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ABSTRACT. We establish the equality of the specialization Eqyx(z; g, 0) of the nonsymmetric Mac-
donald polynomial E,x(z; g, t) at t = 0 with the graded character gch U] ()\) of a certain Demazure-
type submodule U} (\) of a tensor product of “single-column” Kirillov—Reshetikhin modules for
an untwisted affine Lie algebra, where )\ is a dominant integral weight and w is a (finite) Weyl
group element; this generalizes our previous result, that is, the equality between the specialization
Px(x; g, 0) of the symmetric Macdonald polynomial Py(z; ¢, t) at t = 0 and the graded character
of a tensor product of single-column Kirillov—Reshetikhin modules. We also give two combinatorial
formulas for the mentioned specialization of a nonsymmetric Macdonald polynomial: in terms of
quantum Lakshmibai-Seshadri paths and the quantum alcove model.

1. INTRODUCTION.

In our previous paper [LNS32], we proved that the specialization Py(z; ¢, 0) of the symmetric
Macdonald polynomial Py\(x; ¢, t) at t = 0 is identical to the graded character of a certain tensor
product of Kirillov—Reshetikhin (KR for short) modules of one-column type for an untwisted affine
Lie algebra g.f, where XA is a dominant integral weight for the finite-dimensional simple Lie algebra
g C gar- The purpose of this paper is to generalize this result to the specialization E,z(z; ¢, 0) of
the nonsymmetric Macdonald polynomial E,x(z; ¢, t) at t = 0, where w is an element of the (finite)
Weyl group W of g; note that if w is the longest element w, of W, then Ey, x(z; ¢, 0) = Px(z; ¢, 0).

Let us explain our result more precisely. Let g be a finite-dimensional simple Lie algebra (over
C), with X its integral weight lattice, and g, the associated untwisted affine Lie algebra. We
denote by {O‘i}i I and {aiv }l I the simple roots and simple coroots of g, respectively, and by wo;,
i € I, the fundamental weights for g. For a dominant integral weight A = .. m;w; € X with
m; € Z>o, let QLS(N) denote the crystal of quantum Lakshmibai-Seshadri (QLS for short) paths of
shape \; for details, see Definition 2.4 below. Then we know from [LNS?2] that the crystal QLS())
provides a realization of the crystal basis of the tensor product @),c; W (w;)®™ of the level-zero
fundamental representations W (w;), ¢ € I, of the quantum affine algebra Ué(gaf) associated to gas.
The main result of [LNS?2] states that the specialization Py(z; g, 0) of the symmetric Macdonald
polynomial at ¢t = 0 is identical to the graded character of the crystal QLS(\), where the grading
on QLS(A) is given by the degree function, or equivalently, by the (global) energy function.

Let W = (r; | i € I) denote the (finite) Weyl group of g, and set Wy := (r; | i € J) C W, where
J:={iell|{a)y, \)=0}. Also, let W/ denote the set of minimal(-length) coset representatives for
the cosets in W/Wy; for w € W, we denote by |w]| = |w]|” € W the minimal coset representative
for the coset wWy in W/W;. Now, for w € W7, we set

QLS,,(A) = {n € QLS(A) | ¢(n) < w},
where for a QLS path n = (z1, ..., zs; 00, 01, ..., 05) € QLS(X), we define the initial direction
t(n) of n to be x1 € W; here the symbol < is used to denote the Bruhat order on W. Furthermore,
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we define the graded character gch QLS,,(A) of QLS,,(A) € QLS(A) by

gch QLS,,(\) := Z q~ Peg(n) gwt(n)
neQLS,, (V)

where wt : QLS(A) — X and Deg : QLS(\) — Z<( denote the weight function and the degree
function on QLS(\), respectively; for the definitions, see (2.7) and (2.9) below. Now, the main
result of this paper is as follows.

Theorem 1.1. For each w € W7, the equality
gch QLSw()‘) = Ew/\(x; q, 0)

holds, where Eyx(x; q,0) denotes the specialization of the nonsymmetric Macdonald polynomial
Eux(z; g, t) att=0.

We should mention that this result generalizes [LNS®2, Proposition 7.8], since it holds that
QLS| (A) = QLS(A) and E|y,ja(7; ¢, 0) = Pr(7; ¢, 0), where wo € W denotes the longest
element. On the other hand, in Theorems 2.28 and 2.30, we express Fy\(x; g, 0) in terms of the
so-called quantum alcove model [LL1].

In the following, we explain the representation-theoretic meaning of Theorem 1.1; see §3 for
details. Let V' (\) denote the extremal weight module of extremal weight A over the quantum affine
algebra U (gat) associated to gar, and set V5 (A) := U (gar) S va C V/(A) for w € W, which is the
Demazure submodule generated by the extremal weight vector Sp°™wvy € V(A) of weight w over
the positive part U, (gar) of Uy(gat); note that V5 (X) C V.- (A) for allw € W. For w € W, we define
U (X) to be the image of V7 (A) under the canonical projection V= () — Vi (\)/Zf (A); for the
definition of Z;_(X), see §3.3. Then, U} ()) is isomorphic, as a Uy(g)-module, to the tensor product
it W(wi)®™ of level-zero fundamental representations W (w;), i € I; note that this is not an
isomorphism of U (gaf)-modules. Because the module V. ()) is generated by the extremal weight
vector Sp™wy € V/(X) over U (gar), it follows that the module U (X) C U,f (X) is also generated
by the image of S vy over U, (gat). Thus, in a sense, we can think of Uf(X) C Uy ()) as a
Demazure-type submodule of Uj (A), which is isomorphic as a U,(g)-module to @,;c; W (ww;)®™:.
Also, if we define the graded character gch Ut (\) of U () by

gchUf(\) = Y dim U (\)ayins 7",
YEQ,kEZ

where Q := @, Za; is the root lattice for g, 6 denotes the null root of ga¢, and ¢ := x9, then we
have (see Theorem 3.3)

Theorem 1.1

gch U (A) = gch QLS,,(A) Epa(z; g, 0).

In §2, we give a bijective proof of Theorem 1.1 by making use of the Orr-Shimozono formula
for the specialization at t = 0 of nonsymmetric Macdonald polynomials [OS]. The outline of our
proof is as follows. In §2.3, we briefly review the Orr-Shimozono formula (see Theorem 2.8), which
expresses the specialization E,(x; ¢, 0) of the nonsymmetric Macdonald polynomial E,(x; g, t) at
t = 0 in terms of the set QB(e; m,) of quantum alcove paths from e to m,, for an integral weight
i, where my,, denotes the element of the (extended) affine Weyl group that is of minimum length in
the coset t, W, with ¢, the translation by p. Next, for a dominant integral weight A € X, we show
in Lemma 2.14 that there exists a canonical bijection between the particular set QB(e; My, 2 )1ex
and the set A(—woA\); here, QB(e; My, x)iex 1s defined by using a specific reduced expression for
My,a = tw,n corresponding to a lexicographic (—wo,A)-chain of roots. Also, we give an explicit
bijection = : QB(e; My, x)1ex — QLS(A) in such a way that the diagram below is commutative (see
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Proposition 2.25). Furthermore, in Lemma 2.19 combined with Proposition 2.18, we show that
there exists a natural embedding QB(e; myy) = QB(e; M, 2 )1ex for an arbitrary w € W7,

QB(e; mw/\) Emﬂg QB(G; mwo)\)lex

(Lemma 2.19
and Proposition 2.18)

A(—wo
Bijection ( © )
(Lemma 2.14)

Bijection II

Bijection = ([LNS32, §8.1])

(Proposition 2.25)
QLS(N)

Finally, in Proposition 2.21 and Lemma 2.26, we show that the image of QB(e; my,)) under the
composite of the maps QB(e; myy) — QB(e; Mu.n)lex — QLS()) is identical to QLS (\);
we also show in Proposition 2.18, Lemma 2.19, and Proposition 2.25 that both of the embed-
ding QB(e; myy) < QB(e; mya)ex and the bijection = : QB(e; my,n) — QLS(A) preserve
“weights” and “degrees”. This implies that the graded character of QLS,, (\) is identical to that
of QB(e; my)). Because we know from the Orr-Shimozono formula that the graded character of
QB(e; myy) is identical to Eyz(x; g, 0), we conclude from the above that the graded character of
QLS,, (M) is identical to Eyz(z; g, 0).

In Appendix A.1, using the crystal structure on the set QLS(\), we obtain a recursive formula
(see Proposition A.1) for the graded characters gch QLS,,(A\), w € W+, which is described in terms
of Demagzure operators. Here we note that in view of Theorem 1.1 above, this recursive formula is
equivalent to the one (see Proposition A.4) for nonsymmetric Macdonald polynomials E,,\(z; g, 0),
w € W7, specialized at t = 0; in Appendix A.2, we provide a sketch of how to derive this recursive
formula for Eyz\(z; ¢, 0) by using the polynomial representation of the double affine Hecke algebra.
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2. PROOF OF THEOREM 1.1.

2.1. Setting. Let g be a finite-dimensional simple Lie algebra (over C). We denote by { a,-}i c; and

{al\/}i I the simple roots and simple coroots of g, respectively, and by w;, @ € I, the fundamental
weights for g; we set

Q=Pzau, Q' =EPZ, and X:=HZx:
iel iel iel
Let &t (resp., @) denote the set of positive roots (resp., coroots), and ®~ (resp., ®'~) the
set of negative roots (resp., coroots). We set p := (1/2)>  cqp+ @ Let W = (r; | i € I) be the
(finite) Weyl group of g, with length function ¢ : W — Z>. We denote by w, € W the longest
element, and by e € W the identity element. Also, let us denote by w : I — I the Dynkin diagram
automorphism given by: woa; = —ay, ;) for @ € I.
For a subset J C I, we set

o :z@"WW(@Zai), pJ::% > o,

i +
ieJ acd?

<I>§Jr ::<I>v+ﬁ<@Zaiv>, Wy=(r;|ieJ) CcW;
ieJ
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let wy, denote the longest element of W;. Also, let W7 denote the set of minimal(-length) coset
representatives for the cosets in W/Wjy; recall that

(2.1) W' ={weW|waed" forallae @l},

(2.2) Uwz) =l(w)+€(z)  forallwe W’ and z € Wj.

For w € W, we denote by |w| = |w|’ € W’ the minimal coset representative for the coset wV;
in W/Wj. We use the symbol < for the Bruhat order on the Weyl group W.

2.2. Quantum Lakshmibai-Seshadri paths. In this subsection, we recall the definition of quan-
tum Lakshmibai-Seshadri paths from [LNS32, §3].

Definition 2.1. Let J be a subset of I. The (parabolic) quantum Bruhat graph QB(W) is the
(@F\ @F)-labeled, directed graph with vertex set W+ and (®T\ ®7)-labeled, directed edges of the

following form: w N |wrg] for w € W7 and B € ®+\ &7, where either

(i) ¢(lwrg]) = €(w) + 1, or

(if) £([wrg]) = £(w) = 2(8Y, p— ps) + 1
if (i) holds (resp., (ii) holds), then the edge is called a Bruhat edge (resp., a quantum edge). If J
is the empty set @, then we simply write QB(W’) = QB(W") as QB(W).

Remark 2.2. (1) We have (8Y, p— py) > 0 for all 3 € @+ \ ®F. Indeed, since (o), ) < 0 for all
i€I\Jand a € ®F, we see that (), ps) <0 for all i € I\J and hence (ozl , p—pg) >0 for all
i €I\ J. Also, we have (o, p—ps) =1—1=0 for all i € J. Therefore, (3Y, p— py) > 0 for all
B € @\ ®¥. As a consequence, if w 2, |wrg] is a quantum edge, then £(|wrg|) < £(w).

(2) If w 2, |wrg] is a Bruhat edge, then wrg € W7, and hence |wrg| = wrg (see [LNS33,
Remark 3.1.2]).

