
A UNIFORM MODEL FOR KIRILLOV-RESHETIKHIN CRYSTALS I:

LIFTING THE PARABOLIC QUANTUM BRUHAT GRAPH

CRISTIAN LENART, SATOSHI NAITO, DAISUKE SAGAKI, ANNE SCHILLING, AND MARK SHIMOZONO

Abstract. We lift the parabolic quantum Bruhat graph into the Bruhat order on the affine Weyl
group and into Littelmann’s poset on level-zero weights. Also, we establish a quantum analogue of
Deodhar’s Bruhat-minimum lift from a parabolic quotient of the Weyl group. This result asserts
a remarkable compatibility of the quantum Bruhat graph on the Weyl group, with the cosets for
every parabolic subgroup.

The results in this paper will be applied in a second paper to establish a uniform construction of
tensor products of one-column Kirillov-Reshetikhin (KR) crystals, and the equality, for untwisted
affine root systems, between the Macdonald polynomial with t set to zero and the graded character
of tensor products of KR modules.
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1. Introduction

Our goal in this series of papers is to obtain a uniform construction of tensor products of one-
column Kirillov-Reshetikhin (KR) crystals. As a consequence we shall prove the equality Pλ(q) =
Xλ(q), where Pλ(q) is the Macdonald polynomial Pλ(q, t) specialized at t = 0 and Xλ(q) is the
graded character of a simple Lie algebra coming from tensor products of KR modules. Both the
Macdonald polynomials and KR modules are of arbitrary untwisted affine type. The parameter λ is
a dominant weight for the simple Lie subalgebra obtained by removing the affine node. Macdonald
polynomials and characters of KR modules have been studied extensively in connection with various
fields such as statistical mechanics and integrable systems, representation theory of Coxeter groups
and Lie algebras (and their quantized analogues given by Hecke algebras and quantized universal
enveloping algebras), geometry of singularities of Schubert varieties, and combinatorics.

Our point of departure is a theorem of Ion [Ion], which asserts that the nonsymmetric Macdonald
polynomials at t = 0 are characters of Demazure submodules of highest weight modules over affine

algebras. This applies for the Langlands duals of untwisted affine root systems (and type A
(2)
2n in

the case of nonsymmetric Koornwinder polynomials). Our results apply to the untwisted affine

root systems. The overlapping cases are the simply-laced affine root systems A
(1)
n , D

(1)
n and E

(1)
6,7,8.

It is known [FL1, FL2, FSS, KMOU, KMOTU, ST, Na1, Na2] that certain affine Demazure
characters (including those for the simply-laced affine root systems) can be expressed in terms of

KR crystals, which motivates the relation between P and X. For types A
(1)
n and C

(1)
n , the above

mentioned relation between P and X was achieved in [Le, LeS] by establishing a combinatorial
formula for the Macdonald polynomials at t = 0 from the Ram–Yip formula [RY], and by using

explicit models for the one-column KR crystals [FOS]. It should be noted that, in types A
(1)
n

and C
(1)
n , the one-column KR modules are irreducible when restricted to the canonical simple

Lie subalgebra, while in general this is not the case. For the cases considered by Ion [Ion], the
corresponding KR crystals are perfect. This is not necessarily true for the untwisted affine root
systems considered in this work, especially for the untwisted non-simply-laced affine root systems.

In this work we provide a type-free approach to the connection between P and X for untwisted
affine root systems. Lenart’s specialization [Le] of the Ram–Yip formula for Macdonald polynomials
uses paths in the quantum Bruhat graph, which was defined and studied in [BFP] in relation to the
quantum cohomology of the flag variety. On the other hand, Naito and Sagaki [NS1, NS2, NS3, NS4]
gave models for tensor products of KR crystals of one-column type in terms of projections of level-
zero Lakshmibai–Seshadri (LS) paths to the classical weight lattice. Hence we need to bridge the
gap between these two approaches by establishing a bijection between paths in the quantum Bruhat
graph and projected level-zero LS paths. For crystal graphs of integrable highest weight modules
over quantized universal enveloping algebras of Kac-Moody algebras, Lenart and Postnikov had
already established a bijection between LS paths and their alcove model [LP1]. This bijection was
refined and reformulated in [LeSh] using Littelmann’s direct characterization of LS paths [Li] and
Deodhar’s lifting construction for Coxeter groups [De].

In this first paper we set the stage for the connection between the level-zero LS paths [NS1,
NS2, NS3, NS4] and the quantum alcove model [LeL]. We begin by establishing a first lift from
the parabolic quantum Bruhat graph (PQBG) to the Bruhat order of the affine Weyl group. This
is a parabolic analogue of the fact that the quantum Bruhat graph can be lifted to the affine
Bruhat order [LS], which is the combinatorial structure underlying Peterson’s theorem [P]; the
latter equates the Gromov-Witten invariants of finite-dimensional homogeneous spaces G/P with
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the Pontryagin homology structure constants of Schubert varieties in the affine Grassmannian.
We obtain Diamond Lemmas for the PQBG via projection of the standard Diamond Lemmas
for the affine Weyl group. We find a second lift of the PQBG into a poset of Littelmann [Li]
for level-zero weights and characterize its local structure (such as cover relations) in terms of the
PQBG. Littelmann’s poset was defined in connection with LS paths for arbitrary (not necessarily
dominant) weights, but the local structure was not previously known. Finally, we prove the tilted
Bruhat theorem, which is a quantum Bruhat graph analogue of the Deodhar lift [De] for Coxeter
groups. This will turn out to be important in our second paper [LNSSS], where we establish the
connection between LS paths and the quantum alcove model. Our proof uses the novel notion of
quantum length which relies on the fact that the (parabolic) quantum Bruhat graph is strongly
connected using only simple transpositions; see [HST]. The theorem ultimately follows from the
application of the Diamond Lemmas for the quantum Bruhat graph.

The paper is organized as follows. In Section 2 we set up the notation for untwisted affine root
systems and affine Weyl groups. In Section 3 we give the definitions of stabilizers of orbits of
the affine Weyl group and derive properties of J-adjusted elements, where J is the index set of a
parablic subgroup. The (parabolic) quantum Bruhat graph is introduced in Section 4 and the lift
to the Bruhat order of the affine Weyl group is given in Section 5 (see Proposition 5.2). This gives
rise to the Diamond Lemmas in Section 5.5. In Section 6 we state and prove our characterization
of Littelmann’s level-zero weight poset (see Theorem 6.5) and show that the parabolic quantum
Bruhat graph is strongly connected using only simple transpositions (see Lemma 6.12). Finally in
Section 7 we prove the tilted Bruhat Theorem (see Theorem 7.1).
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2. Notation: untwisted affine root datum

Let Iaf = I t {0} (resp. I) be the Dynkin node set of an untwisted affine algebra gaf (resp. its
canonical subalgebra g), (aij | i, j ∈ Iaf) the affine Cartan matrix, Waf (resp. W ) the affine (resp.
finite) Weyl group with simple reflections ri for i ∈ Iaf (resp. i ∈ I), Xaf = Zδ ⊕

⊕
i∈Iaf ZΛi (resp.

X =
⊕

i∈I Zωi) the affine (resp. finite) weight lattice, X∨af = HomZ(Xaf ,Z) the dual lattice, and
〈· , ·〉 : X∨af × Xaf → Z the evaluation pairing. Let X∨af have dual basis {d} ∪ {α∨i | i ∈ Iaf}. The
natural projection cl : Xaf → X has kernel ZΛ0 ⊕ Zδ and sends Λi 7→ ωi for i ∈ I.

Let {αi | i ∈ Iaf} ⊂ Xaf be the unique elements such that

〈α∨i , αj〉 = aij for i, j ∈ Iaf(2.1)

〈d , αj〉 = δj,0.(2.2)

The affine (resp. finite) root lattice is defined by Qaf =
⊕

i∈Iaf Zαi (resp. Q =
⊕

i∈I Zαi). The

set of affine real roots (resp. roots) of gaf (resp. g) are defined by Φaf = Waf {αi | i ∈ Iaf}
(resp. Φ = W {αi | i ∈ I}). The set of positive affine real (resp. positive) roots are the set
Φaf+ = Φaf ∩

⊕
i∈Iaf Z≥0αi (resp. Φ+ = Φ ∩

⊕
i∈I Z≥0αi). We have Φaf = Φaf+ t Φaf− where

Φaf− = −Φaf+ and Φ = Φ+ t Φ− where Φ− = −Φ+.
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The null root δ is the unique element such that δ ∈
⊕

i∈Iaf Z>0αi which generates the rank 1

sublattice {λ ∈ Xaf | 〈α∨i , λ〉 = 0 for all i ∈ Iaf}. Define ai ∈ Z>0 by

δ =
∑
i∈Iaf

aiαi.(2.3)

We have δ = α0 + θ, where θ is the highest root for g, and

Φaf+ = Φ+ t (Φ + Z>0 δ).(2.4)

The canonical central element is the unique element c ∈
⊕

i∈Iaf Z>0α
∨
i which generates the rank

1 sublattice {µ ∈ X∨af | 〈µ , αi〉 = 0 for all i ∈ Iaf}. Define a∨i ∈ Z>0 by c =
∑

i∈Iaf a
∨
i α
∨
i . Then

a∨0 = 1 [Kac]. The level of a weight λ ∈ Xaf is defined by level(λ) = 〈c , λ〉.
Waf acts on Xaf and X∨af by

riλ = λ− 〈α∨i , λ〉αi
riµ = µ− 〈µ , αi〉α∨i

for i ∈ Iaf , λ ∈ Xaf , and µ ∈ X∨af . The pairing is Waf -invariant:

〈wµ , wλ〉 = 〈µ , λ〉 for λ ∈ Xaf and µ ∈ X∨af .

