is, by definition, a pair (ν ; σ) of a sequence

ν : ν1 > ν2 > · · · > νs of elements in Wλ and a sequence σ : 0 = σ0 < σ1 < · · · < σs = 1 of

rational numbers satisfying the condition that there exists a σk-chain for (νk, νk+1) for each

k = 1, 2, . . . , s− 1. We denote by B(λ) the set of all LS paths of shape λ.

We identify π = (ν1, ν2, . . . , νs ; σ0, σ1, . . . , σs) ∈ B(λ) with the following piecewise-

linear, continuous map π : [0, 1]→ R⊗Z P :

π(t) =
k−1∑
l=1

(σl − σl−1)νl + (t− σk−1)νk for σk−1 ≤ t ≤ σk, 1 ≤ k ≤ s. (2.2.1)

Remark 2.2.6. It is obvious from the definition that for every ν ∈ Wλ, πν := (ν ; 0, 1) is an

LS path of shape λ, which corresponds (under (2.2.1)) to the straight line path πν(t) = tν,

t ∈ [0, 1], connecting 0 to ν.

For π ∈ B(λ), we define cl(π) : [0, 1]→ R⊗Z Pcl by

cl(π)(t) := cl(π(t)) for t ∈ [0, 1].

Also, we set

B(λ)cl := cl(B(λ)) =
{
cl(π) | π ∈ B(λ)

}
.
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Remark 2.2.7. For µ ∈ Pcl, we define ηµ(t) := tµ for t ∈ [0, 1]. It is easily seen from

Remark 2.2.6 that ηµ is contained in B(λ)cl for all µ ∈ cl(Wλ) = W0 cl(λ).

We can endow the set B(λ) of LS paths of shape λ (resp., the set B(λ)cl of “cl-projected”
LS paths of shape λ) with a crystal structure with weights in P (resp., in Pcl) by defining

root operators on B(λ) (resp., B(λ)cl); since we do not use root operators in this paper, we

omit the details (see [L2], and also [NS5, §2.2], [LNS32, §2.3]).

2.3 Degree function. As in the previous subsection, we fix a level-zero dominant in-

tegral weight λ ∈
∑

i∈I0 Z≥0$i. Let us recall the definition of the degree function Deg =

Degλ : B(λ)cl → Z≤0 from [NS5, §3.1]. We know the following proposition from [NS5, Propo-

sition 3.1.3].

Proposition 2.3.1. Let λ ∈
∑

i∈I0 Z≥0$i be a level-zero dominant integral weight. For each

η ∈ B(λ)cl, there exists a unique element πη ∈ B(λ) satisfying the following conditions:

(1) cl(πη) = η;

(2) the element πη is contained in the connected component B0(λ) of B(λ) containing the

straight line path πλ = (λ ; 0, 1) ∈ B(λ);

(3) if we write πη in the form (ν1, ν2, . . . , νs ; σ) as in Definition 2.2.5, then ν1 is contained

in the set λ−Q+
0 (see Remark 2.1.2 (2)).

Let η ∈ B(λ)cl. It follows from [NS5, Lemma 3.1.1] that πη(1) ∈ P is of the form

πη(1) = λ− β +Kδ for some β ∈ Q+
0 and K ∈ Z≥0. We define

Deg(η) = Degλ(η) := −K ∈ Z≤0.

The following lemma plays an important role in the proof of Theorem 4.1.1.

Lemma 2.3.2. Let C be a connected component of B(λ).

(1) For each η ∈ B(λ)cl, there exists a unique element πC
η ∈ C satisfying the same conditions

as (1) and (3) of Proposition 2.3.1.

(2) If πη(1) = λ − β − Deg(η)δ with β ∈ Q+
0 , then πC

η (1) = λ − β +
(
−Deg(η) + L

)
δ for

some L ∈ Z≥0.

(3) In part (2) above, C = B0(λ) if and only if L = 0.