(3) Let =, y € W be such that z < y in the Bruhat order on W. If

(2.3) T = x0 it 1 bry . B T =1y

is a shortest directed path from z to 3 in QB(W*), then all of its edges are Bruhat edges. Indeed,
by Definition 2.1 (for Bruhat edges) and part (1) of this remark (for quantum edges), we have

k k
(2.4) Uy) — 0z) = Y (Uzq) — L(zq-1) Z

g=1 =1 or <0

note that the equality holds if and only if ¢(z,) — ¢(z4—1) =1 for all 1 < ¢ < k, or equivalently, all
the edges are Bruhat edges. Since x < y by the assumption, we deduce from the chain property
(see [BB, Theorem 2.5.5]) that there exists a directed path from z to y in QB(W*) whose edges
are all Bruhat edges; the length of this directed path is equal to ¢(y) — £(z). Therefore, we obtain
k < {(y) —£(x) since the directed path (2.3) is a shortest one. Combining this inequality and (2.4),
we obtain k = ¢(y) — ¢(x), and hence all the edges in the shortest directed path (2.3) are Bruhat
edges.

Now, we fix a dominant integral weight A € X for g, and set
J=Jyvi={iel| (o, \)=0}Cl1.

As above, we simply write |w|/ = [w]/» € W’ for w € W as: |w], unless stated otherwise
explicitly.

Definition 2.3. For a given rational number o, we define QB,, (W) to be the subgraph of the
parabolic quantum Bruhat graph QB(W”) with the same vertex set but having only the edges:

w s wrg] with (8%, 0\ = o(8Y, \) € Z
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Definition 2.4. A quantum Lakshmibai-Seshadri (QLS for short) path of shape A is a pair

(2.5) n = (z1, x2, ..., Ts; 00, O1, ..., Os)

of a sequence x1, T, ..., Ts of elements in W with z, % xyy1 for 1 <u < s—1 and a sequence
0=o09 <01 < <os =1 of rational numbers satisfying the condition that there exists a directed
path from ;1 to x, in QB%/\(W‘]) for each 1 < u < s — 1; we denote this x, Zud ZTyr1. Let
QLS(A) denote the set of all QLS paths of shape .

Remark 2.5. We identify n € QLS(\) of the form (2.5) with the following piecewise-linear, contin-
uous map 7 : [0,1] - R®z X:
u—1
(2.6) n(t) = Z(ap — 0p—1)TpA + (t —oy—1)z A foroy1 <t <o, 1 <u<s.
p=1
In [LNS32, Theorem 3.3], we proved that QLS()) is identical (as a set of piecewise-linear, continuous

maps from [0,1] to R ®z X) to the set B(\)q of “projected” Lakshmibai-Seshadri paths of shape
A; for the definition of B())., see [LNS?2, §2.2].

Let n = (z1, ..., xs; 00, 01, ..., 05) € QLS(X). We define the weight wt(n) of n € QLS(\) by

s

(2.7) wt(n) :==n(1) = Z(O’u — Ou1)Ty A,

u=1

we can show in exactly the same way as [L2, Lemma 4.5a)] that wt(n) € X. Also, we define the
degree Deg(n) as follows (see [LNS32, §4.2 and Theorem 4.5]). First, let z, y € W7, and let

B B1 B2 B B
T = Yo Y1 T Ye =Y
be a shortest directed path from z to y in QB(W+). Then we set
(2.8) wty(z = y) = Z (BY, A € Z>o;
1<p<k

Yp—1 Bﬁ Yp is a quantum edge

we see from [LNS32, Proposition 4.1] that this value does not depend on the choice of a shortest

directed path from z to y in QB(W?). For n = (x1, ..., x4; 00, 01, ..., 05) € QLS(A), we define

s—1
(2.9) Deg(n) := — Y (1= 04) WiA(Tus1 = 2u) € Z<o.

u=1

For n = (x1, ..., x4; 00, 01, ..., 05) € QLS(A), we set ¢(n) := 21 € W/, and call it the initial
direction of 1. Now, for each w € W7, we set
(2.10) QLS,,(A) = {n € QLS(A) | ¢(n) < w},
and define the graded character gch QLS (A) of QLS (A) € QLS(A) by
gch QLS (A) = ) g~ Peaeitn),
nEQLS,, (A)

We will prove that for each w € W+, the equality
(2.11) gch QLS ,,(A) = Ewa(z; ¢, 0)

holds, where E )\ (x; g, 0) denotes the specialization of the nonsymmetric Macdonald polynomial
Eux(z; g, t)at t =0.
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2.3. Orr-Shimozono formula. In this subsection, we review a formula ([OS, Corollary 4.4]) for
the specialization at ¢ = 0 of nonsymmetric Macdonald polynomials.
Let g denote the dual Lie algebra of g, and let {az} and {&V} be the simple roots and the

simple coroots of g, respectively. We denote by W the Weyl group of g; note that W = W. As is
well-known, for w e W 2 W and ¢ € I,

(2.12) wa; = Z cja; if and only if wa) = Z cja}/.
jel jel
Hence we identify wa; with wa for w € W = W and i € I:

~ identif
(2.13) wa; N way

.-
Let T denote the set of positive roots of g, which we identify with the set ®V+ of positive coroots
of g by (2.13).

Now, let gar denote the untwisted affine Lie algebra associated to g. Let {522-} be the simple

~ - 7:Elaf -
roots of gar, where Iy = I {0}, and ¢ the null root of g,;. We denote by &+ (resp., ®* ) the
set of positive (resp., negative) real roots of g,¢; note that
E)aer = (Z>Og+ &)+) U (Z>Qg— CT)JF)
——— N—_————
identified with identified with
Z>O’g+®v+ Z>Og,q)\/+

Denote by Waf the Weyl group of g.r; note that Waf Q W = QxW. Also we denote by
Wext = X x W 2 X x W the extended affine Weyl group of ga¢, and by t,, € Wext the translation
by p € X. For 2 € Wey, define wt(z) € X and dir(z) € W by:

T = tyi(s) dir(z).
For an integral weight p € X for g, we set
my = to(p) e X W Wext

where v(p) denotes the shortest element in W such that v(u)p is an antidominant integral weight
(see [OS, (2.45)]). The following lemma will be used later.

Lemma 2.6. Let A € X be a dominant integral weight, and let w € W7, where J = J\ = {z el
(o), A\) =0}. Then, v(w\) = |wo|w™", and hence

Mapx = b ([we]w™) ™ = w(lwe]) M,
In particular,

{v(wo)\) =ov(|lws]A) = e, MawoA = two\s

’U()\) = LwOJv my = (LwOJ)_ltwoAv
and My) = WM.
Proof. Tt is obvious that (|we|w ™ )wA = w,\ is antidominant. Hence it suffices to show that
{(z) > {(|wo]w™t) for all z € W such that 2w = woA. If zwA = wo), then worw € Wy, and
hence z = wozw™! for some z € W; note that £(zw™!) = f(wz™!) = L(w) + £(z7!) since w € W’
and z € W;. Therefore,

U(z) = L(wo) — L(zw™ ) = L(wo) — L(w) — £(z7 ).

Here we remark that |w, | = wow J,0» Where wj, € Wy is the longest element. Hence it follows from
the computation above (with z replaced by w;,) that

UwoJw™) = Lwowsow™) = L(ws) — U(w) — L(w]).
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Since £(z71) < E(wJO) we obtain £(z) > £(|w,|w™!), as desired. O

We fix an arbitrary u € X, and apply the argument in [OS, §3.3] to the case that u = e (the
identity element) and w = m,,; we generally follow the notation thereof. Let
(2.14) My =TT Tiy - T,

f
eWaf

be a reduced expression for m,,, where 7 is an (affine) Dynkin diagram automorphism of ga¢, and
set
(2.15) ﬁ,?s =Ty T, for 1<k </
which is a positive real root of Fa¢ contained in Zgd — ®F (see [0S, Remark 3.17]). Then we can
write B,?S

(2.16) BOS = ayd + 95 for aj, € Zsg and S € d7, 1<k <4,

we think of @ as an element of ®¥~ under the identification (2.13) of ®+ and ®V*, and set
205 .= _(FOS)V € &+,

Let A = {ji1 < ja <--- < jr} be asubset of {1, 2, ..., ¢}. Following [OS, (3.16) and (3.17)]
(recall that u = e and w = m,,), we set

20 1= My, 2j 1= Zk—1T30S for 1 <k <r;
Jk
or equivalently, zg = my, and zj is obtained from the reduced expression (2.14) by removing the
j1-th reflection, the jo-th reflection, ..., and the ji-th reflection. We express these data as:
395 895 395
(2.17) pA = (Z() Ay —2 .. zr).

Definition 2.7 ([OS, §4.2]). Keep the notation and setting above. We say that p4 is an element
of QB(e; my,) if

dir(z9) —— dir(z1) e dir(z,)

is a directed path in the quantum Bruhat graph QB(W) = QB(W?) for W.
For an element p4 € QB(e; my,), we set (see [0S, (3.19)])

0s

(2.18) A™ = {jr € A| dir(z—1) N dir(z) is a quantum edge} C A,
and then set (see [OS, (4.1)])
(2.19) awt(pa) = Y 87,

JEA~

which is contained in Z-gd — Qt if A~ # 0, where QT := Y icr Z>0@;. Furthermore, in view of
equation (2.16), we set (in the notation of [OS, (2.4)])

(2.20) deg(qwt(pa)) Z a; € Z>o.
JEA—
Also, if p4 € QB(e; my,) is of the form (2.17), then we set
(2.21) end(pa) =2 € Wext = X x W and  wt(pa) := wt(end(pa)).
Theorem 2.8 ([OS, Corollary 4.4]). Keep the notation and setting above. We have
Eu(z;q,0) = Z eWt(p) gdeg(awt(p))

peEQB(e;my)
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2.4. Bijective correspondence between QB(e; my, ) and A(—w,\). First, we recall the quan-
tum alcove model from [LL1] (see also [LNS?2, §5.1]). We set Ha n := {¢ € bj | (@, () = n}
for « € ® and n € Z, where by := R®z X = @,.; Ra;. An alcove is, by definition, a connected
component (with respect to the usual topology on hg) of

b\ U Han
acdt neZ

We say that two alcoves are adjacent if they are distinct and have a common wall. For adjacent
alcoves A and B, we write A — B, with a € ®, if their common wall is contained in the hyperplane
H,, , for some n € Z, and if o points in the direction from A to B. An alcove path is a sequence
of alcoves (Ag, A1, ..., As) such that A,_; and A, are adjacent for each u =1, 2, ..., s. We say
that (Ap, A1, ..., As) is reduced if it has minimal length among all alcove paths from Ay to As.

Recall that Wy =2 X »x W acts (as affine transformations) on by by
(tew) - ¢ =w( +¢§ for £ € X, we W, and ¢ € bhp.
Remark 2.9. For = a¥ +né € & with « € & and n € Zsq (here we identify &+ with ®V+
under (2}\3{)), we have 7, =+ ( = (t_paTav) - ( = rav( — na = rq( — na for ¢ € hp. Hence
TV ing € Wext acts on by as the affine reflection with respect to the hyperplane H,, —,, = H_4 p.
Now, let A € X be a dominant integral weight; note that w,A € X is antidominant, where
w, € W denotes the longest element. We set

Ao:={Cebp|0<(a’,¢)<1lforall a € ®"},
and Ay » = Ao + wo .
Definition 2.10. The sequence of roots (71, 72, ..., Y¢) is called a (—woA)-chain of roots if

Ao — AO -M N A]_ -2 . —Ye AE _ Au)o)\

is a reduced alcove path.

Here we note that my, x = ty,x by Lemma 2.6. It follows from [LP1, Lemma 5.3] that there
exists a bijection:

(2.22) {reduced expressions for mg,\ = tu,a} A {(—woA)-chains of roots}.