Since the action of Waf on Xaf is level-preserving, the sublattice X0
af ⊂ Xaf of level-zero elements

is Waf -stable. There is a section X → X0
af given by ωi 7→ Λi − level(Λi)Λ0 for i ∈ I.

For β ∈ Φaf let w ∈ Waf and i ∈ Iaf be such that β = wαi. Define the associated reflection
rβ ∈Waf and associated coroot β∨ ∈ X∨af by

rβ = wriw
−1(2.5)

β∨ = wα∨i .(2.6)

Both are independent of w and i. Of course r−β = rβ. We have

rβλ = λ− 〈β∨ , λ〉β for λ ∈ Xaf

rβµ = µ− 〈µ , β〉β∨ for µ ∈ X∨af .

There is an isomorphism

Waf
∼= W nQ∨.(2.7)

Consider the injective group homomorphism Q∨ :=
⊕

i∈I Zα∨i →Waf from the finite coroot lattice

into Waf , denoted by µ 7→ tµ. Then wtµw
−1 = twµ for w ∈ W . Under the map (2.7), for α ∈ Φ

and n ∈ Z, we have

rα+nδ 7→ rαtnα∨

r0 7→ rθt−θ∨

the latter holding since α0 = δ − θ.
Let We = W n X∨ be the extended affine Weyl group where X∨ =

⊕
i∈I Zω∨i is the coweight

lattice of g. Let Is ⊂ Iaf be the subset of special or cominuscule nodes, the set of nodes i ∈ Iaf which
are the image of 0 under some automorphism of the affine Dynkin diagram. There is a bijection
from Is to X∨/Q∨ given by i 7→ ω∨i + Q∨ where ω∨0 := 0 and Q∨ =

⊕
i∈I Zα∨i is the finite coroot

lattice. For each i ∈ Is there is a permutation τi of X∨/Q∨ (and therefore a permutation of Is)
defined by adding −ωi+Q∨. The induced permutation of Is extends uniquely to an automorphism
τi of the affine Dynkin diagram. The group Auts(Iaf) of special automorphisms is defined to be
the group of τi for i ∈ Is. It acts on Xaf , X

∨
af , Qaf , Q

∨
af =

⊕
i∈Iaf Zα

∨
i , and Waf by permuting Iaf

on basis elements and for Waf , indices of simple reflections.
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Define vi ∈W by the length-additive product

w0 = viw
J
0 for i ∈ Is(2.8)

where w0 ∈W and wJ0 ∈WJ are the longest elements in W and the subgroup WJ of W generated
by rj for j ∈ J = I \ {i} respectively. In particular v0 = id. Then there is an injective group
homomorphism

Auts(Iaf)→We

τi = vit−ω∨i for i ∈ Is.

Auts(Iaf) acts on Waf by conjugation. This action may be defined by relabeling indices of simple
reflections: τriτ

−1 = rτ(i) for all τ ∈ Auts(Iaf) and i ∈ Iaf . As such we have We
∼= Auts(Iaf)nWaf .

There is an injective group homomorphism

Auts(Iaf)→W

τi 7→ vi.
(2.9)

Lemma 2.1. For every i ∈ Is, ai = 1 and αi occurs in θ with coefficient 1 for i ∈ Is \ {0}.

Proof. For untwisted affine algebras a0 = 1 [Kac]. The lemma follows since Auts(Iaf) acts transi-
tively on Is and fixes δ. �

Lemma 2.2. For every i ∈ Is

`(vi) = 〈ω∨i , 2ρ〉.(2.10)

Proof. Fix i ∈ Is. Since θ is the highest root, it follows from Lemma 2.1 that if αi occurs in a
positive root then its coefficient is 1. Consequently the right hand side of (2.10) equals the number
of positive roots that contain αi. This is the complement of the number of positive roots in the
parabolic subsystem for J = I \ {i}. But this is equal to `(w0)− `(wJ0 ) = `(vi). �

3. Orbits of level-zero weights

3.1. Waf-orbit and W -orbit. The action of Waf on X0
af is given by

wtµλ = wλ− 〈µ , λ〉δ(3.1)

for w ∈W , µ ∈ Q∨, and λ ∈ X0
af .

Lemma 3.1. For a dominant weight λ ∈ X ∼= X0
af/Zδ we have Wafλ = Wλ in X0

af/Zδ.

Proof. This follows immediately from (3.1). �

3.2. Stabilizers. Let λ ∈ X be a dominant weight, which will be used several times in this paper,
so the notation below applies throughout. Let WJ be the stabilizer of λ in W . It is a parabolic
subgroup, being generated by ri for i ∈ J where

J = {i ∈ I | 〈α∨i , λ〉 = 0}.(3.2)

Let Q∨J =
⊕

i∈J Zα∨i be the associated coroot lattice, W J the set of minimum-length coset repre-

sentatives in W/WJ , ΦJ = Φ+
J t Φ−J the set of roots and positive/negative roots respectively, and

ρJ = (1/2)
∑

α∈Φ+
J
α.

Lemma 3.2. The stabilizer of λ in Waf under its level-zero action on X ∼= X0
af/Zδ, is given by the

subgroup of elements of the form wtµ where w ∈WJ and µ ∈ Q∨ satisfies 〈µ , λ〉 = 0.

Proof. This follows immediately from the definitions and Lemma 3.1. �
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3.3. Affinization of stabilizer. Let J =
⊔k
m=1 Im have connected components with vertex sets

I1, I2, . . . , Ik. The coweight lattice X∨J is the direct sum
⊕k

m=1X
∨
Im

where X∨Im is the coweight

lattice for the root system defined by the component Im. Define Jaf =
⊔
m I

af
m , where Iaf

m = Im t
{0m} and 0m is a separate additional affine node attached to Im. Define (WJ)af =

∏k
m=1(WIm)af ,

where WIm and (WIm)af are the finite and affine Weyl groups for the root subsystem with Dynkin
node set Im. Under this isomorphism r0m = rθmt−θ∨m where θm is the highest root for Im.

Define

Φaf+
J = {β ∈ Φaf+ | cl(β) ∈ ΦJ} = Φ+

J ∪ (Z>0δ + ΦJ) , Φaf−
J = −Φaf+

J ,(3.3)

(W J)af = {x ∈Waf | xβ > 0 for all β ∈ Φaf+
J }.(3.4)

Lemma 3.3. [LS, Lemma 10.1] wtµ ∈ (W J)af if and only if, for all α ∈ Φ+
J , wα > 0 implies that

〈µ , α〉 = 0 and wα < 0 implies that 〈µ , α〉 = −1.

Proposition 3.4. [LS, Lemma 10.5] [P] Given w ∈ Waf there exist unique w1 ∈ (W J)af and
w2 ∈ (WJ)af such that w = w1w2. If w ∈ W , then w1 ∈ W J is the minimum-length representative
of the coset wWJ .

Define πJ : Waf → (W J)af by

w 7→ w1 ,(3.5)

with w1 as in Proposition 3.4. Note that for x ∈Waf , x ∈ (W J)af if and only if πJ(x) = x.
Let W−af be the set of minimum-length coset representatives in Waf/W .

Proposition 3.5. [LS, Proposition 10.8] [P] Let x ∈Waf and µ ∈ Q∨. Then

(1) πJ(xv) = πJ(x) if v ∈ (WJ)af .
(2) πJ(W ) ⊂W J ⊂ (W J)af .
(3) πJ(W−af ) ⊂W

−
af .

(4) πJ(xtµ) = πJ(x)πJ(tµ).

We shall employ the explicit description of πJ in [LS, Lemma 10.7]. The element µ ∈ Q∨ can be
written uniquely in the form

µ =
∑
i∈I\J

ciω
∨
i − φJ(µ)−

k∑
m=1

ω∨jm ,(3.6)

where φJ(µ) ∈ Q∨J and each jm ∈ Im is a cominuscule node. The element µ is first separated into
the part in X∨J and the part not in it, and then one considers the projection of the part in X∨J to
X∨J /Q

∨
J , takes a canonical lift (the last sum). Then φJ(µ) ∈ Q∨J is the correction term. We write

zµ =
∏k
m=1 v

Im
jm

where vjm ∈WIm ⊂WJ is defined in (2.8). Then for w ∈W and µ ∈ Q∨ we have

πJ(wtµ) = πJ(w)πJ(tµ) = πJ(w)zµtµ+φJ (µ).(3.7)

Remark 3.6. By Proposition 3.5 the map

Q∨ → Auts(Jaf) ⊂WJ

µ 7→ zµ
(3.8)

is a group homomorphism.