Proof. If C = B0(λ), then we have πC
η = πη. In this case, part (1) follows from Proposi-

tion 2.3.1; part (2) and the “only if” part of part (3) are obvious.
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Assume that C 6= B0(λ). We see from [NS4, Theorem 3.1 and Remark 2.15] that the

connected component C contains a unique element πC
λ of the form

πC
λ = (λ−N1δ, . . . , λ−Ns−1δ, λ ; τ0, τ1, . . . , τs−1, τs) (2.3.1)

for some integers N1 > N2 > · · · > Ns−1 > Ns = 0 and rational numbers 0 = τ0 < τ1 < · · · <
τs = 1; since C 6= B0(λ) (and hence πC

λ 6= πλ), we have s > 1. From (2.3.1), by using (2.2.1),

we deduce that

πC
λ (1) = λ−

(
s∑

u=1

(τu − τu−1)Nu︸ ︷︷ ︸
=:N

)
δ;

note that N ∈ Z since πC
λ (1) ∈ P , which in turn follows from the integrality condition on LS

paths (see Definitions 2.2.4 and 2.2.5). Also, since N1 > N2 > · · · > Ns−1 > Ns = 0 with

s > 1, it follows that

N =
s∑

u=1

(τu − τu−1)Nu <

s∑
u=1

(τu − τu−1)N1 = N1.

Therefore, we have πC
λ (1) = λ−N1δ + Lδ, with L := N1 −N ∈ Z>0.

Let us denote by F : [0, 1]→ R⊗Z P the piecewise-linear, continuous function such that

πC
λ (t) = πλ(t) + F (t)δ for all t ∈ [0, 1]; note that F (0) = 0,

lim
t→0
t>0

F (t)− F (0)

t− 0
= lim

t→0
t>0

F (t)

t
= −N1, (2.3.2)

and F (1) = −N1+L. Then, by using [NS4, Lemma 2.26], we deduce that C =
{
π(t)+F (t)δ |

π ∈ B0(λ)
}
. Hence it follows from [NS5, Lemma 3.1.2] that{

π ∈ C | cl(π) = η
}
=
{
πη(t) + t(Mδ) + F (t)δ |M ∈ dλZ

}
;

recall the notation dλ ∈ Z≥0 from Remark 2.1.2 (2). Therefore, we conclude by Proposi-

tion 2.3.1 and (2.3.2) that πC
η (t) := πη(t)+F (t)δ+ t(N1δ) is a unique element in C satisfying

the same conditions as (1) and (3) of Proposition 2.3.1. This proves part (1) for C 6= B0(λ).

Moreover, part (2) for C 6= B0(λ) and the “if” part of part (3) follow immediately since

πC
η (1) = πη(1) + F (1)δ +N1δ = πη(1) + Lδ

with L > 0. This completes the proof of the lemma.

2.4 Global energy function. We know from [NS1, Proposition 5.8] and [NS3, Theorem

2.1.1 and Proposition 3.4.2] that for each i ∈ I0, the crystal B($i)cl is isomorphic, as a

crystal with weights in Pcl, to the crystal basis of the level-zero fundamental representation

W ($i) introduced in [Kas2, Theorem 5.17]; the level-zero fundamental modules W ($i),
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i ∈ I0, are often called Kirillov-Reshetikhin (KR for short) modules of one-column type, and

accordingly their crystal bases are called KR crystals of one-column type. Also, we know

the following from [NS2, Theorem 3.2]. Let i = (i1, i2, . . . , ip) be an arbitrary sequence

of elements of I0 (with repetitions allowed), and set λ := $i1 + $i2 + · · · + $ip . Then

the crystal B(λ)cl is isomorphic, as a crystal with weights in Pcl, to the tensor product

Bi := B($i1)cl ⊗ B($i2)cl ⊗ · · · ⊗ B($ip)cl of KR crystals of one-column type. Moreover, in

[NS5, Theorem 4.1], we proved that the degree function Deg = Degλ : B(λ)cl → Z≤0 in §2.3
is identical, up to a constant, to the global energy function Di (which is called the energy

function in [LNS32], and the right energy function in [LS]; note that the order of tensor factors

in tensor products of crystals in [LS] is “opposite” to the one in this paper and [LNS32]) on

Bi = B($i1)cl ⊗ B($i2)cl ⊗ · · · ⊗ B($ip)cl under the isomorphism Ψ : B(λ)cl
∼→ Bi of crystals

above.