More precisely, let my,x = ty,n = 77,74, - - - 73, be a reduced expression for my,x = ty,n € Wext-
We set Ay, := (mr, 73y -+ T3, ) - Ao for 0 < k < ¢, and

(2.23) Br i=mriy i, (@) = Trin) " Trip1)(Qn(iy))  for 1<k <4

note that B,'; is a positive real root of g,¢ contained in Zzog—l— ®T. In fact, by M, (2.4.7)], we have
(BE 1<k <) =3 N, 10 = & Ny, 00

(2.24) = {06+ Y| Be®, 0<b< —(BY, woA)}

under the identification (2.13) of ®* and ®V*. Therefore, we can write Sk in the form

(2.25) BE = bid + B, with by € Zsp and - € —wo (@Y \ ®YF),

for each 1 < k < £. If we set 4} = (67',;)\/ € —wo (T \ 1), then

L L

—_~L _ _
(2.26) Ao=Ag —2 Ay — 250 T Ay = Ay

is a (—woA)-chain of roots.
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Remark 2.11 (see [LNS32, §6.1]). Let 1 < k < £. We see from Remark 2.9 that the action of
UETS W on by is the affine reflection with respect to the hyperplane H [ Also, we know that

(2.27) 0<by=#{1<p<k|y =1} < (B —wod);
the sequence (by, ..., by) is called the height sequence for the (—wo,A)-chain (2.26).

Remark 2.12. Keep the notation and setting above. If we define ﬁ,?s, 1 <k <¢, by (2.15) for the
reduced expression My x = ty,x = T, Ti, - - - T4, then we have 6,% = —twoA([i’,?S) forall 1 <k </
In particular, 67,'; = —@ (see (2.16) and (2.25)), and hence 7t = 79° =: ;. Also, we have
b = (7, —wo) — ay.

Now, let

(2.28) Ao =Ag — A —24 0 T Ay = Ay
be a (—woA)-chain of roots.

Definition 2.13. Let A(—w,A) denote the set of all subsets A = {jl << jT} of {1, 2, ..., E}
such that

Vi1 iz REE 75
(2.29) e Ty, Topg gy 0 " Ty Topyy o Ty =1 O(A)

is a directed path in the quantum Bruhat graph QB(W) for W. The subsets A are called admissible
subsets, and ¢(A) is called the final direction of A.

For A = {ji < - < jr} € A(—wo])), we define wt(A) € X, height(A) € Z>q (see [LNS32,
Definition 5.1 and (7.1)]), and coheight(A) € Z>( as follows:

wt(A) := T Tat T (wo)

(2.30)
- _r’}’;lv*bh T'Y;Tzv —bj, 'T'Y;w*bjr ’ (wo)\)’
(2.31) height(4) = >~ ({(05)", —we) b)),
JEA_
(2.32) coheight(A4) := > by,
jeA_
where
. ,YL .
(2.33) A_:={jre Al Ty Ty —k Tyt Ty, Ty, 1S @ quantum edge}.

Let muyy,n = twor = 774 Tiy - - - 75, be the reduced expression for my,, x = ty, ) corresponding to the
(—woA)-chain of roots (2.28) under the correspondence (2.22). We define QB(e; my,, ) by using
this reduced expression for m,, = ty, 1. Note that

(2.34) e =5 =~ for 1 <k <V
Lemma 2.14. Keep the notation and setting above. Then,
A e A(—wo) if and only if pa € QB(e; my,z)-

Hence we have a bijection from A(—woA) onto QB(e; my,z) that maps A € A(—woA) to pa €
QB(e; my,x). Moreover, we have

(2.35) wt(A) = —wt(pa) and height(A) = deg(qwt(pa)) for all A € A(—woN).
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Proof. Let A = {j1 < - < j,«}. Then, we have

os 0s 0s

pa € QB(e; my,y) < dir(z) TN dir(z) Yo, dir(z,) in QB(W)
=e
— e 2 Ty, Y2, T Ty Ty 0 QB(W) by (2.34)

= A€ A(—woA).

Next, we prove that height(A) = deg(qwt(pa)) for all A € A(—wo)). Let A= {ji <---<jr} €
A(—ws); we see from the argument above that the set A~ in (2.18) is identical to the set A_ in
(2.33). Then, we see that

height(4) = 3 (((75)", ~wed) ~b;) by definition (231)
jEA_

= > (), —weX) = b;) by Remark 2.12
JEA~

=a;

= Y a; = deg(awt(pa)) by (2.20).
JEA-

Finally, we show that wt(A) = —wt(pa) for all A € A(—w,\); we proceed by induction on the
cardinality of A € A(—wo\). First, observe that this equality is obvious if A = (). Now, let us take
A= {j1 << gpo1 < jr} € A(—wo,)\), and set A’ := {j1 << jr—1}, which is also an element
of A(—woA). By direct computation, together with definition (2.30), we can show that

(2:36) Wh(A) = wt(A) — (1 —wod) = by )y, -1y (1)
or, we may refer the reader to the proof of [LNS?2, Proposition 6.7]. Also, we have
Zr = Zr—lrﬁ]QTS = Zr—lTajrg_'_@ = Zr—1 (t—ajr (@)\/T@) = Zr—ltajrfyjr Tryiy -

Therefore, if we write 2, = ty(.,) dir(2;) and 2,1 = ty(,_,) dir(zr—1), then we deduce that

bwt(z) A (2r) = bz, _y) (201 bas,55, 75, = bwt(zror)tay, dir(z—1)y, A0(Zr—1)79;,
= bywt(zr_1)4ay, dic(z_1)y;, (AT(2r-1)7; ),
and hence
wt(pa) = wt(z,) = wt(z,—1) + a;, dir(z,—1)7;j,-
Here, since a;, = (v;., —wo\) — bj, by Remark 2.12, we obtain
wt(pa) = wt(zr—1) + ((7)., —woA) — by, ) dir(z,—1)7;,
= wt(par) + ((v)., —woA) — b, ) dir(zr—1)7;,;

note that dir(zy—1) =7, -7y,  since dir(zo) = dir(my,) = e. Hence it follows that

wt(pa) = wt(par) + ({7 —wo) = bj, )roy, -1y ()
= - Wt(A,) + (<’Yj\:~7 —wo)\> - bjT)r'le T T'er_l (7]7‘)
by our induction hypothesis
=—wt(A) by (2.36),

as desired. This completes the proof of the lemma. ]
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2.5. Lexicographic (lex) (—w,A)-chains of roots. We keep the notation and setting of the
previous subsection; we fix a dominant integral weight A € X, and set J = Jy={i € I | (o, \) =
0}. For w € W, we simply write [w]|’ = [w]’> € W as |w] unless stated otherwise explicitly.

In [LP2, §4] (see also [LNS2, Proposition 5.4]), the authors introduced a specific (—wo\)-chain
of roots, called a lexicographic (lex for short) (—w,A\)-chain of roots. We will frequently make use
of the following property of a lex (—woA)-chain of roots: If my,,\ = 7rj ri, - -1, is the reduced
expression for my,, ) corresponding to a lex (—woA)-chain of roots (recall from (2.22) the one-to-one
correspondence between the reduced expressions for my,, = ty,\ and the (—w,\)-chains of roots),
then we have

b b b
(2.37) 0< ! < 2 <. ¢

— —_— = J— -~ S o\
(e) = () == (o)
where (- = bngrﬁi,% for 1 <k </ is given as in (2.23) and (2.25) (see also Remark 2.11).

We know from Lemma 2.6 that my,\ = tw,x = |Wo|(tr|ws] ™) and my = ty|ws] L. Tt follows
that my,, x = |wo]my. Also, since £(ty) = {(mx|ws|) = €(my) + £(|ws|) by [M, (2.4.5)], we have

<1,

(2.38) E(muw,n) = L(tw,n) = L(tr) = £(my) + £([wo ]);

note that £(t,,x) = £(tx) by [M, (2.4.1)]. This implies that the product of a reduced expression
for |wo] and a reduced expression for m) is a reduced expression for my, = ty,n. We set
M = 0(|ws]).

Lemma 2.15. Let my, \ = ©ri, 74, - - - 73, be the reduced expression for my, x corresponding to a lex
(—wo)-chain of roots under the correspondence (2.22). Then,

lWo | = Tr(iy) "+ Tr(iny) AN M\ = T3, Ty,
Namely,

Mok = TTiy iy *+ Tig = (Tr(in) = Ta(ing)) (MTing iy =" Tig)-

=|wo| (reduced) =my (reduced)

Proof. We make use of (2.37). Let K be the maximal index such that bg/ (@, —woA) = 0. Then
we see that

(2.30) {BE 1<k <0hn (—wo(@VF\ @Y ) = {Bh 1<k < K},

Also, we see from (2.24) that —wo(®VF\ ®Y*) C {BF | 1 < k < ¢}. Hence the left-hand side of
(2.39) is identical to —wo(®YT\ @Y "). From these, by noting that #(®" T\ @4 ") = f(w.) —l(wye) =
{(lwo]) = M (recall that wy, is the longest element of W), we conclude that K = M, and hence
that {BF |1 <k < M} = —wo(®VT\ ®Y"). In addition, since

(2.40) B,'; =iy T (i) = Triy) * Tr(in 1) (Qn(iy)) € —wo (@Y \ @}Jr)
for all 1 < k < M, we see easily that w(i1), ..., w(ips) € 1.

We will show that v := 77, 7r(,,) € W is identical to [wo]. By the argument above, we
have

{aed" v lac® ) ={B; |1 <k <M} =—w,(®V"\ &}").

From this, we see that
(2.41) — v wo(PVT\ @YF) Cc @V, so that v lwe(@VT\ @YT) C VT,
Hence it follows that {ov € ®VF | v wea € @Y™} C ®YF. Since v = rr(i) -+ Tr(iy) s a reduced
expression, we have {(v) = M, and hence

#{a € @' v wea € @V} = L(v T we) = N — M.
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Also, we have #®Y" = l(w;,.) = £(wo) — £(|ws]) = N — M. Therefore, we deduce that
(2.42) {ae @t v w,a € @V} = @Y.
Since wyo (@Y \ @YT) C VT \ @ and wyo(PYT) C @Y, we have
v wow o (BT \ YT C v hwe (@Y \ @) c @Y by (2.41),
v wow o (PYF) C v w (@Y 7) € YT by (2.42).

From these, we obtain v wew o(®V") C ®VF, which implies that v lw,ws, = e, and hence
that v = wowj, = |ws ], as desired. Finally, because £(my) = ¢(my,x) — {(|wo]) = £ — M and
My, A = |Wo|my, it follows that my = 7ry,, 41T, i a reduced expression for my. This proves
Lemma 2.15. ]

Fix a lex (—woA)-chain of roots. We construct QB(e; my,,») from the reduced expression m,,_ ) =
TTi, Tig - - - T4, corresponding to the lex (—woA)-chain of roots under (2.22), which we denote by
QB(e; My, a)lex; recall from (2.15), (2.16), and Remark 2.12 that for 1 < k < ¢,

05 — m ST Oy, = = ad + B with ay € Z~o and @ €d,
M= (5;?5) € o,
b = (7, —woA) — ag;
We see from (2.40) that
(2.43) e =% = BE)Y =Tr(i) T(in_1)(Qny))  for 1<k <M ={(|ws)),
and hence
(2.44) {rs o = {0 - (B)Y} = —wo(@T\ @) = 27\ @f ),
where w : I — [ is the Dynkin diagram automorphism given by: woa; = —ay,(;) for ¢ € I. Also, it
follows from the equality “K = M” (shown in the proof of Lemma 2.15), together with (2.37), that
b b b b
@) O T T WG e S s wen = S e <
Now, let |wo| = 7p,Tpy - Tp,, be an (arbitrary) reduced expression for |w,|, and set i} :=

7 1(pg) for 1 <k < M. We see from Lemma 2.15 that

(2-46) My = (Tpl o 'TPM)(W”M-H e rie) =TT Ti’MTiMH A7)

=|wo) =m

is a reduced expression for m,, y, which we denote by R. We construct QB(e; my,») from this
reduced expression R of my,, y, and denote it by QB(e; my,2)r. Then,

~ _1 ~
Tig = Tinggn Tily, T Qg = T Tpag " Ty O for 1 <k <M,
OS,R | ~—~—
k T =m;1ﬂ'
Tig - Tig gy Qi = B> for M +1<Fk<¢,

= aftd + B,?S " for some aff € Z~q and BOS e,

OS,R OS,R
Tk = —(By K
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Also, for the reduced expression R of m,, » in (2.46), we define ﬁ,t’R, 1 <k </ asin (2.23), and
write it as: 7 = bF6 + BEF, with some b € Zsg and B € —wo(®VT\ ®YF) (see (2.25)). Then
we set 7,5’]{ = L’R)V for 1 <k < /¢. By Remark 2.12, we have

'y};R = %(CDSR = and b = ((WR)Y, —wod) —af for 1 <k </

Notice that ﬁk’ =Tp o Tpe_y (Qp,) for 1 < k < M. Since p1, ..., pm € I, we see that B};’R € PVt
for all 1 < k < M, which implies that bf* = 0 and

L,R L,R L,R
(2.47) ’Yl? =% =B )Y = ( k ) = Tpy* Tp_y (Qpy.)

forall 1 <k <M.