Denote by ΣJ ⊂ Auts(Jaf) ⊂WJ the image of the homomorphism (3.8):

ΣJ = {z ∈WJ | z = zµ for some µ ∈ Q∨}.(3.9)
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3.4. J-adjusted elements. We say that µ ∈ Q∨ is J-adjusted if φJ(µ) = 0 or equivalently

πJ(tµ) = zµtµ.(3.10)

This notion gives a nice parametrization of the set (W J)af .

Lemma 3.7. Let w ∈W J , z ∈WJ , and µ ∈ Q∨. Then wztµ ∈ (W J)af if and only if µ is J-adjusted
and z = zµ. In particular every element of (W J)af can be uniquely written as wπJ(tµ) = wzµtµ
where w ∈W J and µ ∈ Q∨ is J-adjusted.

Proof. wztµ ∈ (W J)af if and only if wztµ = πJ(wztµ) = πJ(wz)πJ(tµ) = wπJ(tµ) from which the
result follows. �

Lemma 3.8. Let µ ∈ Q∨ and consider (3.6). The following are equivalent:

(1) µ is J-adjusted.
(2) For every component Im of J , either

(a) 〈µ , αi〉 = 0 for all i ∈ Im (that is, jm = 0m ∈ Iaf
m), or

(b) there is a unique j ∈ Im such that 〈µ , αj〉 6= 0, and in this case j = jm and 〈µ , αjm〉 =
−1.

(3) 〈µ , α〉 ∈ {0,−1} for all α ∈ Φ+
J .

Proof. Given [LS, Lemma 10.7], (1) and (2) are equivalent. Suppose (2) holds. Let α ∈ Φ+
J . Then α

is a positive root in the subrootsystem Φ+
m of Φ for some component Im of J . Let α =

∑
i∈Im biαi.

Since jm ∈ Im is cominuscule, 〈ω∨jm , θm〉 = 1 where θm ∈ Φ+
m is the highest root. Therefore

bjm ∈ {0, 1}. Since bi = 0 for i ∈ Im \ {jm}, (3) follows.
Conversely, suppose (3) holds. Let Im be a component of J . Applying (3) to θm and to each of

the αi for i ∈ Im, we see that (2) must hold. �

Lemma 3.9. For µ ∈ Q∨, µ is WJ -invariant if and only if µ is J-adjusted and zµ = id.

Proof. The first condition holds if and only if no fundamental coweight ω∨i occurs in µ for i ∈ J ,
which for the expression (3.6) means that φJ(µ) = 0 and jm = 0m for all m. But this holds if and
only if πJ(tµ) = tµ by (3.7). �

Lemma 3.10. Let µ ∈ Q∨ be J-adjusted. Then

`(zµ) = −〈µ , 2ρJ〉.(3.11)

Proof. The proof reduces to considering each component Im of J . Note that −µ pairs with roots of
Im like a fundamental cominuscule coweight by Lemma 3.8 and the result follows by Lemma 2.2. �

Lemma 3.11. For every J-adjusted element µ ∈ Q∨ and v ∈WJ , zµ = zvµ.

Proof. We have zµtµ = πJ(tµ) = πJ(vtµv
−1) = πJ(tvµ), which implies the result. �

Lemma 3.12. Given α ∈ Φ+ and x = wtµ ∈Waf with w ∈W and µ ∈ Q∨, let `α(x) be the number

of roots ±α+ nδ ∈ Φaf+ with n ∈ Z, which x sends to Φaf−. Then

`α(x) = |χ(wα ∈ Φ−) + 〈µ , α〉|.(3.12)

Here χ(S) = 1 if S is true and χ(S) = 0 if S is false.

Proof. This follows from x(±α+ nδ) = ±wα+ (n− 〈µ , ±α〉)δ. �

Lemma 3.13. Let w ∈W J , z ∈WJ , and µ ∈ Q∨ be such that 〈µ , α〉 < 0 for all α ∈ Φ+ \Φ+
J and

x = wztµ ∈ (W J)af . Then µ is J-adjusted, z = zµ, and

`(x) = −〈µ , 2ρ− 2ρJ〉 − `(w).(3.13)



8 C. LENART, S. NAITO, D. SAGAKI, A. SCHILLING, AND M. SHIMOZONO

Proof. By Lemma 3.7 we need only prove the length condition. We have `(x) =
∑

α∈Φ+ `α(x). Fix

α ∈ Φ+. Since x ∈ (W J)af , if α ∈ Φ+
J then `α(x) = 0. Let α ∈ Φ+ \ Φ+

J . By Lemma 3.12 we have

`α(wztµ) = −χ(wzα ∈ Φ−)− 〈µ , α〉. Summing this over α ∈ Φ+ \ Φ+
J we have

`(x) = −〈µ , 2ρ− 2ρJ〉+
∑

α∈Φ+\Φ+
J

−χ(wzα ∈ Φ−).

But z ∈ WJ so it permutes the set Φ+ \ Φ+
J . Moreover w ∈ W J so wΦ+

J ⊂ Φ+. The lemma
follows. �

Let µ ∈ Q∨. We say that µ is antidominant if

〈µ , α〉 ≤ 0 for all α ∈ Φ+.(3.14)

Say that µ is strictly J-antidominant if it is antidominant and

〈µ , α〉 < 0 for α ∈ Φ+ \ Φ+
J .(3.15)

Say that µ is J-superantidominant if µ is antidominant and

〈µ , α〉 � 0 for α ∈ Φ+ \ Φ+
J .(3.16)

In the notation of (3.6), the condition (3.16) means that ci � 0 for all i ∈ I \ J .

Remark 3.14. If J = ∅, then the J-superantidominant property becomes the superantidominant one
in [LS]. If µ is superantidominant, then (3.6) and (3.7) show that, in the projection πJ(tµ) = zµtν ,
the element ν is J-superantidominant.

Lemma 3.15. Let z ∈ ΣJ (see (3.9)). Then there is a J-superantidominant, J-adjusted element
µ ∈ Q∨ such that z = zµ.

Proof. By assumption there is a ν ∈ Q∨ such that πJ(tν) = ztν+φJ (ν). Since γ = φJ(ν) ∈ Q∨J , by
(3.7) we have πJ(tγ) = id. We have πJ(tν+γ) = πJ(tν)πJ(tγ) = ztν+γ so that ν + γ is a J-adjusted
element of Q∨ with zν+γ = z. Let η ∈ Q∨ be J-superantidominant and WJ -invariant, so that
zη = id. Then ν + γ + η is the required element. �

Lemma 3.16. Let w ∈ W J and let µ ∈ Q∨ be J-adjusted and strictly J-antidominant. Then
wzµtµ ∈W−af .

Proof. By [LS, Lemma 3.3] wtµ ∈ W−af . We have πJ(wtµ) = πJ(w)πJ(tµ) = wzµtµ ∈ W−af by
Proposition 3.5. �

4. Quantum Bruhat graph

The quantum Bruhat graph was first introduced in a paper by Brenti, Fomin and Postnikov [BFP]
and later appeared in connection with the quantum cohomology of flag varieties in a paper by
Fulton and Woodward [FW]. In this section we define the quantum Bruhat graph and its parabolic
analogue, and prove some properties we need.

Say that α ∈ Φ+ is a quantum root if `(rα) = 〈α∨ , 2ρ〉 − 1.

Lemma 4.1. [BFP, Lemma 4.3] [M, Lemma 3.2] For any positive root α ∈ Φ+, we have `(rα) ≤
−1 + 〈α∨ , 2ρ〉. In simply-laced type all roots are quantum roots.

Lemma 4.2. [BMO] α ∈ Φ+ is a quantum root if and only if

(1) α is a long root, or
(2) α is a short root, and writing α =

∑
i ciα

∨
i , we have ci = 0 for all i such that αi is long.

Here for simply-laced root systems we consider all roots to be long.
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321
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Figure 1. Quantum Bruhat graph for S3

4.1. Regular case. The quantum Bruhat graph QB(W ) is a directed graph structure on W that

contains two kinds of directed edges. For w ∈W there is a directed edge w
α−→ wrα if α ∈ Φ+ and

one of the following holds.

(1) (Bruhat edge) w l wrα is a covering relation in Bruhat order, that is, `(wrα) = `(w) + 1.
(2) (Quantum edge) `(wrα) = `(w)− `(rα) and α is a quantum root.

Condition (2) is equivalent to

(2′) `(wrα) = `(w) + 1− 〈α∨ , 2ρ〉.
An example is given in Figure 1, where the quantum edges are drawn in red and αij = αi +αi+1 +
· · ·+ αj−1.

4.2. Parabolic case. Let QB(W J) be the parabolic quantum Bruhat graph. Its vertex set is W J .
There are two kinds of directed edges. Both are labeled by some α ∈ Φ+ \Φ+

J . We use the notation
bwc to indicate the minimum-length coset representative in the coset wWJ .

(1) (Bruhat edge) w
α−→ bwrαc where w l wrα. (One may deduce that wrα ∈W J .)

(2) (Quantum edge)

`(bwrαc) = `(w) + 1− 〈α∨ , 2ρ− 2ρJ〉.(4.1)

Condition (2) is equivalent to

(2′) wrα
α←− w is a quantum edge in QB(W ) and wrαtα∨ ∈ (W J)af .