Now we explain the relation between the degree function and the global energy function

more precisely. Following [HKOTY, §3] and [HKOTT, §3.3] (see also [NS5, §4.1]), we define

the global energy function Di : Bi = B($i1)cl⊗B($i2)cl⊗· · ·⊗B($ip)cl → Z as follows. First

we recall that there exists a unique isomorphism

B($ik)cl ⊗ B($ik+1
)cl ⊗ · · · ⊗ B($il−1

)cl ⊗ B($il)cl
∼→ B($il)cl ⊗ B($ik)cl ⊗ · · · ⊗ B($il−2

)cl ⊗ B($il−1
)cl

of crystals, which is given as the composite of combinatorial R-matrices (see [NS5, §2.4]). For
an element η1⊗η2⊗· · ·⊗ηp ∈ Bi, we define η

(k)
l ∈ B($il)cl, 1 ≤ k < l ≤ p, to be the first factor

(which lies in B($il)cl) of the image of ηk⊗ηk+1⊗· · ·⊗ηl ∈ B($ik)cl⊗B($ik+1
)cl⊗· · ·⊗B($il)cl

under the above isomorphism of crystals. For convenience, we set η
(l)
l := ηl for 1 ≤ l ≤ p.

Furthermore, for each 1 ≤ k ≤ p, take (and fix) an arbitrary element η[k ∈ B($ik)cl such that

fjη
[
k = 0 for all j ∈ I0. Then we set

Di(η1 ⊗ η2 ⊗ · · · ⊗ ηp) =∑
1≤k<l≤p

H$ik
,$il

(ηk ⊗ η
(k+1)
l ) +

p∑
k=1

H$ik
,$ik

(η[k ⊗ η
(1)
k ).

Here, H$ik
,$il

: B($ik)cl ⊗ B($il)cl → Z is the local energy function, which is a unique

Z-valued function on B($ik)cl ⊗ B($il)cl satisfying the conditions [NS5, (H1) and (H2) in

Theorem 2.5.1]. Also, we define a constant Dext
i ∈ Z by

Dext
i :=

p∑
k=1

H$ik
,$ik

(η[k ⊗ cl(π$ik
)).

In [NS5, Theorem 4.1], we proved that for every η ∈ B(λ)cl,

Deg(η) = Di(Ψ(η))−Dext
i ,

where Ψ : B(λ)cl
∼→ Bi is the isomorphism of crystals above.
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Remark 2.4.1. We can verify that the function Di ◦ Ψ : B(λ)cl → Z is a unique function

on B(λ)cl satisfying [NS5, (3.2.1)] (with Deg replaced by Di ◦ Ψ) and the condition that

Di ◦Ψ(cl(πλ)) = Dext
i (see [NS5, Lemma 3.2.1 (1)]).

3 Quantum Lakshmibai-Seshadri paths.

3.1 Parabolic quantum Bruhat graph. In this subsection, we fix a subset J of I0. Set

W0,J := 〈rj | j ∈ J〉 ⊂ W0.

It is well-known that each coset in W0/W0,J has a unique element of minimal length, called

the minimal coset representative for the coset; we denote by W J
0 ⊂ W0 the set of minimal

coset representatives for the cosets in W0/W0,J , and by b · c = b · cJ : W0 � W J
0
∼= W0/W0,J

the canonical projection. Also, we set ∆0,J := ∆0 ∩
(⊕

j∈J Zαj

)
, ∆±0,J := ∆±0 ∩

(⊕
j∈J Zαj

)
,

and ρ := (1/2)
∑

α∈∆+
0
α, ρJ := (1/2)

∑
α∈∆+

0,J
α.

Definition 3.1.1. The parabolic quantum Bruhat graph is a (∆+
0 \ ∆+

0,J)-labeled, directed

graph with vertex set W J
0 and (∆+

0 \ ∆+
0,J)-labeled, directed edges of the following form:

w
β→ bwrβc for w ∈ W J

0 and β ∈ ∆+
0 \∆+

0,J such that either

(i) `(bwrβc) = `(w) + 1, or

(ii) `(bwrβc) = `(w)− 2〈ρ− ρJ , β
∨〉+ 1;

if (i) holds (resp., (ii) holds), then the edge is called a Bruhat edge (resp., a quantum edge).