Lemma 2.16. Keep the notation and setting above. We have

(2.48) (B3 1<k <My ={B°|1<k< M},
(2.49) OSH _ 505 forall M +1 <k <L
Hence
(2.50) (Wl1<k<M}={w|1<k<M}= <1>+\<1>W
(2.51) fykzyk foral M +1 <k </,

0 for1<k< M,
(2.52) bt =

bp >0 for M+1<k<V/.

Proof. 1t is obvious from the definitions that BOS R B,?S for all M +1 < k < /. We see from this
equality and (2.45) that

Y= and b =0y, >0 forall M +1<k<{

Also, we have shown that bﬁ =0 for all 1 <k < M (see the comment preceding this lemma).
It remains to show (2.48) and (2.50). Since |wo] = 7y, -+ Tpy = Tr(iy)  Tr(iy) are reduced
expressions, it follows that

{TPM "'Tpk+1(62pk) | 1<k<L M} = {a c oVt | I_woJaz c _(D\/+}
= {Fatin)  Trtinen) @niin)) | L <k < MY,

w(ins

notice that
(2.53) {ae ot | |w]ae -0} =0\ oyt
Indeed, we see from (2.1) that {& € @' | |w.]a € —®V+} C &V \ @Y+, Conversely, if & €

PVt \ @?ﬁ, then wjo.a@ € ®V*, and hence |wo]a = wowyoa € —PVT, as desired. Therefore, we
deduce from the definitions that

(B[ 1<k < MYy =my (@Y \ @Y%) = {805 [ 1 <k < M},

and hence that

244)
(Wl1<k<M}= {fyk\1<k<M} o\l )

This proves the lemma. ]

We set l(w,) := N; since wo = |wo]wye, it follows that ¢(wj.) = N — M. Fix a reduced
expression wje = iy, Ty, Ty for wyo. Then,

Wo = T'x(iy) "~ 'Trr(iMzrtMHTth Tty = Tpyt TP]\/IJ Tt Tt " T

vV vV
:\_woj =WJ,0 :Lwoj =WJ,0
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are reduced expressions for w,. Now we set
(2.54) & = 55 = |Wo Ty Tty € ot for M +1<Ek<N.

Then, by (2.43) and (2.47), both of the sets {y, | 1 <k < M}U{& | M +1 <k < N} and

{WPRI11<k<M}U{&f | M+1<k< N} are identical to ®*. Hence it follows from (2.50) that
R

(2.55) {&F IM+1<k<Np={&IM+1<k<N}=0f .

If we define total orders < and <z on ®* by:

(256) 71_<'”<’7]\/[J_<§M+1_<""<£N7
+ e
COTNR( ) S
R R R R
(2.57) Y <p <RV < €1 <R <R &N
+
€N () S

respectively, then these total orders are reflection orders (see, for example, [BB, Chap. 5, Exerc. 20]).
Let A= {jl, 72, ...,jr} - {1, 2, ..., €} be such that

692 693
1 Jr
pA = <mwo)\ = two = 20 Zr) € QB(e; Muyor)lexs
BQS,R BOS,R
R J j R
(resp., pa = (mwo)\ =ty = 25 ——> - — 2 ) € QB(e; mw,a)R );

we set jo := 0 by convention. By the definition (see Definition 2.7), we have a directed path

e = dir(zp) L dir(z,)

my T Vi o R
(resp., e = dir(zy") —— -+ —— dir(z,"))

in the quantum Bruhat graph QB(W). Let us take 0 < s < r such that j; < M and jsy1 > M +1,
and set

Upa) = dir(zs) =7y -1y, €W
2.58 ~ .
(2.58) (resp., U(pa) := dir(zF) = rypcrr € W).

J1 ’yjs
Remark 2.17. Because 7vj, < 7j, < -+ < 7, with respect to the reflection order < on @ (see

(2.56)), we deduce from [LNS?2, Theorem 6.3] that e = dir(zq) TN dir(zs) = upa)
is a shortest directed path from e to 7(p4) in the quantum Bruhat graph QB(W). Therefore,
all the edges in this directed path are Bruhat edges by Remark 2.2 (3). We show by induction
on u that dir(z,) € W¥) for all 0 < u < s. If u = 0, then it is obvious that dir(z) = e €
W), Assume that 0 < u < s. Since dir(zy-1) € W) by our induction hypothesis, and since
dir(zu_1) —2 dir(z,) = dir(zy—1)r,;, is a Bruhat edge in QB(W), we see by [BB, Corollary 2.5.2]
that dir(z,) € W*) or dir(z,) = dir(z,_1)r; for some i € w(J). Suppose that dir(z,) = dir(z,_1)r;
for some i € w(J). Since dir(z,—1)ry,, = dir(z,) = dir(z,—1)r;, we have r,, = 7;, and hence
Vi = 4 € QJ:( 7)» which contradicts v;, € o\ CIDI( )~ Thus we obtain dir(z,) € W) as desired.

In particular, Z(p4) = dir(z,) € W), The same argument works also for the reduced expression
R.
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Here we define a map ©'%* : QB(e; muy,a)r = QB(e; My )ex. Let A = {41, jo, ..., jr} C
{1, 2, .y E} be such that

GOSR 5OS.R
J
(2.59) pa= (mwo)\ = tuwor = 2 : Zf) € QB(e; MuyA)R,
that is,
Ry Ry 2 Vi R
(2.60) e =dir(zy') —— dir(z)") —— - -+ — = dir(2,")

is a directed path in the quantum Bruhat graph QB(W). If we take 0 < s < r such that js < M
and jsy1 > M + 1, then we have a shortest directed path

LR g . ' R Qi g . Ry~ w(J)
e =dir(zy) —— dir(2)") —— - — = dir(z;") =t(pa) € W

in the quantum Bruhat graph QB(W); note that '7ﬁ <R " <R 'yﬁ with respect to the reflection
order < on ®F (see (2.57)). We know from [LNS?2, Theorem 6.3] that there exists a unique
shortest directed path

. Va1 . Yqu . g‘1u+1 Eqs o~
e =1x T xs_L(pA)

from e to t(pa) in QB(W) such that 1 < ¢ < - < qu, < M < gu41 < -+ < gs < N = l(w,) (see
(2.43) and (2.54)) for some 0 < u < s; note that all the edges in this directed path are Bruhat
edges by Remark 2.2 (3). We claim that u = s. Indeed, suppose for a contradiction that u < s; in
this case, &, € @I(J) by (2.55), and hence r¢, € W5, We write x5_1 = |z5_1]“) 2 for some

z € W(); note that £(zs_1) = ((|zs1|“)) + £(2). We see that

Z(pA) =Ts = Ts—1T¢,, = Lxs—le(J) RTeq,

eww(J) GWW(J>

and hence £(z5) = £(|zs_1]“)) + {(zre,, ). Because 51 TN x5 is a Bruhat edge in QB(W) as
seen above, we have {(z5) = ¢(xs_1) + 1. Combining these equalities, we obtain

U 2am)*D) + lzrg,,) = Uws) = @em1) + 1= €|amt J°D) +€(2) + 1,

and hence £(zr¢, ) = £(z) +1 > 1. Hence it follows that zr¢, # e, which implies that 7(p4) = x5 =

Lxs_ljw(‘])zrgqs ¢ W), However, this contradicts the fact that 7(pa) € W*/) (see Remark 2.17).
Thus, we obtain u = s, and hence a directed path

(2.61) 6=z —2y ... 8y e =(pa)
such that 1 < ¢ < --- < qs < M.
Now, we set B := {ql, ey sy Jstls o vy jr}, and consider
305 0s ,BQSS 39S
(2.62) pg = (mwoA =ty = 20 o Pas 2 Js41 o Pgr 7")

Since M +1 < jsp1 < -+ < jr < £, we see from (2.51) that v;, = 7]1-2 forall s+1 < u < r.
Therefore, by replacing the first s edges in (2.60) with (2.61), we obtain a directed path

e = dir(zp) Jny L ey dir(zs) = u(pa) Vert . dir(z,)

in the quantum Bruhat graph QB(W). Hence we conclude that pp € QB(e; My, 2)ex; We set
@lﬁx(pA) ‘= DPB-
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Proposition 2.18. The map @ﬁx : QB(e; my,n)r — QB(e; My, 2)iex is bijective. Moreover, for
every p € QB(e; my, 2R,

wt(OF () = wt(p),  aqwt(OF*(p)) =awt(p),  UOK(p)) =1p).

Proof. Let A = {jl, J2, ...,jT} and B = {ql, cey Qss Js+1, ...,jr} be as in the definition above
of the map @11‘%’(. Recall that

ST oS B BT
pa= (mwoA =z s s R end(pA));
- s Vir | 1
e = dir(z{) Ty Dy dir(zF) = i(pa) = - L dir(2F),
and that
305 0s ﬁ?f 39S
pg = (mwo/\ - a P 2 Js+1 Py 25 _ end(pB));

Tis+1 Vir

Since ¢s < M and js11 > M + 1, it follows that i(pp) = dir(zs) = (pa).
Next, we prove that

dir(z,).

(2.63) wi(pp) = wt(pa) and  qwt(pp) = qwt(pa).
Recall from (2.18) and (2.19) that
awt(pp) = > B and  qwt(pa) = Y B
jeEB~ JEA~

R
1

R
We know from Remark 2.17 that all the edges in e = dir(z{) s dir(zf) = (pa)
and e = dir(zo) Jny L ey, dir(zs) = ©(pa) are Bruhat edges, which implies that A=, B~ C
{jst1, .-, jr}. Since M +1 < jo4q < -+ < jp < £, we see from (2.51) that 7]1,3 = v, for
. . ~ WJ'IE 1 g .
all s+ 1 < u < r. Therefore, the directed paths dir(z®) = 7(pa) T 5 din(2F)

’Yjs"'l Yir

and dir(zs) = u(pa) dir(z,) are identical, which implies that A~ = B~. Since
ﬁj(is’R = ﬁos for all s+ 1 < wu <r by (2.49), we obtain qwt(pg) = qwt(pa).
Fmally, we prove that wt(pp) = wt(pa); it suffices to show that end(pg) = end(pa) (see (2.21)).

Since b = b, = 0 for all 1 < k < M by (2.45) and (2.52), we see that

OS,R < OS <

po =) —we ) — ()Y, = (7, —woA)d — )
for 1 < k < M, which implies that

Tgos.f = (t<(w,§)v,—wo)\>7,§)rv,§v T'pos = (t<"/1\€/7—wo>\>’7k>r7k‘
Using these equalities together with zy = zé% = My, \ = tw,x, We can show by inductionon 0 < u < s
that

Zzlj - tdir(zf)wo)\ dlr(’zf)? Ry = tdir(zu)wo)\ dlI‘(Zu)

Since dir(zf) = 7(pa) = dir(z;), we deduce that
25 = tdir(zﬁ)wo)\ dlI‘(Zf) = tdir(zs)wo/\ dir(zs) = Zs-
Since BJ?LS’R = B]%S for all s+ 1 < u < r as seen above, we obtain

_ R
end(pg) = z, TgOS.R < T 0S.R = ZsT g0
Js41 Jr Js+1

T Tgos = end(pp).
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This proves (2.63).