This equivalence may be deduced from [LS, Lemma 10.14] and the proof of [LS, Theorem 10.18].
The arguments there rely on geometry, namely, the quantum Chevalley rule and the Peterson-
Woodward comparison theorem. An example of a parabolic quantum Bruhat graph is given in
Figure 2.

4.3. Duality antiautomorphism of QB(W J). Let w0 ∈ W be the longest element. There is an
involution on W defined by w 7→ w0w. It reverses length in that `(w0w) = `(w0) − `(w). It also
reverses Bruhat order in W : vlw if and only if w0vmw0w. The map w 7→ ww0 also has the same
properties. In particular w 7→ w∗ = w0ww0 is a group automorphism of W which preserves length.
Define the involution ∗ on the Dynkin diagram I by w0riw0 = ri∗ or equivalently w0αi = −αi∗ .
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1234
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Figure 2. Parabolic quantum Bruhat graph for S4 with J = {1, 3}

Then ∗ is an automorphism of I. The map w 7→ w∗ can be computed on reduced words by replacing
each ri by ri∗ .

Define the map w 7→ w◦ on W J by w◦ = bw0wc. Let wJ0 ∈WJ be the longest element.

Proposition 4.3. The map w 7→ w◦ is an involution on W J such that

(1) w◦ = w0ww
J
0 .

(2) `(w◦) = `(w0)− `(wJ0 )− `(w) = |Φ+ \ Φ+
J | − `(w).

(3) v
β←− w is an edge in QB(W J) if and only if w◦

wJ0 β←−−− v◦ is an edge in QB(W J). Moreover
both edges are Bruhat or both are quantum.

In particular this involution reverses arrows in QB(W J) and preserves whether an arrow is quantum
or not.

Proof. For α ∈ Φ+
J we have wJ0α ∈ Φ−J . Since w ∈ W J , wwJ0α ∈ Φ−. Then w0ww

J
0α ∈ Φ+.

Therefore w0ww
J
0 ∈W J and w◦ = w0ww

J
0 . This implies (1).

Since elements of W J permute Φ+
J , Inv(w) and Inv(w◦) are subsets of Φ+ \ Φ+

J . Note that for

α ∈ Φ+ \ Φ+
J , α ∈ Inv(w) if and only if wα ∈ Φ−, if and only if w0ww

J
0w

J
0α ∈ Φ+, if and only

if wJ0α ∈ Φ+ \ Φ+
J \ Inv(w◦). Therefore the map α 7→ wJ0α defines a bijection from Inv(w) to

(Φ+ \ Φ+
J ) \ Inv(w◦). This implies (2).

Let v = wrβ. Then v◦ = w0vw
J
0 = w0ww

J
0w

J
0 rβw

J
0 = w◦rwJ0 β

, that is, w◦ = v◦rwJ0 β
. Since

β ∈ Φ+ \Φ+
J , wJ0 β ∈ Φ+ \Φ+

J . Let χ be 0 or 1 according as the edge v
β←− w is Bruhat or quantum.

By (2) we have

`(w◦) = |Φ+ \ Φ+
J | − `(w)

= |Φ+ \ Φ+
J | − (`(v)− 1 + χ〈β∨ , 2ρ− 2ρJ〉)

= `(v◦) + 1− χ〈β∨ , 2ρ− 2ρJ〉
= `(v◦) + 1− χ〈wJ0 β∨ , 2ρ− 2ρJ〉
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where the last equality holds by Lemma 4.4. This proves the existence of the required arrow in
QB(W J). �

Lemma 4.4. For any z ∈WJ ,

z(2ρ− 2ρJ) = 2ρ− 2ρJ .(4.2)

Proof. z ∈WJ permutes the set Φ+ \ Φ+
J , whose sum is 2ρ− 2ρJ . �

5. Quantum Bruhat graph and the affine Bruhat order

In this section we consider the lift of the parabolic quantum Bruhat graph to the Bruhat order
of the affine Weyl group (see Theorem 5.2). This is used in Section 5.5 to establish the Diamond
Lemmas for the parabolic quantum Bruhat graph.

5.1. Regular case. The following result is [LS, Proposition 4.4].

Proposition 5.1. Let µ ∈ Q∨ be superantidominant and let x = wtvµ with w, v ∈ W . Then
y = xrvα+nδ l x if and only if one of the following hold.

(1) `(wv) = `(wvrα)− 1 and n = 〈µ , α〉, giving y = wrvαtvµ.
(2) `(wv) = `(wvrα)− 1 + 〈α∨ , 2ρ〉 and n = 1 + 〈µ , α〉, giving y = wrvαtv(µ+α∨).
(3) `(v) = `(vrα) + 1 and n = 0, giving y = wrvαtvrαµ.
(4) `(v) = `(vrα) + 1− 〈α∨ , 2ρ〉 and n = −1 giving y = wrvαtvrα(µ+α∨).

Note that if we impose the condition that both x and y are in W−af then v = id and only Cases
(1) and (2) apply.

5.2. Embeddings QB(W J) ↪→ Waf . We shall give a parabolic analogue (Theorem 5.2 below) of
Proposition 5.1 for W−af . Theorem 5.2 is proved in the same manner as Proposition 5.1 but the
latter cannot be directly invoked to prove the former, since J-superantidominance does not imply
superantidominance.

Let ΩJ ⊂ Waf be the subset of elements of the form wπJ(tµ) with w ∈ W J and µ ∈ Q∨ strictly
J-antidominant (see (3.15)) and J-adjusted. Define Ω∞J similarly but with strict J-antidominance
replaced by J-superantidominance. We have Ω∞J ⊂ (W J)af ∩W−af . Impose the Bruhat covers in Ω∞J
whenever the connecting root has classical part in Φ \ ΦJ . Then Ω∞J is a subposet of the Bruhat
poset Waf .

Theorem 5.2. Every edge in QB(W J) lifts to a downward Bruhat cover in Ω∞J , and every cover
in Ω∞J projects to an edge in QB(W J). More precisely:

(1) For any edge bwrαc
α←− w in QB(W J), z ∈ ΣJ (see (3.9)), and µ ∈ Q∨ that is J-

superantidominant and J-adjusted with z = zµ (which exists by Lemma 3.15), there is a
covering relation y l x in Ω∞J where

x = wztµ , y = xrα̃ = wrαtχα∨ztµ , α̃ = z−1α+ (χ+ 〈µ , z−1α〉)δ ∈ Φaf− ,

and χ is 0 or 1 according as the arrow in QB(W J) is of Bruhat or quantum type respectively.
(2) Suppose y l x is an arbitrary covering relation in Ω∞J . Then we can write x = wztµ with

w ∈W J , z = zµ ∈WJ , and µ ∈ Q∨ J-superantidominant and J-adjusted, as well as y = xrγ
with γ = z−1α+nδ ∈ Φaf , α ∈ Φ+ \Φ+

J , and n ∈ Z. With the notation χ := n−〈µ , z−1α〉,
we have

χ ∈ {0, 1} , γ = z−1α+ (χ+ 〈µ , z−1α〉)δ ∈ Φaf− ;

furthermore, there is an edge wrαz
z−1α←−−− wz in QB(W ) and an edge bwrαc

α←− w in
QB(W J), where both edges are of Bruhat type if χ = 0 and of quantum type if χ = 1.
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Remark 5.3. The affine Bruhat covering relation considered in part (2) is completely general, subject
to both elements being in Ω∞J and the transition root having classical part in Φ \ ΦJ .

Proof. (1) Since α ∈ Φ+\Φ+
J we have z−1α ∈ Φ+\Φ+

J . By Lemmas 3.7 and 3.16, x ∈ (W J)af∩W−af .
We have

y = xrα̃ = wztµrz−1αt(χ+〈µ , z−1α〉)α∨

= wrαztχz−1α∨tµ

= wrαtχα∨ztµ

πJ(y) = πJ(wrαtχα∨z)πJ(tµ)

= πJ(wrαtχα∨)ztµ

= wrαtχα∨ztµ

= y

using Proposition 3.5, the assumption on µ, and (2′) of the definition of QB(W J) in the case χ = 1.
We conclude that y ∈ (W J)af . Let i ∈ I. We have yαi = wzrz−1

α
(αi − 〈µ+ χz−1α∨ , αi〉δ). If i /∈ J

then the J-superantidominance of µ implies that yαi ∈ Φaf+. Suppose i ∈ J . Then αi ∈ Φ+
J and

yαi ∈ Φaf+ by the definition of y ∈ (W J)af . We have shown that y ∈W−af . To prove xm y we need

only show that `(x)− `(y) = 1. Suppose χ = 0. Since y and x are in W−af , by [LS, Lemma 3.3] we
have

`(x)− `(y) = `(tµ)− `(wz)− `(tµ) + `(wrαz)

= −`(w)− `(z) + `(wrα) + `(z)

= 1.

Suppose χ = 1. We have x = wπJ(tµ) and y = bwrαcπJ(tµ+z−1α∨). By Lemma 3.13 we have

`(x)− `(y) = −`(w)− 〈µ , 2ρ− 2ρJ〉+ `(bwrαc) + 〈µ+ z−1α , 2ρ− 2ρJ〉
= 1− 〈α∨ , 2ρ− 2ρJ〉+ 〈α∨ , z(2ρ− 2ρJ)〉

by condition (2) of the case χ = 1 of the arrow in QB(W J). By Lemma 4.4 it follows that
`(x)− `(y) = 1 as required.