Example 3.1.2. Assume that g is of type A
(1)
2 (and hence ∆0 and W0 are of type A2), and

J = ∅. Then the quantum Bruhat graph is as follows, where θ = α1 + α2 ∈ ∆+
0 , the highest

root of A2:
w0

r1r2

r1

e

r2

r2r1

α2α1

θ

θ

α1α2

α2α1

θ

Bruhat edge quantum edge

α1 α2

α1α2

α1 α2
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Let x, y ∈ W J
0 . A directed path d from y to x in the parabolic quantum Bruhat graph

is, by definition, a pair of a sequence w0, w1, . . . , wn of elements in W J
0 and a sequence

β1, β2, . . . , βn of elements in ∆+
0 \∆+

0,J such that in the parabolic quantum Bruhat graph,

d : x = w0
β1← w1

β2← · · · βn← wn = y. (3.1.1)

A directed path d from y to x is said to be shortest if its length n is minimal among all possible

directed paths from y to x; let `(y, x) denote the length of a shortest directed path from y to x

in the parabolic quantum Bruhat graph. Also, we define the weight wt(d) ∈ Q∨ =
⊕

j∈I0 Zα
∨
j

of a directed path of the form (3.1.1) by

wt(d) :=
∑

1≤k≤n ;

wk−1
βk← wk is

a quantum edge

β∨k . (3.1.2)

We recall the following proposition from [LNS31, Theorem 6.5].

Proposition 3.1.3. Set Λ := cl(λ) ∈ Pcl.

(1) Let w ∈ W J
0 and β ∈ ∆+

0 \ ∆+
0,J be such that bwrβc

β←− w in the parabolic quantum

Bruhat graph. We set

ξ :=

wβ if bwrβc
β←− w is a Bruhat edge,

wβ + δ if bwrβc
β←− w is a quantum edge.

Then, ξ ∈ ∆+
re, and rξν m ν for all ν ∈ Wλ such that cl(ν) = wΛ.

(2) Let µ, ν ∈ Wλ be such that µ m ν, and let ξ ∈ ∆+
re be the positive real root such that

rξµ = ν; recall from Remark 2.2.3 that ξ ∈ ∆+
0 t

{
−γ + δ | γ ∈ ∆+

0

}
. Let w ∈ W J

0 be

a unique element in W J
0 such that cl(ν) = wΛ, and set

β :=

{
w−1ξ if ξ ∈ ∆+

0 ,

w−1(ξ − δ) if ξ ∈
{
−γ + δ | γ ∈ ∆+

0

}
.

Then, β ∈ ∆+
0 \ ∆+

J , and bwrβc
β←− w in the parabolic quantum Bruhat graph; note

that cl(µ) = bwrβcΛ. Moreover, the edge bwrβc
β←− w is a Bruhat (resp., quantum)

edge if ξ ∈ ∆+
0 (resp., ξ ∈

{
−γ + δ | γ ∈ ∆+

0

}
).

3.2 Definition of quantum Lakshmibai-Seshadri paths. In this subsection, we fix

a level-zero dominant integral weight λ ∈
∑

i∈I0 Z≥0$i, and set Λ := cl(λ) for simplicity of

notation. Also, we set

J :=
{
j ∈ I0 | 〈Λ, α∨j 〉 = 0

}
⊂ I0.
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Definition 3.2.1. Let x, y ∈ W J
0 , and let σ ∈ Q be such that 0 < σ < 1. A directed σ-path

from y to x is, by definition, a directed path

x = w0
β1← w1

β2← w2
β3← · · · βn← wn = y

from y to x in the parabolic quantum Bruhat graph satisfying the condition that

σ〈Λ, β∨k 〉 ∈ Z for all 1 ≤ k ≤ n.

Remark 3.2.2. Keep the notation and setting of Proposition 3.1.3 (1). Let 0 < σ < 1 be a

rational number. If an edge bwrβc
β←− w satisfies σ〈Λ, β∨〉 ∈ Z, then rξν m ν is a σ-chain

for (rξν, ν). Indeed, we have σ〈ν, ξ∨〉 = σ〈wΛ, wβ∨〉 = σ〈Λ, β∨〉 ∈ Z.

Example 3.2.3. Assume that g is of type A
(1)
2 , and λ = 2$1 +$2. Then, J is the empty set,

and hence the corresponding (parabolic) quantum Bruhat graph is the one in Example 3.1.2.