If we define a map @fgx s QB(e; my,a)iex — QB(e; my,\)r in exactly the same manner as for
the map @lﬁx : QB(e; my,x)r — QB(e; My 2 )iex, then from the uniqueness of a directed path in
QB(W) whose labels are increasing in a reflection order (see [LNS?2, Theorem 6.3]), we deduce that
both of the composites @fZX o @ﬁx and @lﬁx o @fzx are the identity maps. This proves the bijectivity
of the map ©'$¥, and hence completes the proof of the proposition. O

2.6. Embedding of QB(e; my)) into QB(e; my, x)iex- We keep the notation and setting of the
previous subsection. Recall that m,,\ = ty,n = 777, - - - 15, is the reduced expression for m,, =
tw, corresponding to the (fixed) lex (—woA)-chain of roots; we know from Lemma 2.15 that

(2.64) Maoh = bwod = T4, Tig =+ Tiy = (7"7r(z‘1) e rﬁ(iM)) (7T7“1'M+1 . -7“7;@),

:gUOJ =mx

where M = {(|ws]).
Let w € WY, and set L := ¢(w) < M. We can take a reduced expression [wo| = 7p,7p, -+ Tpy,
of |ws] such that w

=Tpry—r+1 " " Tons
(2'65) LwOJ =Tpr " Tpy—r "py—r+1 " Tom -

=[we)w! =w

Indeed, recall that we = |wo|wyo, with £(ws) = £(|ws]) + £(wys). Since w € WY, we have
l(wwyo) = l(w) + £(wy,o). Hence it follows that

U([wo]) + L(wy0) = €(wo) = L(wo(wwyo) ™) + L(wwy,o)
= (lwoJw™) + £(w) + £(wo),

so that £(|ws]) = £(|ws|w™t) + £(w), which implies that ¢(|w,|w™t) = M — L. Therefore, if
|wo Jw™ =rp, -+ 1y, is areduced expression for |we]w ™!, and w =1y, ., -+ Tp,, is a reduced
expression for w, then |wo] = 1y, -~ 7py_ Tprsp 1 - Tpyy 15 a reduced expression for [w,]. Now,
we set i), := 7 !(pg) for 1 <k < M; we see that

(266) mwo)\ = (rplTPQ “ e Tp]\/l) (ﬂ-/riMJrl P T’l:g) frd ’/TT’L'ﬁ “ e T’i/1w747:1v1+1 PP 741-2

:L’LUOJ =mx

is a reduced expression for my, . As in §2.5, we construct QB(e; my, ) from this reduced ex-
pression R for my,, x, and denote it by QB(e; my, x)r; recall from Proposition 2.18 the bijection
@ﬁx : QB(e; my A )r = QB(e; mya)lex- We set Ag := {1, 2, ..., M — L} C {1, 2, ..., E}, and
consider p4,. Using Lemma 2.6, we see by direct computation that

R __ _ . R

200 = Maoh = T3 Tt Tigg g "0 Tig = bwgs
R _

21 = 7T7“Z/2 7“4\/[
R

Zy =TT Tyt Tingy  Tig = TpaTpytwo Ay

Tingpr " " Tig = Tpy bwo s

R - . -
EM—L—1 = TTi, T Tineg  Tig = Tpy_poq " TpeTpatwo s
R _ . L= - =
EM—L =T, T T g = o """ Tp2 T Lwoh = M-
=w|wo |~

From these, we deduce that dir(z£) = 7, -+ 7p,7p, for 0 < K < M — L, and that

v Vg 'YJI\{[ L—1 '711»{1 L
1 2 I—L— - —1
(2-67) € Tpy e Tppr—p—1 """ Tp2Tpy ? wLwOJ
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is a directed path from e to w|w,|~! in the quantum Bruhat graph QB(W); since ¢(dir(zk)) =
((dir(zg—1)) + 1 for 1 < K < M — L, all the edges in this directed path are Bruhat edges. Hence
we obtain

B?S,R IB;)S,R OS,R

(268)  pay = (muor = = o 2 R = mun) € QB(es mu )i

Since M\ = w|wo | 1y, x = wmy by Lemma 2.6, we have

(2.69) M) = ('rprL+1 - -rpM) (7T’I"Z‘M+1 . -riz) =Ty Ty T T

=w =m)

since (2.66) is a reduced expression (for my, ), we see that (2.69) is also a reduced expression
(for my,y). Let us construct QB(e; myy) from this reduced expression. Namely, for a subset
B={j1<jo<--<jr}C{M—-L+1,M—L+2,...,(}, we define

yéz = My, y,f = YOT g0S.R "+ T30S,k for1 <k<r,
J1

J

where B,?S’R, M — L+ 1<k<{, are those used in the definition of QB(e; m,»)r, and set
BQS,R IBQS,R BQS,R ,B-OS’R
pp = (mwx =y =y g —— e — yf)-

Then, pp € QB(e; my)) if

1 Ry Th Ry i e R
w|we | =dir(yy’) —— dir(y;") —— - -+ —— dir(y,")

is a directed path in the quantum Bruhat graph QB(W).
Since end(pa,) = Mmwx, we can “concatenate” pa, with an arbitrary pp € QB(e; my), which is
just pa,up; we see easily that pa,up € QB(e; my,x)R-

Lemma 2.19. There exists an embedding QB(e; myy) — QB(e; my,\)r, which maps pp €
QB(e; myy) to pa,us € QB(e; my,x)r. Moreover, wt(pa,up) = wt(pg), and qwt(pa,up) =
qwt(pp) (and hence deg(qwt(pa,up)) = deg(awt(pgr))).

Proof. The injectivity of the map is obvious. Since end(pa,up) = end(pp) by the definition, we
have wt(pa,un) = wt(pr). Because all the edges in the directed path (2.67) are Bruhat edges, we
see from the definition (2.18) that (Ap LU B)™ = B~. Hence we obtain qwt(pa,up) = qwt(pp) by
the definition (2.19) of qwt. This proves the lemma. O

We set
QB(e; myoA)rw == {pA € QB(e; my 2R | {1, 2, ..., M — L} C A}.
We see from the argument above that QB(e; my,, 1), is identical to the image of the embedding
QB(e; myy) <= QB(e; my a)r of Lemma 2.19.

Lemma 2.20. Let py € QB(e; my.2)r- Then, pa € QB(e; muw.r)rw if and only if t(pa) >
w|wo |1 with respect to the Bruhat order > on W.

Proof. First, we prove the “only if” part. Since pa € QB(e; my,x)Rrw, it follows that A is of the
form: A = {1, 2, ..., M — L, j1, ...,jr} forsome M — L+1<j; < - <j, <{ weset jo=0
by convention. Take 0 < s < r such that j; < M and jsy; > M + 1. Then, by (2.67) and the
definition of 7(p4), we have a directed path

R R VB ~R R _
e Ty o B g s B T(py)

in the quantum Bruhat graph. Since all the edges in this directed path are Bruhat edges (see
Remark 2.17), we obtain 7(p4) > w|w.| ™!, as desired.
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Next, we prove the “if” part. Assume that Z(pa) > w|w,|™!, with A = {jl, ...,jr} C
{1, 2, ..., E}. If we take 0 < s < £ such that js < M and js4 1 > M + 1, then we have a
shortest directed path

R R R
(2.70) e = dir(zF) —2 dir(zF) 225 ... 0 qir(zR) = 7(pa)

in the quantum Bruhat graph QB(W) whose edges are all Bruhat edges (see Remark 2.17); note that
s =L(i(pa)). Here, because 7(pa) > w|w, |~ with respect to the Bruhat order on W, we deduce by
the chain property of the Bruhat order (see [BB, Theorem 2.2.6]) that there exists a directed path

w|w, |~ = xg &, ... Sa-prrr Ts_por = L(pa) of length £(i(pa)) — (w|wo] ') =5 — (M — L)

from w|w,| ™! to 7(p4) in the quantum Bruhat graph QB(W) whose edges are all Bruhat edges.
Concatenating this directed path with the directed path (2.67), we get the directed path

R R R

(2.71) ¢ T'py By wlwe| ! = o Sy e Ts—M+L = L(pa)-

Since the length of this directed path is equal to s = ¢(¢(pa)) — ¢(e), this directed path is also
a shortest directed path from e to Z(p4) in the quantum Bruhat graph QB(W). Because the
labels in the directed path (2.70) are strictly increasing with respect to the reflection order <pg
(see (2.57)), that is, W’ﬁ <R " <R vﬁ, it follows from [LNS®2, Theorem 6.3] that the directed
path (2.70) is lexicographically minimal among all shortest directed paths from e to Z(pa); in
particular, the directed path (2.70) is less than or equal to the directed path (2.71), which implies
that j1 = 1,j2 = 2, ..., jyu—r = M — L. Thus, we obtain {1, 2, ..., M — L} C A, and hence
pa € QB(e; mya)rw. This completes the proof of the lemma. O

From Lemma 2.20 (together with the comment preceding it), Lemma 2.19, and Proposition 2.18,
we obtain the following proposition.

Proposition 2.21. The image of QB(e; myy) under the composite

Lemma 2.19 Olex

QB(e; myy) = QB(e; muwoa)r — QB(e; Mupor)1ex

1s identical to

(272) QB(C; mwo)\)lex,w = {p € QB(e; mwo)\)lex ’Z(p) > wl_woJ_l}-

Hence we have

(2.73) Z e™t(p) gdes(awt(p)) — Z et ) gdee(avtv) — | \(z; g, 0).
pEQB(e§mwo)\)lex,w pGQB(e;mw)\)

2.7. Bijection between QB(e; my, 1 )ex and QLS(A). As in the previous subsection, we fix a lex
(—woA)-chain of roots

(2.74) A, = Ao —n Ay It LN Ag = Awo/\,

and let my, x = 7ry T, -1, be the corresponding reduced expression for m,, x under (2.22).
We construct A(—woA) from this reduced expression my,, x = 7r, riy - - - Ti,, which we denote by
A(—wo)jex; recall from Remark 2.12 and (2.25) that v, = 72° = 4L = (BL)Y € —wo(@F \ @7) for
all 1 <k < /. We set (see Remark 2.12)

b
(2.75) A R—— il

<67|k_;7 _woA> < ](35’ ’LUOA>
Because M, = 71, 7iy - - - 14, 18 the reduced expression corresponding to the lex (—woA)-chain of
roots, it follows from (2.37) that

for 1 <k <V

0<di <dp <---<dy <1
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Remark 2.22. Let 1 < k < p < ¢ be such that dy = dj. Then we know from [LNS?2, Remark 6.4]
that v, < v, in the reflection order < (see (2.56)).

In the following, we define a map = : QB(e; my r)iex — QLS(A) (resp., IT : A(—wol)jex —
QLS()); see [LNS®2, §6.1]). Let A= {ji <--- <jr} C {1, ..., £} be such that

b s
ba = <mwo)\ =20 21 Zr>
is an element of QB(e; My, 2 )1ex (resp., A € A(—wo)iex); if we set zy := =Ty, Ty, = dir(zx) € W
for 0 < k < r, then
Vi1 Vig Vir
e =2 1 s > Ty

is a directed path in the quantum Bruhat graph QB(W). Take 0 = up < uy < ug < -+ < ug—1 <
us = r (with s > 1) in such a way that

O=dj =---=dj, <d;

Juq Jui+1

—

Jus

<

NV
=:00 =01

d

Jug+1

2.76
(2.76) c=d;. <1=:04

=:09 =:0s—1

note that u; = 0 if d;; > 0. We set w;) =y, for 1 < p < s—1, and w, := z,. For each
1 <p<s—1, we have a directed path
Viup+1 Viup+2 Viu
w;) = LI,‘up #) .'Eup+1 L cee ak xup+1 == w;_,_l
in the quantum Bruhat graph QB(W). We claim that this directed path is a shortest directed path
from wj, to wy, ;. Indeed, since d; =d; by (2.76), it follows from Remark 2.22 that

]u +1 = ]up+1
Viupt1 < *°° = Vju,,, in the reflection order < (see (2.56)). Therefore, we deduce from [LNS32,
Theorem 6.3] that the directed path above is a shortest directed path from w;, to w; 11, as desired.
Hence it follows that

TWoVjyy, 41 ~WoVjup+2

wy = wpwo = Ty, Wo ¢ Ty, +1Wo

(2.77)

7’wo'Y]'up+1 . ’ .
...... «— xup_’_lu)o = wp+1w0 = wp+1

is also a shortest directed path in the quantum Bruhat graph QB(W), where —wo7;, € ®*\ <I>JJr for
all u, +1 < u < upqq since v, € —wo (®+ \ q)}r) as mentioned at the beginning of this subsection.
Moreover, for u, +1 < u < upy1, we have

b _
(B o)

Hence the directed path (2.77) is a directed path in QB,, ,(W). We deduce from [LNS?1, Lemma 6.1]
that there exists a directed path from |wpi1] = |wpi1]” to |w,]| = |wp]” in QB,, (W), There-
fore, we conclude that

n = (lwi], |w2], ..., |ws]; 00, 01, ..., 05) € QLS(A);

op{—wej,» A) = dj, (7j,, —wo) =

we set E(pa) := 1.