(2) Let n = χ+ 〈µ , z−1α〉 where χ ∈ Z.
We have y = wrαztµ+χz−1α∨ . Since y ∈ W−af , µ + χz−1α∨ is antidominant by [LS, Lemma 3.3].

By [LS, Lemma 3.2] we have

1 = `(x)− `(y)

= (−〈µ , 2ρ〉 − `(wz))−
(
−〈µ+ χz−1α∨ , 2ρ〉 − `(wzrz−1α)

)
= `(wzrz−1α)− `(wz) + χ〈z−1α∨ , 2ρ〉

By Lemma 4.1 we deduce that χ ∈ {0, 1}.
Suppose χ = 0. Then y = wrαztµ and `(wzrz−1α) − `(wz) = 1, that is, wz l wzrz−1α = wrαz.

This gives the required Bruhat cover in QB(W ). Since y ∈ (W J)af we have πJ(y) = y and
wrαztµ = bwrαzcπJ(tµ) = bwrαcztµ using Proposition 3.5. We deduce that wrα ∈ W J . By

length-additivity it follows that wrα
α←− w is a Bruhat arrow in QB(W J).

Otherwise we have χ = 1. Then y = wrαtα∨ztµ = wrαztµ+z−1α∨ and `(wzrz−1α) = `(wz) + 1−
〈z−1α∨ , 2ρ〉, which yields the required quantum arrow in QB(W ).

Since y ∈ (W J)af we have

wrαtα∨ztµ = y = π(y) = πJ(wrαtα∨z)πJ(tµ)

= πJ(wrαtα∨)ztµ
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from which we deduce that wrαtα∨ ∈ (W J)af and that α∨ is J-adjusted.
By Remark 3.6 and Lemma 3.11 we have zµ+z−1α∨ = zµzz−1α∨ = zµzα∨ = zzα∨ . Since α∨ is J-

adjusted we have wrαz = πJ(wrα)zα∨z = πJ(wrα)zµ+z−1α∨ and the last product is length-additive.
Therefore

`(πJ(wrα)) = `(wrαz)− `(zµ+z−1α∨)

= `(wz) + 1− 〈z−1α∨ , 2ρ〉 − `(zµ+z−1α∨)

= `(w) + 1 + `(zµ)− `(zµ+z−1α∨)− 〈z−1α∨ , 2ρ〉
= `(w) + 1 + 〈z−1α∨ , 2ρJ〉 − 〈z−1α∨ , 2ρ〉
= `(w) + 1− 〈z−1α∨ , 2ρ− 2ρJ〉
= `(w) + 1− 〈α∨ , 2ρ− 2ρJ〉

using Lemma 3.10, that µ and µ+z−1α∨ are J-adjusted, and Lemma 4.4. This proves the existence
of the required edge in QB(W J). �

Example 5.4. Let g be of type A2 and J = {1}. Then QB(W J) is given by

r1r2

r2

id

pppppppppppppppp?
α2

�
���

α1+α2

@
@@I
α2

where the quantum arrow is dotted. In ΩJ ⊂Waf , let µ = −6ω∨2 and ν = −3ω∨2 − θ∨. We have

tµ = t−6ω∨2

r2tµ

r1r2tµ

x = r0r1r2tµ

�
�

�
�	

6δ−α2

@
@
@
@@R

6δ−α1−α2

pppppppppp?5δ−α2

x = r1tν

r2(r1tν)

r1r2(r1tν)

r0r1r2(r1tν) = t−3ω∨2

�
�

�
�
�	

5δ−r1(α2)

@
@
@
@
@R

4δ−r1(α1+α2)

ppppppppppp?4δ−r1(α2)

We have a single chain running from t−6ω∨2
down to t−3ω∨2

. The diagram is broken at t−ν , which
appears at the bottom on the left and the top on the right. If the bottom element is removed from
each side then one obtains an upside-down copy of QB(W J). In this case the quantum arrows
transition to a different copy of QB(W J). The left hand copy has z = id and the right hand copy
has z = r1 where in this situation ΣJ is generated by r1. The poset Ω∞J is an infinite chain that
wraps down onto the 3-cycle given by QB(W J) with two flavors of lifts, one for z = id and the
other for z = r1.
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Warning: generally not every affine cover is produced by left multiplication by a simple reflec-
tion, nor is a general quantum cover always induced by left multiplication by r0 (although we shall
see that left multiplication by r0 always induces a quantum arrow).

We say that a walk in the directed graph QB(W J) is locally-shortest if any segment of the walk
not containing a repeated vertex is a shortest path.

Corollary 5.5. Downward saturated chains in Ω∞J project to locally-shortest walks in QB(W J).
Conversely, shortest paths in QB(W J) are projections of downward saturated chains in Ω∞J .

Proof. Say x0 m x1 m · · · m xN is a saturated Bruhat chain in Ω∞J . Let πJ(xi) = wizitµi where
wi ∈ W J , zi ∈ WJ , and µi ∈ Q∨. Then Theorem 5.2 asserts that w0 → w1 → · · · → wN is a
locally-shortest walk in QB(W J).

Now let u = u0 → u1 → · · · → uN = u′ be a shortest path in QB(W J). We apply Theorem 5.2 to
the edge u0 → u1 with µ = µ0 J-superantidominant and WJ -invariant. The element x0 = u0tµ lifts
u0 since πJ(tµ) = tµ. Then the Proposition produces a cocover x1 = u1z1tµ1 of x0 with z1 ∈ ΣJ . In
general we have a descending Bruhat chain x0 mx1 m · · ·mxi−1 = ui−1zi−1tµi−1 with zi−1 ∈ ΣJ and
we apply the Proposition to obtain a cocover xi = uizitµi of xi−1 with zi ∈ ΣJ and by induction
the required affine chain is produced. �

Corollary 5.6. For each z ∈ ΣJ there is a copy of QB(W J) inside QB(W ), embedded by w 7→ wz
such that the edge label α is sent to the root z−1α, and Bruhat and quantum edges are sent to the
same kind of edge.

Proof. For every z ∈ ΣJ , we take an edge bwrαc
α←− w in QB(W J), lift it to wztµmwrαztν for some

ν, and project to an edge wrαz
z−1α←−−− wz in QB(W ); the lift is based on Theorem 5.2 (1), and the

projection on Theorem 5.2 (2). �

Remark 5.7. Lifting quantum edges causes a “phase shift” by an element z ∈ ΣJ . Theorem 5.2 is
just general enough to lift in the presence of such a shift. If one tries to twist by a z ∈WJ that is
not in ΣJ then the affine element of the form x = wztµ no longer lies in the set (W J)af and lifting
the edge of QB(W J) starting from x is not possible in general.

5.3. Trichotomy of cosets.

Lemma 5.8. [De] Let W be a Weyl group, WJ ⊂ W a parabolic subgroup, v ∈ W J and r ∈ W a
simple reflection. Then one of the following holds.

(1) If rv < v then rv ∈W J and rvWJ < vWJ .
(2) If rv > v and v−1rv ∈WJ then rvWJ = vWJ .
(3) If rv > v and v−1rv 6∈WJ then rv ∈W J and rvWJ > vWJ .

Lemma 5.9. Let v ∈ W and α ∈ Φ+. Let λ ∈ X be a dominant weight (cf. Section 3.2 and the
notation thereof, e.g., WJ is the stabilizer of λ).

(1) Let 〈α∨ , vλ〉 < 0. Then v−1α ∈ Φ− \ Φ−J and rαvWJ < vWJ .
(2) Let 〈α∨ , vλ〉 = 0. Then v−1α ∈ ΦJ and rαvWJ = vWJ .
(3) Let 〈α∨ , vλ〉 > 0. Then v−1α ∈ Φ+ \ Φ+

J and rαvWJ > vWJ .

The proof of the above lemma is easy using standard techniques for Weyl groups (see for exam-
ple [BB, Proposition 2.5.1]).

5.4. Quantum edges induced by left multiplication by suitable reflections.

Proposition 5.10. [De] Let w ∈W J and j ∈ I. Then exactly one of the following holds.

(1) w−1αj ∈ Φ− \ Φ−J . In this case rjw ∈ W J and there is a Bruhat edge w
−w−1α←−−−− rjw in

QB(W J).
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(2) w−1αj ∈ ΦJ . In this case w−1αj ∈ Φ+
J and brjwc = w.

(3) w−1αj ∈ Φ+ \ Φ+
J . In this case rjw ∈ W J and there is a Bruhat edge rjw

w−1αj←−−−− w in

QB(W J).

Proposition 5.11. Let w ∈W J . Then exactly one of the following holds.

(1) w−1θ ∈ Φ−\Φ−J . In this case there is an edge brθwc
−w−1θ←−−−− w of quantum type in QB(W J).

(2) w−1θ ∈ ΦJ . In this case w−1θ ∈ Φ+
J and brθwc = w.

(3) w−1θ ∈ Φ+ \Φ+
J . In this case there is an edge w

zw−1θ←−−−− brθwc of quantum type in QB(W J),
where z = zw−1θ∨.