In the figure below, the symbol [a] on an edge indicates that the value of Λ = cl(λ) at the

coroot of the label of the edge is equal to a:

w0

r1r2

r1

e

r2

r2r1

[1][2]

[3]

[3]

[2][1]

[1][2]

[3]

Bruhat edge quantum edge

[2] [1]

[2][1]

[2] [1]

From this, we see that the directed edges r1
θ−→ r2r1, w0

θ−→ e, and r2
θ−→ r1r2 are (1/3)-

paths, and hence (2/3)-paths. Also, we see that the directed edges e
α1−→ r1, r1r2

α1−→ w0,

and r2r1
α1−→ r2 are (1/2)-paths.

Definition 3.2.4. Let us denote by B̃(λ)cl (resp., B̂(λ)cl) the set of all pairs η = (x ; σ) of

a sequence x : x1, x2, . . . , xs of elements in W J
0 , with xk 6= xk+1 for 1 ≤ k ≤ s − 1, and a

sequence σ : 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers satisfying the condition that

there exists a directed σk-path (resp., directed σk-path of length `(xk+1, xk)) from xk+1 to xk

for each 1 ≤ k ≤ s − 1. We call an element of B̃(λ)cl a quantum Lakshmibai-Seshadri path

of shape λ.
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Example 3.2.5. Keep the notation and setting of Example 3.2.3. We can check that

η1 = (r2, r2r1, r1 ; 0, 1/2, 2/3, 1),

η2 = (r1, e, w0 ; 0, 1/2, 2/3, 1),

η3 = (e, w0, r1r2 ; 0, 1/3, 1/2, 1)

are quantum LS paths of shape λ.

Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) be a rational path, that is, a pair of a sequence

x1, x2, . . . , xs of elements in W J
0 , with xk 6= xk+1 for 1 ≤ k ≤ s − 1, and a sequence

0 = σ0 < σ1 < · · · < σs = 1 of rational numbers. We identify η with the following piecewise-

linear, continuous map η : [0, 1]→ R⊗Z Pcl (cf. (2.2.1)):

η(t) =
k−1∑
l=1

(σl − σl−1)xlΛ + (t− σk−1)xkΛ for σk−1 ≤ t ≤ σk, 1 ≤ k ≤ s; (3.2.1)

here we note that the map W J
0 →W0Λ, w 7→ wΛ, is bijective.

We know the following from [LNS33, Theorem 4.1.1] (see also [LNS32]).

Theorem 3.2.6. With the notation and setting above, we have

B̂(λ)cl = B̃(λ)cl = B(λ)cl.

4 Main result.

4.1 Description of the degree function in terms of the parabolic quantum Bruhat

graph. As in §3.2, we fix a level-zero dominant integral weight λ ∈
∑

j∈I0 Z≥0$j, and set

J =
{
j ∈ I0 | 〈Λ, α∨j 〉 = 0

}
, where Λ := cl(λ).

Let η ∈ B(λ)cl. By Theorem 3.2.6, we can write η in the form:

η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ B̂(λ)cl.

For each 1 ≤ p ≤ s−1, let dp denote a directed σp-path from xp+1 to xp of length `(xp+1, xp);

observe that the value 〈Λ, wt(dp)〉 does not depend on the choice of such a directed σp-path

dp. Indeed, if d′p is another directed σp-path from xp+1 to xp of length `(xp+1, xp), then

it follows from [LNS31, Proposition 8.1] that wt(dp) − wt(d′p) ∈ Q∨J :=
⊕

j∈J Zα∨j . Since

J =
{
j ∈ I0 | 〈Λ, α∨j 〉 = 0

}
by the definition, we have

〈Λ, wt(dp)− wt(d′p)〉 = 0, and hence 〈Λ, wt(dp)〉 = 〈Λ, wt(d′p)〉.

Now, we define

ν̃1 := x1λ, ν̃p := xpλ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ for 2 ≤ p ≤ s, (4.1.1)
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and set

π̃η := (ν̃1, ν̃2, . . . , ν̃s ; σ0, σ1, . . . , σs).

The following is the main result of this paper; its proof will be given in the next subsection.