Remark 2.23. Keep the setting above. Because 0 = d;, = --- = d;,, < dj, ,, by the definition
of u1, we see from (2.45) that j,, < M and j,,+1 > M + 1, where ¢(|ws]) = M. Therefore, by

definition (2.58), ©(p4) is just dir(zy,) = =, = w}. Hence we obtain
(2.78) UE(pa)) = v(n) = [w1] = [wiwe] = [T(pa)wo].
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Proposition 2.24 ([LNS?2, Proposition 6.7 and Theorem 7.3]). The map I : A(—wol)iex —
QLS()\) is bijective. Moreover, for every A € A(—wol)lex,

(2.79) wt(II(A)) = —wt(A) and Deg(II(A)) = — height(A).
Proposition 2.25. The map Z : QB(e; my )iex — QLS(A) is bijective. Moreover, for every
JS QB(G; mwok)lexz

wt(ZE(pa)) = wt(pa) and Deg(E(pa)) = — deg(qwt(pa)).

Proof. From the constructions, we see that the map Z : QB(e; my,\)iex — QLS(A) above is
identical to the composite of the bijection QB(e; My, ) )iex — A(—woA)1ex of Lemma 2.14 and the
bijection IT : A(—woA)iex — QLS()) in Proposition 2.24. Hence the map = : QB(e; M) )iex —
QLS()) is also bijective.

QB(G; mwo/\)lex e A(_wo)\)lex

Bijection
in Lemma 2.14
11

QLS(A)
We know from (2.35) that wt(A) = —wt(pa) and height(A) = deg(qwt(pa)) for all A €
A(—wo)). Combining this equality and (2.79), we obtain the equalities wt(Z(p4)) = wt(pa) and
Deg(ZE(pa)) = — deg(qwt(pa)) for all p4 € QB(e; My, ) )1ex, as desired. O

Lemma 2.26. The image of QB(e; my,2)iexw (see Proposition 2.21) under the bijection = :
QB(e; my,x)iex — QLS(N) of Proposition 2.25 is identical to QLS,,(X).
Proof. Let p € QB(e; my,2)1ex- Then,
P € QB(e; My e 8 1(p) > wlwo] ™ = Tp)uwo < wlwe] M.
Since 7(p) € W) (see Remark 2.17), it follows by (2.1) that
Up)wowso(®F) = Up)ws(—PJ) = Up)(D] ;) C 7.

From this, we deduce that Z(p)wowj. € W7 again by (2.1), which implies that |[Z(p)ws|w o =
|t(p)wow g o |w o = (t(p)wow jo)wo = t(p)ws. Therefore,

o < wlws] " wo == [Tp)wolwse < wuwje.

Here we have
[p)wo]wyo <wwse = [ip)ws] < w.

Indeed, the “only if” part (=) follows immediately from [BB, Proposition 2.5.1]. Let us show the
“f” part («). Fix reduced expressions for wj, € Wy and w € W, and then take a reduced
expression of |7(p)w.| € W that is a “subword” of the fixed reduced expression of w (see [BB,
Theorem 2.2.2]). By [BB, Proposition 2.4.4], the product of this reduced expression for |z(p)ws ]
(resp., w € W7) and a reduced expression for w;, is a reduced expression for |7(p)ws |w o (resp.,
ww,,o); observe that the obtained reduced expression for |¢(p)wo|w,o is a subword of the obtained
reduced expression for ww .. Therefore, by [BB, Theorem 2.2.2], we see that |t(p)ws|wy. < wwj,,
as desired. Finally, we have

[tp)ws| Sw <= (E(p)) <w by (2.78)
— Z(p) € QLS ().

This proves the lemma. ]
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Proof of Theorem 1.1. We compute:

Z eWt(n) g— Deg(n) — Z eVt (P) gdeg(awt(p))
WGQLSw()‘) peQB(e§mwo)\)lex,w
by Lemma 2.26 and Proposition 2.25

= Euwa(z; ¢, 0) by (2.73).
This completes the proof of Theorem 1.1. O

2.8. The formula in terms of the quantum alcove model. We start with some review from
[LNS32]. Recall the Dynkin diagram automorphism w : I — I induced by woa; = —a () for j € I.
Note that w acts as —w, on the integral weight lattice X. There exists a group automorphism,
denoted also by w, of the Weyl group W such that w(r;) = r;) for all j € I.

Now, fix A € X be a dominant integral weight with J = {2 el (), \) = 0}, and let

(2.80) n= (1, ..., Ts; 00, O1, ..., 05) € QLS(N),

with z1, ..., zs € W7 and rational numbers 0 = 0¢ < --- < 0, = 1. Then we define
(2.81) 0= (lzswo )Y, L |zwe]*Y) 51— 0y, 1 —0g 1, ..., 1 —00).
We also define w(n) by:

(2.82) w(n) = (w(xy1), ..., w(zs); 00, 01, ..., Os).

Both maps, * and w, are bijections between QLS()) and QLS(—w,\), and they change the weight
of a path by a negative sign and w, respectively. Finally, we set S(n) := w(n*) = (w(n))*, which
turns out to be the Lusztig involution on QLS(A).

Replacing A by —woA in §2.4 and §2.5, let us consider a lex A-chain of roots, and the quantum
alcove model A(\)ex associated to it. Recall the map II (in Proposition 2.24 with A replaced by
—woA\) and the corresponding commutative diagram:

AN)iex —2+ QLS(—wo))

(2.83) \ l

QLS(\).

We need an analogue of [LNS*2, Theorem 7.3] for the coheight statistic, which was defined
in (2.32). This is stated as follows, and is proved in a completely similar way, based on the results
in [LNS32].

Theorem 2.27. Consider an admissible subset A € A(M)ex, and the corresponding QLS path
II(A) € QLS(—woA). Write II(A) as follows (cf. Definition 2.4):

—01WoA —02Wo A —0s_1WoA

(2.84) 1 T9 . T,
with z; € W) and 0 = 09 <01 <-+-<o0g=1. Then, we have
s—1
(2.85) coheight(A) = Z i Wty \(Tit1 = xi),
i=1

where wt_, A (2i+1 = x;) was defined in (2.8).

We will now express the nonsymmetric Macdonald polynomial in terms of the quantum alcove
model. Recall that the final direction ¢(A) of an admissible subset A was defined in (2.29).
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Theorem 2.28. We have

(2.86) EwA(1'§ q, 0) _ Z qcoheight(A)xwt(A).
AcA(N)
[(A)]7 <w
Proof. We derive this formula directly from Theorem 1.1, based on the map IT*, which is known to
be a weight-preserving bijection, by [LNS2, Proposition 6.7]. Using the very explicit description
of the map IT* in [LNS32, §6.1], we can see that it switches initial and final directions, i.e., for
A € A(X\) we have
(I (A)) = [o(A4))7.

Finally, by using the notation (2.84) for II(A), we deduce:

s—1

coheight(A) = Y oy Wty A (Tus1 = 2u) = — Deg(S(TI(A)))
u=1

= — Deg(w(IT*(A))) = — Deg(II*(A)).

Here the first equality is based on Theorem 2.27, the second one on [LNS32, Corollary 4.7], the third
one on the above definition of the Lusztig involution S, and the last one on [LNS32, Corollary 7.4].
O

Remark 2.29. In [LNS32], we realized an appropriate tensor product of Kirillov—Reshetikhin crystals
B in terms of QLS(A). Based on this, we expressed the so-called “right” energy function on B as
Deg(n) for n € QLS(A\). In these terms, Deg(S(n)) expresses the corresponding “left” energy
function, see [LNS32, Remark 4.9]. We also realized B in terms of the quantum alcove model, and
in this setup the two energy functions are expressed by the height and coheight statistics.

When I' is an (arbitrary) A-chain of roots, we denote by A(M)r the quantum alcove model
associated to I'. In [LL2], we defined certain combinatorial moves (called quantum Yang-Baxter
moves) in the quantum alcove model, namely on the collection of A(X)r, where I" is any A-chain
(of roots). We showed that these define an affine crystal isomorphism between A(\)p and A(X)p
for any two A-chains T' and I". We also showed that the moves preserve the weight, the height
and coheight, as well as the final direction of (the path in QB(W) associated with) an admissible
subset. Based on these facts, we can generalize Theorem 2.28.

Theorem 2.30. Theorem 2.28 still holds if we replace the admissible subsets A(N)ex for a lex
A-chain with the ones for an arbitrary A-chain T', namely A(N)r.

Remark 2.31. The formulas in Theorems 1.1 and 2.28 (in fact, the latter can be replaced with the
mentioned generalization) specialize, upon setting ¢ = 0, to the formulas for Demazure characters
in terms of LS paths [L1, Theorem 5.2] and the alcove model [L, Theorem 6.3].

3. GRADED CHARACTERS OF QUOTIENTS OF DEMAZURE MODULES.

3.1. Additional setting. The untwisted affine Lie algebra g,¢ is written as: g.r = g @ C[t, t 1] @
Cc ® CD, where ¢ = 37, a/a is the canonical central element, and D is the scaling element
(or the degree operator); note that the Cartan subalgebra h,¢ of gar is h @ Ce ® CD, where b is the
Cartan subalgebra of g.

Let us denote by {O‘i}ielaf and {O‘iv}ielaf
and by A; € b%;, j € Iy, the fundamental weights for ga¢; note that (D, a;) = d;0 and (D, A;) =0
for j € I;s. We take a weight lattice X,¢ for g,¢ as follows:

the simple roots and simple coroots of g,¢, respectively,

(3.1) Xot = | @ zA; | ®Z5 C b,
jelaf
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where § € b¥; denotes the null root of g,s. We think of a weight u € h* for g as a weight (€ b};)
for gar by: (¢, u) = (D, p) = 0. Then, for each i € I, the fundamental weight co; for g is identical
to A; — a)/ Ao € b; we call the weights w; = A; — a)Ag € b, @ € I, the level-zero fundamental
weights.

The (affine) Weyl group Wy of gar is the subgroup (r; | j € i) C GL(b%;) generated by the
simple reflections r; associated to o for j € I, with length function ¢ : Wy — Z>¢ and unit
element e € Wyy; recall that Wy = W x QY. We denote by ®,¢ the set of real roots, and by
<I>;f C ¢ the set of positive real roots.

Definition 3.1 ([P]). Let 2 € Wy = W x QV, and write it as z = wt¢ for w € W and £ € QY.
Then we define the semi-infinite length £% (z) of = by £% (x) := £(w) + 2(&, p).

Now, let J be a subset of I. Following [P] (see also [LS, §10]), we define

(3.2) (@))% = (@ Za; + Z(S) not,
i€J
(3.3) (W)t := {x € Wy | 28 € @ for all B € (D)1}

Definition 3.2. (1) The (parabolic) semi-infinite Bruhat graph SiB” is the ®i-labeled, directed

graph with vertex set (W7), and <I>;Lf-labeled, directed edges of the following form: x —E—> rgx for
z € (W), and B € @, where rgz € (W), and 0% (rgx) =02 () + 1.