Proof. The three cases correspond to those in Lemma 5.9 with v = w and α = θ. The conclusion
in Case (2) is immediate from the definition of w ∈ W J . By exchanging the roles of w and brθwc,
it suffices to prove the existence of the edge in (1). Let w−1θ ∈ Φ− \ Φ−J .

Choose any µ ∈ Q∨ that is J-superantidominant and WJ -invariant. We have πJ(tµ) = tµ and
x := wtµ ∈W−af ∩ (W J)af . We have

x−1α0 = −w−1θ + (1 + 〈µ , −w−1θ〉)δ ∈ Φaf− ,(5.1)

since w−1θ ∈ Φ−. We conclude that x > y := r0x = rθwtµ−w−1θ∨ . Since x ∈ W−af it follows that

y ∈ W−af as well. Let β ∈ Φaf+
J . Suppose yβ ∈ Φaf−. Since x ∈ (W J)af we have xβ = r0yβ ∈ Φaf+.

Since r0 has the sole inversion α0, it follows that xβ = α0 or x−1α0 = β ∈ Φaf+
J . But this contradicts

(5.1). Therefore y ∈ (W J)af .
By Theorem 5.2, the required quantum edge exists in QB(W J). �

Corollary 5.12. For every γ ∈Wθ∩(Φ+\Φ+
J ), zγ∨γ

∨ is J-adjusted and for every γ ∈Wθ∩Φ−\Φ−J ,
−γ∨ is J-adjusted.

Proof. Follows from the existence of the edges in QB(W J). �

5.5. Diamond Lemmas for QB(W J). We recall the Diamond Lemma for Coxeter groups and
the Bruhat order.

Lemma 5.13. [H] Let W be any Coxeter group, v, w ∈W , and r a simple reflection.

(1) Suppose v l w, rw < w and v 6= rw. Then rv < v and rv l rw.
(2) Suppose v m w, rw > w and v 6= rw. Then rv > v and rv m rw.

In the following diagrams, a dotted (resp. plain) edge represents a quantum (resp. Bruhat) edge
in QB(W J). We always refer to the parabolic quantum Bruhat graph on W J . Given w ∈W J and
γ ∈ Φ+, define z, z′ ∈WJ by

(5.2) rθw = brθwcz , rθbwrγc = brθbwrγccz′ = brθwrγcz′ .

We are now ready to state the Diamond Lemmas for the parabolic quantum Bruhat graph.

Lemma 5.14. Let α be a simple root in Φ , γ ∈ Φ+\Φ+
J , and w ∈W J . Then we have the following

cases, in each of which the bottom two edges imply the top two edges in the left diagram, and the
top two edges imply the bottom two edges in the right diagram.



16 C. LENART, S. NAITO, D. SAGAKI, A. SCHILLING, AND M. SHIMOZONO

(1) In both cases we assume γ 6= w−1α and have rαbwrγc = rαwrγ = brαwrγc.

(5.3)

rαbwrγc

rαw bwrγc

w

�
�
��3γ

Q
QQk
bwrγc−1α

Q
Q

QQk

w−1α �
�
��3
γ

bwrγc

w rαbwrγc

rαw

�
�
��3γ

Q
QQk
−bwrγc−1α

Q
Q

QQk

−w−1α �
�
��3
γ

(2) Here we have rαbwrγc = brαwrγc in both cases.

(5.4)

rαbwrγc

rαw bwrγc

w

p p p p p p p p3γ

Q
QQk
bwrγc−1α

Q
Q

QQk

w−1α p p p p p p p p3γ

bwrγc

w rαbwrγc

rαw

p p p p p p p p3γ

Q
QQk
−bwrγc−1α

Q
Q

QQk

−w−1α p p p p p p p p3γ
(3) Here z, z′ are defined as in (5.2). In subcase (5.5) (resp. (5.6)) we assume that 〈w−1θ, γ∨〉

is nonzero (resp. zero). In all cases, we have wrγ = bwrγc.

(5.5)

brθwrγc

brθwc bwrγc

w

p p p p p p3zγ ppppppk −bwrγc−1θ

ppppppppk−w−1θ �
�
��3
γ

bwrγc

w brθwrγc

brθwc

�
�
��3γ ppppppk z′bwrγc−1θ

ppppppppkzw−1θ p p p p p p3zγ

(5.6)

brθwrγc

brθwc bwrγc

w

�
��3

zγ ppppppk −bwrγc−1θ

ppppppppk−w−1θ �
�
��3
γ

bwrγc

w brθwrγc

brθwc

�
�
��3γ ppppppk z′bwrγc−1θ

ppppppppkzw−1θ �
��3
zγ

(4) Here we assume γ 6= −w−1θ in all cases, and z, z′ are defined as in (5.2). In subcase (5.7)
(resp. (5.8)) we assume that 〈w−1θ, γ∨〉 is nonzero (resp. zero).

(5.7)

brθwrγc

brθwc bwrγc

w

�
��3

zγ ppppppk −bwrγc−1θ

ppppppppk−w−1θ p p p p p p p p3γ

bwrγc

w brθwrγc

brθwc

p p p p p p p p3γ ppppppk z′bwrγc−1θ

ppppppppkzw−1θ �
��3
zγ
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(5.8)

brθwrγc

brθwc bwrγc

w

p p p p p p3zγ ppppppk −bwrγc−1θ

ppppppppk−w−1θ p p p p p p p p3γ

bwrγc

w brθwrγc

brθwc

p p p p p p p p3γ ppppppk z′bwrγc−1θ

ppppppppkzw−1θ p p p p p p3zγ
Remark 5.15. (1) The left diagram of (5.3) of Lemma 5.14 is the classical Diamond Lemma 5.13.

(2) The right diagrams in (5.3), (5.4), (5.5), (5.6), (5.7), and (5.8) are relabelings of the left
diagrams in (5.3), (5.4), (5.7), (5.6), (5.5), and (5.8), respectively, and vice versa. For instance, we
can obtain a right diagram by labeling w the leftmost vertex in the corresponding left diagram,
and by recalculating all the other vertex and edge labels.

Proof of Lemma 5.14. By Proposition 4.3 only the left diagrams need to be established. In all cases,
the bottom half of a diamond in QB(W J) is lifted to the affine Bruhat order using Theorem 5.2 (1).
There the diamond is completed using the usual Diamond Lemma 5.13 for the affine Weyl group.
The affine diamond is pushed down to QB(W J) using Theorem 5.2 (2).

Consider the left diagram in (5.4). By Theorem 5.2 (1), the quantum edge bwrγc
γ←− w lifts

to an affine Bruhat cover y l x in Ω∞J where x = wtµ, µ is J-superantidominant with zµ = id,

y = wrγtγ∨+µ = xrγ̃ , and γ̃ = γ + (1 + 〈µ , γ〉)δ ∈ Φaf−. Since rαw m w and rαw ∈ W J , it
follows that rαxl x. Moreover this covering relation is the affine lift into Ω∞J of the Bruhat edge

rαw
w−1α←−−− w. The elements rαx and y are distinct since they have different translation components.

By the Diamond Lemma 5.13 for the affine Weyl group, we have rαxm rαy and ym rαy. The latter
cover implies that rαy ∈ Ω∞J . Theorem 5.2 (2) yields the top half of the left diagram in (5.4).

Consider the bottom half of the left diagram in (5.5) (which is also the same half diagram in

(5.6)). The quantum edge brθwc
−w−1θ←−−−− w lifts to the affine cover in Ω∞J given by r0x l x where

x = wtµ and r0x = rθwtµ−w−1θ∨ . The Bruhat edge wrγ
γ←− w lifts to the affine cover in Ω∞J

given by wrγtµ = xrγ̃ l wtµ where γ̃ = γ + 〈µ , γ〉δ. One may verify that r0x 6= xrγ̃ . By the
Diamond Lemma 5.13 for the affine Weyl group, we have r0x m r0xrγ̃ and xrγ̃ m r0xrγ̃ . Arguing
as in the proof of Proposition 5.11 and using that xrγ̃ ∈ Ω∞J , one may show that r0xrγ̃ ∈ Ω∞J .

By Theorem 5.2 (2) we obtain edges in QB(W J) which complete the diamond, with the only
remaining issue being the type of the edge brθwc → brθwrγc. It is quantum or Bruhat depending
on whether the translation elements in the affine lift r0x m r0xrγ̃ are different or the same. Since
r0xrγ̃ = rθwrγtµ−rγw−1(θ∨) we see that the translation element changes in passing from r0x to r0xrγ̃
if and only if 〈w−1(θ∨) , γ〉 6= 0, as required.

The cases for the diagrams (5.7) and (5.8) are similar to those for (5.5) and (5.6). �

6. The level-zero weight poset

In [Li], Littelmann introduced a poset related to Lakshmibai–Seshadri (LS) paths for arbitrary
(not necessarily dominant) integral weights. We consider this poset for level-zero weights. Littel-
mann did not give a precise local description of it. Our main result in this section is a characteri-
zation of its cover relations in terms of the parabolic quantum Bruhat graph.