Theorem 4.1.1. Keep the notation above. Then, the element π̃η defined above is identical

to the element πη ∈ B0(λ) ⊂ B(λ) in Proposition 2.3.1. Moreover, we have

Deg(η) = −
s−1∑
p=1

(1− σp)
〈
Λ, wt(dp)

〉
. (4.1.2)

Remark 4.1.2. The formula (4.1.2) is identical to the one obtained in [LNS32, Theorem 4.5],

but the proof given there is completely different from the proof given in the next subsection.

Example 4.1.3. Keep the notation and setting of Examples 3.2.3 and 3.2.5. Let us compute

Deg(η1). It is obvious that r2
α1←− r2r1 (resp., r2r1

θ←− r1) is a shortest directed path from

r2r1 to r2 (resp., from r1 to r2r1). Because r2
α1←− r2r1 (resp., r2r1

θ←− r1) is a quantum edge

(resp., Bruhat edge), it follows from the definition (3.1.2) of the weight of a directed path

that

wt(r2
α1←− r2r1) = α∨1 and wt(r2r1

θ←− r1) = 0.

Hence, by Theorem 4.1.1, we have

Deg(η1) = −
(
1− 1

2

)〈
Λ, wt(r2

α1←− r2r1)
〉
−
(
1− 2

3

)〈
Λ, wt(r2r1

θ←− r1)
〉

= −
(
1− 1

2

)〈
Λ, α∨1

〉︸ ︷︷ ︸
=2

−
(
1− 2

3

)
〈Λ, 0〉 = −1.

Similarly, we have

Deg(η2) = −
(
1− 1

2

)〈
Λ, wt(r1

α1←− e)︸ ︷︷ ︸
=0

〉
−
(
1− 2

3

)〈
Λ, wt(e

θ←− w0)︸ ︷︷ ︸
=θ∨

〉
= −1,

Deg(η3) = −
(
1− 1

3

)〈
Λ, wt(e

θ←− w0)︸ ︷︷ ︸
=θ∨

〉
−
(
1− 1

2

)〈
Λ, wt(w0

α1←− r1r2)︸ ︷︷ ︸
=0

〉
= −2.

4.2 Proof of Theorem 4.1.1. Keep the notation of the previous subsection. First we

claim that π̃η ∈ B(λ). We will show by induction on p that ν̃p ∈ Wλ for all 1 ≤ p ≤ s.

If p = 1, then the assertion is obvious from the definition: ν̃1 = x1λ. Assume now that

s− 1 ≥ p ≥ 1, and dp is of the form

dp : xp = w0
β1←− w1

β2←− w2
β3←− · · · βn←− wn = xp+1.
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For each 1 ≤ k ≤ n, we define ξk ∈ ∆+
re as follows (see Proposition 3.1.3):

ξk =

wkβk if wk−1 = bwkrβk
c βk←− wk is a Bruhat edge,

wkβk + δ if wk−1 = bwkrβk
c βk←− wk is a quantum edge.

(4.2.1)

Then, for 0 ≤ k ≤ n, we obtain

µ̃k := rξk · · · rξ2rξ1 ν̃p = wkλ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

 ∑
l∈[1, k]q

〈
Λ, β∨l

〉 δ, (4.2.2)

where [1, k]q :=
{
1 ≤ l ≤ k | wl−1 = bwlrβl

c βl←− wl is a quantum edge
}
. Indeed, this equa-

tion follows by induction on k. If k = 0, then equation (4.2.2) is obvious by (4.1.1). Assume

that k ≥ 1; by the induction hypothesis,

µ̃k = rξk µ̃k−1 = rξkwk−1λ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

 ∑
l∈[1, k−1]q

〈
Λ, β∨l

〉 δ. (4.2.3)

If wk−1
βk←− wk is a Bruhat edge, then we have [1, k]q = [1, k− 1]q. Also, since ξk = wkβk, it

follows that

rξkwk−1λ = wkrβk
w−1k wk−1λ = wkrβk

w−1k bwkrβk
cλ = wkrβk

w−1k wkrβk
λ = wkλ.

Therefore, the right-hand side of equation (4.2.3) is identical to

wkλ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

 ∑
l∈[1, k]q

〈
Λ, β∨l

〉 δ.