(2) The semi-infinite Bruhat order is a partial order < on (WJ )at defined as follows: for x, y €
(W), we write 2 < y if there exists a directed path from x to y in SiB”: also, we write z < y if
r <yand x #y.

Finally, let Uy(gaf) denote the quantum affine algebra associated to gor with integral weight
lattice Xu¢, and Ej, Fj, j € Iy, the Chevalley generators of Uy(gas). Also, let U;(gaf) and Uy (gaf)
denote the subalgebras of U,(gaf) generated by Ej, j € In, and F}j, j € Iy, respectively.

3.2. Extremal weight modules and Demazure modules. For an arbitrary integral weight
A € Xur of gar, let V(X) denote the extremal weight module of extremal weight A over U,(gat),
which is an integrable U, (gar)-module generated by a single element vy with the defining relation
that vy is an “extremal weight vector” of weight A (for details, see [Kasl, §8] and [Kas2, §3]). We
know from [Kasl, Proposition 8.2.2] that V() has a crystal basis (£(\), B(\)) with corresponding
global basis {G(b) | b € B(\)}; we denote by uy the element of B(\) such that G(uy) = vy € V(A).

Now, let A be a dominant integral weight for g, and set J = J, = {z el| (o), \) = 0}; note
that A is regarded as an element of X, by (¢, A) = (D, A\) = 0. For each z € Wy, we set

(3.4) VE(A) i= U (ga) S vp C V(A),

where S2°"™ denotes the action of the (affine) Weyl group W, on the set of extremal weight vectors
(see [NS2, (3.2.1)]). We know from [Kas3, §2.8] (see also [NS2, §4.1]) that there exists a subset
BE(X) of the crystal basis B(\) such that {G(b) | b € BE(\)} is the global basis of V;E(X).

3.3. Quotients of Demazure modules and their graded characters. We fix a dominant
integral weight A for g. As in [NS2, §7.2], we set

ZE N = Y Ul (8a5)Seo S vx-
co€Par(\)
co#(0)ier

Here, Par(\) denotes a certain set of multi-partitions indexed by I (see [NS2, (2.5.1)]), and Se¢, €
U ; (gat) denotes the PBW-type basis element of weight |cy|d corresponding to the “purely imaginary
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part” (see [BN, page 352]), where |c| is the sum of all parts in the multi-partition cg. Notice that
Z 5 (A) CVE(N) = U (gar) Si™ vy since Se, € U (gar) for all ¢o € Par()).

Now, let w € W; in what follows, we may assume that w € W7 c (W), since V,F()\) = VL:JJ (A)
for w € W by [NS2, Lemma 4.1.2]. Then, noting that V,F(\) = VJUJ (A C VLTUOJ(/\) =V, (\) by
[NS2, Corollary 5.2.5] since |w] < |ws], we define U} (\) to be the image of V[ ()\) under the

canonical projection Vi (X) — V& (X)/Z] (X). We write the weight space decomposition of U (X)
with respect to har as:
Ui = B UsWarins,
YEQ, kEZL
and define the graded character gch U, ()\) of U} (\) to be
gchUfF(N) := Z dim U, (M) A—qxs 22765, where ¢ = 2°.
YEQ,kEZ
The following is the main result of this section.

Theorem 3.3. Keep the notation and setting above. We have

gch U (N) = Eun(x: g, 0).
3.4. Semi-infinite Lakshmibai-Seshadri paths. We keep the notation and setting of §3.3; recall
that A = >",.; m;w; is a dominant integral weight for g, and J = Jy={i €I |{a), \) =0} C I.
Definition 3.4. For a rational number 0 < 7 < 1, define SiB(\; 7) to be the subgraph of SiB”
with the same vertex set but having only the edges of the form: z N y with 7(8Y, z\) € Z.

Definition 3.5. A semi-infinite Lakshmibai-Seshadri path (SiLS path for short) of shape A is, by
definition, a pair (y; 7) of a (strictly) decreasing sequence y : y; > - -- = ys of elements in (W )u¢
and an increasing sequence 7 : 0 = 19 < 171 < --- < Ts = 1 of rational numbers satisfying the
condition that there exists a directed path from 41 to y, in SiB(\; 7,) foreachu =1, 2, ..., s—1.
We denote by IB%%()\) the set of all SiLLS paths of shape A.

In [INS, §3.1], we defined root operators e; and f;, j € I, on ]B%%()\), and proved that the set
B%()\), equipped with these root operators, is a crystal with weights in Xj.

Theorem 3.6 ([INS, Theorem 3.2.1]). Keep the notation and setting above. There exists an
isomorphism of crystals between the crystal basis B(X) of the extremal weight module V(\) of
extremal weight \ and the crystal B%()\) of SiLS paths of shape .
Remark 3.7. For 7 = (y1, ..., Ys; T0, T1, - -, Ts) € B2 (X\), we define the piecewise-linear continu-
ous map 7 : [0,1] = R ®z X, by

u—1
(3.5) T(t) =Y (= Tp-1)UpA + (t = Tu_1)yur for 7y <t <7, 1<u<s.

p=1
Then we know from [INS, Proposition 3.1.3] that 7 is a Lakshmibai-Seshadri (LS for short) path of
shape \; for the definition of an LS path of shape ), see [L2] and [LNS?2, §2.2 and 2.3]. We denote
by B(\) the set of LS paths of shape A. In fact, the map —: B2 (\) — B()\), m — 7, is a surjective,
strict crystal morphism.

Define a surjective map cl: (W) — WY by
c(z) =w if x =wzte forw e W7, 2e Wy, and € € QY.
Then, for 7= (y1, ..., Ys; T0, T, ---, Ts) € B2 (X), we set (see [NS2, Remark 6.2.1])
cl(m) :=(cl(y1), -, cl(ys); Tos T1s -+ -y Ts);
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for each 1 < p < ¢ < s such that cl(y,) = --- = cl(yy), we drop cl(yp), ..., cl(yg—1) and 7p, ..., 741
from this expression of cl(m).

Let B (\) denote the connected component of B (\) containing 7, := (e; 0, 1). We know from
[NS2, Lemma 7.1.2] that for each n € QLS(A) = B(\)q (see Remark 2.5), there exists a unique

element 7, = (y1, ..., Ys; T) € B (A) such that ¢(m,) :=y1 € W7 and cl(m,) = n. We claim that
(3.6) wt(m,) = A — B — Deg(n)é, where B € QT := ZZEO%'-
J€eI

Indeed, since wt(m,) = wt(7;) by their definitions, it suffices to show that 7, € B(\) satisfies the
following conditions (see [NS1, Proposition 3.1.3] and [LNS?2, §4.2 and Theorem 4.5)):
(a) cl(m,(t)) = n(t) for all t € [0, 1], where cl : R®z Xar = (R®z Xar)/RJ denotes the canonical
projection;
(b) 7, is contained in the connected component By(\) of B(\) containing 7y, where my(t) := tA
for ¢t € [0, 1];
(©) () = A € A — Q.
If ¥ € Wy is of the form: z = wzte with w € W7, 2 € Wy, and € € QV, then 2\ = wA — (£, \)J
(recall that (¢, \) = 0), and hence zA = wA modulo RJ. Therefore, the assertion (a) is obvious
from the definitions of ~: BZ (A) — B()\) and the maps cl. Also, since Ty € ]B%? (A), there exists a
monomial Y in root operators such that m, = Y. Because ~: B2 (\) — B(\) commutes with the
action of root operators, we have T, = Y. = Y7, = Y. Hence we obtain 7, € By()). Finally,

since «(m,;) = y1 € W7 and X is a dominant integral weight for g, it follows that ¢(7;) = yi ) is
contained in A — Q™. This proves (3.6).

3.5. Proof of Theorem 3.3. We know from [NS2, Theorem 7.2.2 (1)] that there exists a subset
B(Z} (X)) of B(X) such that {G(b) | b € B(Z} (X))} is the global basis of Z; ()). Also, recall that
{G(b) | b€ B} (\)} is the global basis of V,()). Therefore,

{G(b) mod Z,, () | b€ BUS (X)) =B () \ B(Z,,(\)}

is the global basis of U (A), which is the image of V7 (A) under the canonical projection V. (A) —
Vi, N/ Z5, (M),
We know from [NS2, Theorem 7.2.2(2)] that there exists an isomorphism ¥} : B(A) = B
of crystals, which maps B(U; (X)) C B()) to
{m, | n € QLS(X) such that w > u(my)} C B> (\).

Since «(m,;) € WY, we see that (m,;) = 1(). Therefore, the subset above is identical to the set
{my | n € QLS,(\)}. Hence we compute:

w‘g

(M)

~

gchUS(\) = Z 2"t®)
beB(UF (V)

_ Z th(ﬂ'ﬂ)

$6:q ﬁGQLSw()‘)

xé=q

= Z 2 Wt(n)—Deg(n)d
nEQLS,, (A)

by (3.6)

x8=q

= Z g~ P vt — B\ (2 ¢, 0) by Theorem 1.1.
neQLS,, (A)

This completes the proof of Theorem 3.3.
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APPENDIX.
APPENDIX A. RECURSIVE FORMULAS IN TERMS OF DEMAZURE OPERATORS.

We use the notation of §2.1 and §3.1. Fix a dominant integral weight A € X, and set J = J* =
{i € I'| (o), X\) = 0}. For each i € I, we define a Z[g|-linear operator D; (called a Demazure
operator) on (Z[q])[e*; ¢ € X] by:
eftp _ eriléte)

Di(ef) := ——

e(1+e @+ +e ) ifn=(a, & >0,
(A.1) =40 if n=(a;, §) = -1,

In this appendix, we give a recursive formula for gch QLS ()\) (Proposition A.1) and one for
Eux(x; g, 0) (Proposition A.4), both of which are in terms of Demazure operators.

A.1. Recursive formula for gch QLS ()).

Proposition A.1. Let w € W7 and i € I be such that w > r;w; note that r;w € W7 by [LNS?1,
Lemma 5.8]. Then we have

Let Ué(gaf) denote the quantum affine algebra without the degree operator associated to g,s. We
know that the set QLS(A) = B(\)q (see Remark 2.5), equipped with root operators e;, fj, j € Ly,
is a Uy (gat)-crystal; for the definition of root operators, see [LNS32, §2.3] and [NS1, §2.2]. We prove
Proposition A.1 by using this U, (gar)-crystal structure on QLS(A) = B(A)q (cf. [L1, Theorem in

§5.2]).

Lemma A.2 (recursive relation). Let w € WY and i € I be such that w > rjw. We have

QLS,,(N) = [ /7QLS,,,(A) \ {0}.

p>0

Proof. First we prove the inclusion C. Let n € QLS ()), and set 1’ := e[***n. It suffices to show
that 7 € QLS,.,,(\); for simplicity of notation, we set z := () € W’. If «(n/) = (n) = =, then it
follows from the definition of the root operator e; that

(af s zA) = (o), um)A) = (i, L(n)A) = 0,
since e;/ = 0. Because nn € QLS,,()\) by the assumption, we have z = () < w. Also, from the
assumption that w > r;w and w € W7, it follows that r;w € W7 and (), wA) < 0 by [LNS?1,
Lemmas 5.8 and 5.9]. Therefore, we deduce from [L2, Lemma 4.1 a)] applied to z < w that < r;w,

and hence (") = +(n) = x < r;w. Thus we obtain ' € QLS, ., ()), as desired. If «(") # «(n), then
it follows from the definition of the root operator e; that ¢(n’) = r;u(n) = r;x and

(), z)\) = —{(a), rx)) = — (o, rie(n)A) = —{a), m(n))A) < 0.