Fix a dominant weight λ in the finite weight lattice X (cf. Section 3.2 and the notation thereof,
e.g., WJ is the stabilizer of λ). We view X as a sublattice of X0

af . Let X0
af(λ) be the orbit of λ

under the action of the affine Weyl group Waf .
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Definition 6.1. (Level-zero weight poset [Li]) A poset structure is defined on X0
af(λ) as the tran-

sitive closure of the relation

(6.1) µ < rβµ ⇔ 〈µ, β∨〉 > 0 ,

where β ∈ Φaf+. This poset is called the level-zero weight poset for λ.

Remarks 6.2.

(1) Assume that WJ is trivial, and we set µ = wλ for w ∈ Waf . Then, for β ∈ Φaf+, we
have µ < rβµ in the level-zero weight poset if and only if w−1rβ ≺ w−1 in the generic
Bruhat order ≺ on Waf introduced by Lusztig [Lu]. Indeed, this equivalence follows from
the definitions of these partial orders by using [Soe, Claim 4.14, page 96]. The generic
Bruhat order also recently appeared in [La].

(2) We can define the poset X0
af(−λ) on the orbit of the antidominant weight −λ in the same

way, using (6.1). The posets X0
af(λ) and X0

af(−λ) are dual isomorphic, in the sense that,
for µ, ν ∈ X0

af(λ), we have

µ < ν ⇔ −µ > −ν .
Therefore, all the statements in this section can be easily rephrased for X0

af(−λ).

An example of X0
af(λ) is given in Figure 6. As we can see from this example, X0

af(λ) is not a
graded poset in general.

Littelmann [Li] introduced a distance function on the level-zero weight poset. Namely, if µ ≤ ν
in X0

af(λ), then dist(µ, ν)1 is the maximum length of a chain from µ to ν. Clearly, covers correspond
to elements at distance 1.

Lemma 6.3. [Li, Lemma 4.1] Let µ, ν ∈ X0
af(λ).

(1) If µ ≤ ν and α is a simple root in Φaf such that 〈µ, α∨〉 ≥ 0 but 〈ν, α∨〉 < 0, then µ ≤ rαν
and dist(µ, rαν) < dist(µ, ν).

(2) If µ ≤ ν and α is a simple root in Φaf such that 〈µ, α∨〉 > 0 but 〈ν, α∨〉 ≤ 0, then rαµ ≤ ν
and dist(rαµ, ν) < dist(µ, ν).

(3) If µ ≤ ν and α is a simple root in Φaf such that 〈µ, α∨〉, 〈ν, α∨〉 > 0 (respectively
〈µ, α∨〉, 〈ν, α∨〉 < 0), then dist(µ, ν) = dist(rαµ, rαν).

We label a cover µ l ν = rβµ of X0
af(λ) by the corresponding positive real root β. Preliminary

results about the covers of X0
af(λ) were obtained by Naito and Sagaki.

Lemma 6.4.

(1) [NS4, Remark 2.10 and Lemma 2.11]. For untwisted types, a necessary condition for µ < ν
to be a cover in X0

af(λ) is that ν = rβµ with β ∈ Φ+ or β ∈ δ − Φ+.

(2) [NS4, Remark 2.10 (2)] Let µ, ν ∈ X0
af(λ) be such that ν = rαµ for a simple root α in Φaf

such that 〈µ, α∨〉 > 0. Then dist(µ, ν) = 1.

We consider the standard projection map cl from X0
af(λ) to the orbit of λ under the finite Weyl

group (by factoring out the δ part). We identify Wλ ' W/WJ ' W J , and consider on W J

the parabolic quantum Bruhat graph structure. Note that, by contrast with X0
af(λ), the edges of

the latter are labeled by positive roots γ ∈ Φ+ (of the finite root system) corresponding to right
multiplication by rγ . We use solid arrows to denote covers in the Bruhat order, whereas dotted
arrows denote quantum edges in the parabolic quantum Bruhat graph on W J .

Our main result is that the level-zero weight poset is an affine lift of the corresponding parabolic
quantum Bruhat graph. This is illustrated in Figure 6, where the edges of the (parabolic) Bruhat
graph (i.e., the slice of the level-zero weight poset with no δ, onto which we project) are shown in
red. Projecting all vertices onto the red part, one obtains the quantum Bruhat graph of Figure 1.

1The notation in [Li] is dist(ν, µ).
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2Λ0 + Λ1 + (−3) Λ2

3Λ0 + (−1) Λ1 + (−2) Λ2 (−1) Λ0 + (−2) Λ1 + 3Λ2 + (−1) δ

(−2) Λ0 + 3Λ1 + (−1) Λ2

3Λ0 + (−1) Λ1 + (−2) Λ2 + 2δ

(−3) Λ0 + 2Λ1 + Λ2 + δ

2Λ0 + Λ1 + (−3) Λ2 + (−1) δ

2Λ0 + Λ1 + (−3) Λ2 + δ

(−3) Λ0 + 2Λ1 + Λ2 + (−2) δ

Λ0 + (−3) Λ1 + 2Λ2 + δ(−3) Λ0 + 2Λ1 + Λ2

Λ0 + (−3) Λ1 + 2Λ2

Λ0 + (−3) Λ1 + 2Λ2 + (−1) δ

3Λ0 + (−1) Λ1 + (−2) Λ2 + δ

(−1) Λ0 + (−2) Λ1 + 3Λ2 + δ

2Λ0 + Λ1 + (−3) Λ2 + 2δ

(−1) Λ0 + (−2) Λ1 + 3Λ2

(−3) Λ0 + 2Λ1 + Λ2 + (−1) δ

(−2) Λ0 + 3Λ1 + (−1) Λ2 + (−1) δ

(−2) Λ0 + 3Λ1 + (−1) Λ2 + δ

Λ0 + (−3) Λ1 + 2Λ2 + 2δ

Figure 3. Slice of the level-zero weight poset for type A
(1)
2 and weight 2Λ1 + Λ2 − 3Λ0.

Theorem 6.5. Let µ ∈ X0
af(λ) and w := cl(µ) ∈ W J . If µ l ν is a cover in X0

af(λ) labeled by

β ∈ Φaf+, then w → cl(ν) is an up (respectively down) edge in the parabolic quantum Bruhat graph
on W J labeled by w−1β ∈ Φ+ \ Φ+

J (respectively w−1(β − δ)), depending on β ∈ Φ+ (respectively

β ∈ δ−Φ+). Conversely, if w wrγ = w′-γ (respectively w bwrγc = w′p p p p-γ ) in the parabolic

quantum Bruhat graph for γ ∈ Φ+ \ Φ+
J , then there exists a cover µ l ν in X0

af(λ) labeled by wγ
(respectively δ + wγ) with cl(ν) = w′.

The proof of Theorem 6.5 is given in the remainder of this section.

6.1. Outline of the proof. Let us begin by giving a brief outline of the proof. To relate the cover
relations in the level-zero weight posetX0

af(λ) and the edges in the parabolic quantum Bruhat graph,
we use the so-called Diamond Lemma on X0

af(λ) to successively move a cover µl rβµ “closer” to a

cover µlrαµ for a simple root α in Φaf . For simple roots, the statement of Theorem 6.5 is proved in
Section 6.2. The Diamond Lemma in the level-zero weight poset is the subject of Section 6.3. Recall
that the Diamond Lemmas for the parabolic quantum Bruhat graph were treated in Section 5.5.
In Section 6.4 we prove some further statements related to the Diamond Lemmas for the parabolic
quantum Bruhat graph that we need for our arguments. We conclude in Section 6.5 with the main
argument, based on matching the diamond reductions in the level-zero weight poset with those in
the parabolic quantum Bruhat graph.

6.2. Results for simple roots. In this section, we characterize a cover relation µ l ν in X0
af(λ)

when µ and ν are related by an affine simple reflection.
We start with a simple lemma. Since some versions of it will be needed beyond this section, we

collect all of them here.

Lemma 6.6. Let α be a simple root, β a positive root (both in Φaf), and µ = wtτλ with w ∈ W J

and τ ∈ Q∨. Let γ ∈ Φ+ be given by β = ±wγ + kδ.
(1) We have

cl(µ) = w , cl(rβµ) = bwrγc .
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(2) If α 6= α0, assume that rαw ∈W J , i.e., cl(µ) 6= cl(rαµ). Then we have

cl(rαµ) =

{
rαw = brαwc if α 6= α0

brθwc if α = α0 .

(3) If α 6= α0, assume that rαbwrγc ∈W J , i.e., cl(rβµ) 6= cl(rαrβµ). Then we have

cl(rαrβµ) =

{
rαbwrγc = brαbwrγcc if α 6= α0

brθwrγc if α = α0 .

Proof. We have

(6.2) µ = wtτλ = wλ− 〈λ, τ〉δ .

So cl(µ) = w. Similarly, we have

cl(rβµ) = cl(rwγt±kwγ∨wtτ (λ)) = bwrγc , and cl(rαµ) =

{
brαwc if α 6= α0

brθwc if α = α0 .