If wk−1
βk←− wk is a quantum edge, then we have [1, k]q = [1, k − 1]q ∪

{
k
}
. Also, since

ξk = wkβk + δ, it follows that

rξkwk−1λ = rwkβk+δwk−1λ = rwkβk
twkβ

∨
k
wk−1λ = rwkβk

wk−1λ︸ ︷︷ ︸
= wkλ as above

−〈wk−1Λ, wkβ
∨
k 〉δ

= wkλ− 〈bwkrβk
cΛ, wkβ

∨
k 〉δ = wkλ− 〈wkrβk

Λ, wkβ
∨
k 〉δ

= wkλ+ 〈Λ, β∨k 〉δ.

Therefore, the right-hand side of equation (4.2.3) is identical to

wkλ+ 〈Λ, β∨k 〉δ +

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

 ∑
l∈[1, k−1]q

〈
Λ, β∨l

〉 δ

= wkλ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

 ∑
l∈[1, k]q

〈
Λ, β∨l

〉 δ.
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This proves equation (4.2.2). In particular, for k = n, we obtain

µ̃n = rξn · · · rξ2rξ1 ν̃p = wnλ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

 ∑
l∈[1, n]q

〈
Λ, β∨l

〉 δ

= xp+1λ+

(
p−1∑
u=1

〈
Λ, wt(du)

〉)
δ +

〈
Λ, wt(dp)

〉
δ

= xp+1λ+

(
p∑

u=1

〈
Λ, wt(du)

〉)
δ = ν̃p+1

by the definition (4.1.1) of ν̃p+1. Since ν̃p ∈ Wλ by our induction hypothesis, we deduce that

ν̃p+1 ∈ Wλ, as desired. Also, by Proposition 3.1.3 (1), we see that for 1 ≤ p ≤ s− 1,

ν̃p = µ̃0 m µ̃1 m µ̃2 m · · ·m µ̃n = ν̃p+1,

where µ̃k = rξk µ̃k−1 for 1 ≤ k ≤ n by the definitions. Moreover, since dp is a directed σp-path,

it follows from Remark 3.2.2 that the sequence above is a σp-chain for (ν̃p, ν̃p+1). Thus we

conclude that π̃η ∈ B(λ).
Because π̃η ∈ B(λ) as shown above, and because cl(π̃η) = η and ν̃1 = x1λ ∈ W0λ ⊂

λ−Q+
0 by the definitions, the element π̃η satisfies conditions (1) and (3) of Proposition 2.3.1.

Therefore, we deduce from Lemma 2.3.2 that π̃η(1) is of the form:

π̃η(1) = λ− β +
(
−Deg(η) + L

)
δ

for some β ∈ Q+
0 and L ∈ Z≥0. By Lemma 2.3.2, in order to prove that π̃η = πη, it suffices to

show that L = 0, or equivalently, −Deg(η) +L ≤ −Deg(η) since L ∈ Z≥0. By using (2.2.1),

we see from the definition of π̃η that

−Deg(η) + L =
s−1∑
p=0

(σp+1 − σp)

(
p∑

u=1

〈
Λ, wt(du)

〉)
. (4.2.4)

Now, if we write πη as

πη = (ν1, ν2, . . . , νb ; τ0, τ1, . . . , τb),

then we have νq ∈ λ−Q+
0 +Kqδ for some Kq ∈ Z, 1 ≤ q ≤ b (see Remark 2.1.2 (2)); observe

that K1 = 0 by the definition of πη (see Proposition 2.3.1 (3)), and that 0 = K1 ≤ K2 ≤
· · · ≤ Kb by Remark 2.2.2. Since cl(πη) = η, we deduce that there exist 0 = c0 < c1 < c2 <

· · · < cs = b such that τcp = σp for 0 ≤ p ≤ s, and hence πη can be written as:

(ν1, . . . , νc1︸ ︷︷ ︸
mapped to

x1λ by cl

, νc1+1, . . . , νc2︸ ︷︷ ︸
mapped to

x2λ by cl

, . . . , νcs−1+1, . . . , νcs = νb︸ ︷︷ ︸
mapped to xsλ by cl

;