1
Since z = «(n) < w by the assumption and (', wA) < 0 as seen above, we deduce from [L2,
Lemma 4.1 ¢)] applied to z < w that r;z < r;w, and hence ¢(n) = rjz < r;w. Therefore, we obtain
7 € QLS,,()), as desired. This proves the inclusion C.
Next we prove the opposite inclusion D. Let o' € QLS,.,,()), and assume that 7 := [y’ # 0 for
some p > 0. If «(n) = «(n), then
u(n) = () <riw <w,
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and hence n € QLS,,(A\). Assume now that ¢(n) # r;.(n'), and hence ¢(n) = r;e(r); for simplicity
of notation, we set 2’ := «(1) € W”’. Then we see from the definition of the root operator f;
that (o), 2'\) = (o, t(n')\) > 0. Also, we have (o), r;w)\) = —(a/, wA) > 0 as seen above and
' = (') < ryw by the assumption. It follows from [L2, Lemma 4.1c¢)] applied to ' < r;w that
rix’ < w, and hence 1(n) = r;2’ < w. Therefore, we obtain n € QLS,, ()\), as desired. This proves
the opposite inclusion D. This completes the proof of the lemma. O

For i € I and n € QLS(A), let S;(n) denote the a;-string through 7, that is,
Si(n) = {efn, fin|p, ¢ =0} \{0}.
Lemma A.3 (string property). Let n € QLS(\), and i € I. For z € W/,
QLS.(A) N Si(n) =0, {ei**n}, or Si(n).
Proof. For simplicity of notation, we set ' := e®**1. We will prove that if QLS,()\) N S;(n) is
neither ) nor {e*n}, then QLS,(A) N Si(n) = Si(n), or equivalently, S;(n) C QLS,()). By our

assumption, QLS,(A\) N S;(n) contains an element 1" that is not '. We can write the element 7"
as 0" = fPn’ for some p > 1. Here, from the definition of the root operator f;, we can deduce that

W fin) = o(fn) == o(ffn) = - = o(FN).
Since «(ffn’) = «(n”) < z by the assumption that n” € QLS,(\), we see that the elements
i’y f20', ..., fmay are all contained in QLS,()\). Namely,

(A-2) Sitm \ {n'} € QLS. (N).

Hence it remains to show that 7 € QLS,(\). If «(n') = «(n”), then we have «(n') < z since
t(n") < z by the assumption that ” € QLS,()\). This implies that " € QLS,()\). Assume now
that «(n"”) # riu(n'), and hence that (") = r;u(n'). Then, by the definition of the root operator
fi, we see that («), ¢(n')\) > 0. Therefore, we deduce that (o), ¢(n”")A) = (a), rie(n/)A) < 0, and
hence that «(n") = r;e(n”) < «(n”) < 2. Thus we obtain 7’ € QLS,(\). Combining this with (A.2),
we conclude that S;(n) C QLS,()\), as desired. This completes the proof of the lemma. O

Proof of Proposition A.1. First, we show that for each n € QLS(\),
(A3) QLS,,(A) N Si(n) = 0 or Si(n).

Now, assume that QLS (\) N S;(n) # 0. Then, we see from Lemma A.3 that QLS (\) N Si(n) =
{em™n} or Si(n); in both cases, we have ey € QLS (\). Here we recall from the proof of
Lemma A.2 that if » € QLS,,(\), then " € QLS,. ,(A). Hence it follows that e[*®*(ef*®n) =

%

e is contained in QLS,. ,,(X). Therefore, we see from Lemma A.2 that f7e*n € QLS,,()) for

(2

all p > 0 unless fPe*p = 0. From this, we conclude that S;(n) C QLS,,(\), as desired.
From (A.3), we deduce that QLS,,(\) decomposes into a disjoint union of «;-strings:

QLS,(A\) = SD 1 s® ... 0 8™ where S is an oy-string for each 1 < m < n.

Since i € I, the degree function Deg is constant on S™ for each 1 < m < n (see [LNS2, (4.2)]);
we set dp, := Deg |g(m) for 1 < m < n. Then we have

gch QLS,,(\) = i g 4 Z eVt

m=1 nes(m)

Next, let us consider the intersection QLS,. ,(\) N Sm) for each 1 < m < n. Recall that if
Y € QLS,,()), then ef*™*1) € QLS, ,(\). Since Sm) < QLS, (), it follows from the above that
QLS,,,,(A) contains a unique element 7, € S(m) such that e;n,, = 0; in particular, QLS,.,,(A) N
S(m) - (. Therefore, from Lemma A.3, we deduce that

QLS,,,(A\) N Sm) — {nm} or S for each 1 < m < n;
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here we assume that

QLS,,,(A) NSt = {m} forl<m<p.
e Sm) for p+1<m<n,

for some 0 < p < n for simplicity of notation. Then, we have

P
gch QLS,,,,(A) = ) g~ me™tlmm) Z gt YT e,
m=1

m=p+1 nes(m)

Combining all the above, we compute'

D;gchQLS, ., Z g %m D,e™t0m) Z q % D, < Z eWt(Ti))

m=p+1 nes(m)
S

:DieWt("]m)
by (A.1)

I
NE

n
g 4 Die™tm) 4 Z g DiD;e™" )
—_— —
1 m=p+1

3
I

:DieWt(Tlm)
n
= g m D,e™tm) Z g Z eVt by (A.1)
m=1 nesim)
= gch QLS,,(A).
This completes the proof of the proposition. O

A.2. Recursive formula for E,)(x; ¢, 0). In view of Theorem 1.1, Proposition A.1 is equivalent
to the following proposition.

Proposition A.4. Let w € WY and i € I be such that w > r;w; note that ryw € W7 by [LNS?1,
Lemma 5.8]. Then we have
Ew)\(x; q, 0) = DiEriwA(x; q, O)

We can also show this proposition by using the polynomial representation of the double affine
Hecke algebra as follows.
Proof. Note that r;w € W7 and (), r;w)) > 0 by [LNS?1, Lemmas 5.8 and 5.9]. We set u := r;w.
Since (o), p) = (o), r;wA) > 0 as seen above, it follows from [M, (5.10.7)] that
1—mr 1
1 e(;. - (1 - 1>1—Y—0<i> “EBu(w; g t) = Enpu(x; g, ).
Also, we know from [M, (5.2.2”)] (in the notation thereof) that

Y %E,(x; q t) = q<aiv,u)t—2<v(u)a%p>E“($; q,t).

Since (), u) > 0 as seen above, it follows that (v(u)e, v(p)u) = (o), p) > 0. Since v(u)p

is antidominant by the definition of v(u), we see that v(u)a) is a negative coroot, and hence
—2(v(p)ey, p) > 0. Therefore, by taking the limit ¢ — 0, we deduce from (A.4) that

i1
( " - + 1) EM(IE, q, 0) = Eriu(x; q, 0)

(A.4) <t27’i + (t2 — 1)

1 — e
We see by direct computation that

T — 1
1=D;.
1—eaz+
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Thus, we obtain D;E,(x; q,0) = E,,,(z; g, 0), and hence E,\(z; g, 0) = D;E, wa(x; g, 0), as
desired. This proves Proposition A.4. ]

Remark A.5. If we employ the special case w = e of Theorem 1.1 as the start of the induction and
use Proposition A.1 and Proposition A.4 (proved as above) in the induction step, then we can give
an inductive proof of Theorem 1.1.

REFERENCES

J. Beck and H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J.
123 (2004), 335-402.

A. Bjorner and F. Brenti, “Combinatorics of Coxeter Groups”, Graduate Texts in Mathematics Vol. 231,
Springer, New York, 2005.

B. Ton, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003),
299-318.

M. Ishii, S. Naito, and D. Sagaki, Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal
weight modules over quantum affine algebras, preprint 2014, arXiv:1402.3884.

V. G. Kac, “Infinite Dimensional Lie Algebras”, 3rd Edition, Cambridge University Press, Cambridge,
UK, 1990.

M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002),
117-175.

M. Kashiwara, Level zero fundamental representations over quantized affine algebras and Demazure mod-
ules, Publ. Res. Inst. Math. Sci. 41 (2005), 223-250.

T. Lam and M. Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian, Acta
Math. 204 (2010), 49-90.

C. Lenart, On the combinatorics of crystal graphs, I. Lusztig’s involution, Adv. Math., 211:324-340, 2007.
C. Lenart and A. Lubovsky, A generalization of the alcove model and its applications, J. Algebraic Combin.
41 (2015), 751-783.

C. Lenart and A. Lubovsky, A uniform realization of the combinatorial R-matrix, preprint 2015,
arXiv:1503.01765.

C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono, A uniform model for Kirillov—Reshetikhin
crystals I: Lifting the parabolic quantum Bruhat graph, Int. Math. Res. Not. 2015 (2015), 1848-1901.
C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono, A uniform model for Kirillov—Reshetikhin
crystals II: Alcove model, path model, and P = X, preprint 2014, arXiv:1402.2203.

C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono, Quantum Lakshmibai-Seshadri paths and
root operators, preprint 2013, arXiv:1308.3529.

C. Lenart and A. Postnikov, Affine Weyl groups in K-theory and representation theory, Int. Math. Res.
Not. 2007 (2007), 1-65.

C. Lenart and A. Postnikov, A combinatorial model for crystals of Kac-Moody algebras, Trans. Amer.
Math. Soc. 360 (2008), 4349-4381.

P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116
(1994), 329-346.

P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499-525.
I. G. Macdonald, “Affine Hecke Algebras and Orthogonal Polynomials”, Cambridge Tracts in Mathematics
Vol. 157, Cambridge University Press, Cambridge, 2003.

S. Naito and D. Sagaki, Lakshmibai-Seshadri paths of a level-zero weight shape and one-dimensional sums
associated to level-zero fundamental representations, Compos. Math. 144 (2008), 1525-1556.

S. Naito and D. Sagaki, Demazure submodules of level-zero extremal weight modules and specializations
of Macdonald polynomials, preprint 2014, arXiv:1404.2436.

D. Orr and M. Shimozono, Specializations of nonsymmetric Macdonald-Koornwinder polynomials, preprint
2013, arXiv:1310.0279v1.

D. Peterson, Quantum cohomology of G/P, Lecture Notes, Cambridge, MA, Spring: Massachusetts Insti-
tute of Technology, 1997.



A UNIFORM MODEL FOR KR CRYSTALS III: NONSYMMETRIC MACDONALD POLYNOMIALS 31

(Cristian Lenart) DEPARTMENT OF MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK AT AL-
BANY, ALBANY, NY 12222, U.S.A.

FE-mail address: clenart@albany.edu

URL: http://www.albany.edu/ lenart/

(Satoshi Naito) DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1 OH-OKAYAMA,
MEGURO-KU, TOKYO 152-8551, JAPAN
E-mail address: naito@math.titech.ac.jp

(Daisuke Sagaki) INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, IBARAKI 305-8571, JAPAN
E-mail address: sagaki@math.tsukuba.ac. jp

(Anne Schilling) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, ONE SHIELDS AVENUE, DAVIS,
CA 95616-8633, U.S.A.

E-mail address: anne@math.ucdavis.edu

URL: http://www.math.ucdavis.edu/"anne

(Mark Shimozono) DEPARTMENT OF MATHEMATICS, MC 0151, 460 McBRYDE HALL, VIRGINIA TECH, 225
STANGER ST., BLACKSBURG, VA 24061 USA
E-mail address: mshimo@vt .edu



	1. Introduction.
	Acknowledgments

	2. Proof of Theorem 1.1.
	2.1. Setting.
	2.2. Quantum Lakshmibai-Seshadri paths.
	2.3. Orr-Shimozono formula.
	2.4. Bijective correspondence between QB(e;mw) and A(-w).
	2.5. Lexicographic (lex) (-w)-chains of roots.
	2.6. Embedding of QB(e;mw) into QB(e;mw)lex.
	2.7. Bijection between QB(e;mw)lex and QLS().
	2.8. The formula in terms of the quantum alcove model.

	3. Graded characters of quotients of Demazure modules.
	3.1. Additional setting.
	3.2. Extremal weight modules and Demazure modules.
	3.3. Quotients of Demazure modules and their graded characters.
	3.4. Semi-infinite Lakshmibai-Seshadri paths.
	3.5. Proof of Theorem 3.3.

	Appendix.
	Appendix A. Recursive formulas in terms of Demazure operators.
	A.1. Recursive formula for gchQLSw().
	A.2. Recursive formula for Ew(x;q,0).

	References