0 = τ0︸ ︷︷ ︸
=σ0

, τ1, . . . , τc1︸︷︷︸
=σ1

, τc1+1, . . . , τc2︸︷︷︸
=σ2

, . . . , τcs−1+1, . . . , τcs = τb = 1︸ ︷︷ ︸
=σs

).
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From this, we compute

−Deg(η) =
b∑

q=1

(τq − τq−1)Kq =
s−1∑
p=0

cp+1∑
q=cp+1

(τq − τq−1)Kq

≥
s−1∑
p=0

cp+1∑
q=cp+1

(τq − τq−1)Kcp+1 since Kq ≥ Kcp+1 for all cp + 1 ≤ q ≤ cp+1

=
s−1∑
p=0

(τcp+1 − τcp)Kcp+1 =
s−1∑
p=0

(σp+1 − σp)Kcp+1. (4.2.5)

Therefore, by (4.2.4) and (4.2.5), in order to show the inequality −Deg(η) + L ≤ −Deg(η),

it suffices to show that

Kcp+1 ≥
p∑

u=1

〈
Λ, wt(du)

〉
for all 0 ≤ p ≤ s− 1. (4.2.6)

We show this inequality by induction on p. If p = 0, then the assertion is obvious since

Kcp+1 = K1 = 0 as seen above. Assume that s− 1 ≥ p > 0. Take µ0, µ1, . . . , µm ∈ Wλ such

that

νcp = µ0 m µ1 m · · ·m µm = νcp+1

(for example, take a τcp-chain for (νcp , νcp+1)), and let ζk ∈ ∆+
re be the positive real root such

that µk = rζkµk−1, 1 ≤ k ≤ m. For each 0 ≤ k ≤ m, let vk ∈ W J
0 be a unique element in

W J
0 such that cl(µk) = vkΛ; remark that v0 = xp and vm = xp+1. By repeated application of

Proposition 3.1.3 (2), we obtain a directed path (not shortest in general)

d : xp = v0
γ1←− v1

γ2←− v2
γ3←− · · · γm←− vm = xp+1

from xp+1 to xp in the parabolic quantum Bruhat graph, where γk ∈ ∆+
0 \∆+

0,J for 1 ≤ k ≤ m

are defined by

γk :=

{
v−1k ζk if ζk ∈ ∆+

0 ,

v−1k (ζk − δ) if ζk ∈
{
−γ + δ | γ ∈ ∆+

0

}
;

recall that vk−1
γk←− vk is a Bruhat edge if and only if ζk ∈ ∆+

0 . By the same argument as for

equation (4.2.2), we can show that for 0 ≤ k ≤ m,

µk = rζk · · · rζ2rζ1νcp = vkλ+Kcpδ +

(∑
l

〈
Λ, γ∨l

〉)
δ,

where the summation above is over all 1 ≤ l ≤ k for which vl−1 = bvlrγlc
γl←− vl is a quantum

edge. In particular, for k = m, we obtain

νcp+1 = µm = xp+1λ+Kcpδ + 〈Λ, wt(d)〉δ,
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and hence Kcp+1 = Kcp + 〈Λ, wt(d)〉. Here we see from [LNS31, Proposition 8.1] that

〈Λ, wt(d)〉 ≥ 〈Λ, wt(dp)〉. Also, by the induction hypothesis (note that cp−1 < cp),

Kcp ≥ Kcp−1+1 ≥
p−1∑
u=1

〈
Λ, wt(du)

〉
.

Combining these, we obtain

Kcp+1 = Kcp + 〈Λ, wt(d)〉 ≥
p−1∑
u=1

〈
Λ, wt(du)

〉
+ 〈Λ, wt(dp)〉 =

p∑
u=1

〈
Λ, wt(du)

〉
.

Thus, we have proved the inequality −Deg(η) + L ≤ −Deg(η), and hence the equality

π̃η = πη, as desired.

Finally, from equation (4.2.4) together with L = 0 shown above, we deduce that

−Deg(η) =
s−1∑
p=0

(σp+1 − σp)

(
p∑

u=1

〈
Λ, wt(du)

〉)
=

s−1∑
p=1

p∑
u=1

(σp+1 − σp)
〈
Λ, wt(du)

〉

=
s−1∑
p=1

{
s−1∑
q=p

(σq+1 − σq)

}〈
Λ, wt(dp)

〉
=

s−1∑
p=1

(σs − σp)
〈
Λ, wt(dp)

〉

=
s−1∑
p=1

(1− σp)
〈
Λ, wt(dp)

〉
.

Thus we have proved formula (4.1.2). This completes the proof of Theorem 4.1.1.
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