In addition, if α 6= α0, then brαwc can only be w or rαw, by Lemma 5.8; but the first case cannot
happen by the assumptions of the lemma. The calculation of cl(rαrβµ) is similar, by also noting
that, if α 6= α0, then brαwrγc = brαbwrγcc. �

Lemma 6.7. Let µ, ν ∈ X0
af(λ) be such that ν = rαµ for a simple root α in Φaf . Then µ l ν is

a cover in X0
af(λ) if and only if cl(µ) → cl(ν) is an up (respectively down) edge in the parabolic

quantum Bruhat graph on W J labeled by w−1α (respectively −w−1θ), where w = cl(µ) ∈ W J ,
depending on α 6= α0 (respectively α = α0).

Proof. Since α is a simple root, we have by Lemma 6.4 (2) that dist(µ, ν) = 1 if µ < ν. So in this
case µlν is equivalent to µ < ν. Letting µ = wtτ (λ) with w ∈W J and τ ∈ Q∨, we have cl(µ) = w,
by Lemma 6.6 (1). Let us first assume that α 6= α0. Then

〈µ, α∨〉 = 〈wλ, α∨〉 = 〈λ,w−1α∨〉,

where for the first equality we used (6.2). Hence

µ < rαµ ⇔ 〈µ, α∨〉 > 0 ⇔ w−1α ∈ Φ+ \ Φ+
J ⇔ w l rαw in W J ,

where the last equivalence is based on Lemma 5.9. The last condition is equivalent to cl(µ)→ cl(ν)
being an up edge in the parabolic quantum Bruhat graph, by Lemma 6.6 (2). This proves the claim
for α 6= α0.

Now assume α = α0. Similarly to before

〈µ, α∨〉 = 〈wλ, α∨〉 = 〈wλ,−θ∨〉 = −〈λ,w−1θ∨〉,

where we used α0 = −θ + δ, or α∨0 + θ∨ = c. Hence

µ > rαµ ⇔ 〈µ, α∨〉 > 0 ⇔ w−1θ ∈ Φ− \ Φ−J .

By Proposition 5.11, the last condition is equivalent to the fact that w brθwcp p p p p p p p-−w−1θ
is a down

edge in the parabolic quantum Bruhat graph. Also note that cl(rαµ) = brθwc, by Lemma 6.6 (2).
This proves the claim for α = α0. �
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6.3. The Diamond Lemma in the level-zero weight poset. In this section we investigate the
Diamond Lemma in the level-zero weight poset X0

af(λ).

Lemma 6.8. Let µ ∈ X0
af(λ) and µ < rβµ in X0

af(λ), where β ∈ Φaf+. Then there exists a simple

root α in Φaf (in fact, α 6= α0 if β ∈ Φ) such that 〈β, α∨〉 > 0, and either

(1) µl rαµ or (2) rαrβµl rβµ

is a cover in X0
af(λ).

Proof. We pick a simple root α in the decomposition of β such that 〈β, α∨〉 > 0. This clearly exists,
and in fact α 6= α0 if β ∈ Φ.

By Definition 6.1, we have 〈µ, β∨〉 > 0. We claim that either

(6.3) 〈µ, α∨〉 > 0 or 〈µ,−rβα∨〉 = −〈rβµ, α∨〉 > 0 .

Indeed, the reflection formula

rβα
∨ = α∨ − 〈β, α∨〉β∨

implies that α∨ − rβα
∨ is a positive multiple of β∨. Now (6.3) follows since 〈µ, β∨〉 > 0. We

conclude the proof by combining (6.3) with Lemma 6.4 (2). �

Next we state the Diamond Lemma for the level-zero weight poset.

Lemma 6.9. Let α be a simple root, β 6= α a positive root (both in Φaf), and µ ∈ X0
af(λ). In the

left diagram, the bottom two covers imply the top two covers, while the top two covers imply the
bottom two covers in the right diagram.

(6.4)

rαrβµ

rαµ rβµ

µ

�
��3

rαβ

Q
QQk α

Q
QQk
α �

��3
β

rβµ

µ rαrβµ

rαµ

�
��3
β

Q
QQk α

Q
QQk
α �

��3
rαβ

Proof. We start by assuming that the bottom two arrows are covers in the left diagram. Set
ν := rβµ. By definition, we have 〈µ, α∨〉 > 0 and 〈µ, β∨〉 > 0. We first show that 〈ν, α∨〉 > 0,
which implies that we have the cover ν l rαν, by Lemma 6.4 (2). Indeed, if 〈ν, α∨〉 ≤ 0, then
Lemma 6.3 (2) would imply dist(rαµ, ν) < dist(µ, ν); since dist(µ, ν) = 1, it would follow that
ν = rαµ, which is impossible, since α 6= β.

Turning to the remaining edge of the diamond, we clearly have rαµ < rαν, as

rαν = rrαβ(rαµ) and 〈rαµ, rαβ∨〉 = 〈µ, β∨〉 > 0 ;

note that rαβ is a positive root, as α 6= β. The hypotheses of Lemma 6.3 (3) apply, so we have
1 = dist(µ, ν) = dist(rαµ, rαν). We conclude that we have the cover rαµl rαν.

The proof for the right diagram is similar, where we now assume that the top two arrows are
covers. More precisely, in order to prove that the bottom arrows are covers, we use Lemma 6.3 (1)
for the left one, and then Lemma 6.3 (3) for the right one. �

6.4. More on the Diamond Lemmas for the PQBG. Recall the Diamond Lemmas for the
parabolic quantum Bruhat graph on W J from Section 5.5. Recall that given w ∈W J and γ ∈ Φ+,
define z, z′ ∈WJ by

rθw = brθwcz , rθbwrγc = brθbwrγccz′ = brθwrγcz′ .

We need an analogue of Lemma 6.8.
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Lemma 6.10. Let w ∈ W J , and let w wrγ-γ or w bwrγcp p p p-γ in the parabolic quantum

Bruhat graph (where γ ∈ Φ+ \ Φ+
J ). Define β ∈ Φaf+ by

(6.5) β :=

 wγ if w wrγ-γ

δ + wγ if w bwrγcp p p p-γ .

There exists an affine simple root α (in fact, α 6= α0 if w wrγ-γ ), such that 〈β, α∨〉 > 0, and

we have the edge in the parabolic quantum Bruhat graph indicated either in case (1) or (2) below,
where z′ is defined as in (5.2):

(1)

 w rαw-w−1α
if α 6= α0

w brθwcp p p p p p p p-−w−1θ
if α = α0 ,

(2)

 rαbwrγc bwrγc-
−bwrγc−1α

if α 6= α0

brθwrγc bwrγcp p p p p p p p p p p p p p-z′bwrγc−1θ
if α = α0 .

Remark 6.11. In (6.5), if w bwrγcp p p p-γ , then wγ ∈ Φ− for the following reason. Observe that

`(bwrγc) ≤ `(w)− 1 since γ ∈ Φ+ \ Φ+
J . Now suppose, by contradiction, that wγ ∈ Φ+. Then, we

have wrγ > w in the usual Bruhat order on W . Therefore, by [BB, Proposition 2.5.1], we obtain
bwrγc ≥ bwc = w, which implies that `(bwrγc) ≥ `(w). This is a contradiction. This proves that
wγ ∈ Φ−.

Proof. Let µ := wλ, where λ ∈ X0
af is the fixed dominant element in the finite weight lattice whose

stabilizer is WJ . We claim that µ < rβµ in X0
af(λ), which means that 〈µ, β∨〉 > 0. Indeed, since

γ ∈ Φ+ \ Φ+
J , it follows from (6.5) that in both cases we have

〈µ, β∨〉 = 〈wλ,wγ∨〉 = 〈λ, γ∨〉 > 0 .

We now apply Lemma 6.8 to deduce the existence of a simple root α in Φaf (in fact, α 6= α0 if

w wrγ-γ ) such that 〈β, α∨〉 > 0, and either

(1) µl rαµ or (2) rαrβµl rβµ

in X0
af(λ). By Lemma 6.7 and Lemma 6.6, cases (1) and (2) can be rephrased as cases (1) and (2)

in the lemma to be proved, respectively. �

Note that we do not need all the cases of the diamond Lemma 5.14 for the PQBG, for instance
the one where all four edges are down edges. By stating that we have a certain edge in the parabolic
quantum Bruhat graph, we implicitly assume that both its vertices are in W J .

6.5. Main argument. We address separately the direct (⇒) and the converse (⇐) statements.
Recall that the height of a root is the sum of the coefficients in its expansion in the basis of simple
roots.

Proof of (⇒) in Theorem 6.5. Consider the cover µ l ν = rβµ in X0
af(λ) labeled by β, and let

w := cl(µ). We proceed by induction on the height of β. If β is a simple root, the conclusion
follows directly from Lemma 6.7. If β is not a simple root, we apply Lemma 6.8; this gives an
affine simple root α 6= β with 〈β, α∨〉 > 0, which also satisfies condition (1) or (2) in the mentioned
lemma. Depending on these two cases, by Lemma 6.9, we have one of the two diamonds in (6.4) (in
X0

af(λ)). Let β′ := rαβ. We will need the fact that β and β′ are in Φ+ or δ − Φ+ (not necessarily
both in the same set), by Lemma 6.4 (1).

Assume that we have the left diamond in (6.4), as the reasoning is completely similar for the
right diamond (we simply interchange the statements of the form “bottom implies top” and “top
implies bottom” provided by Lemmas 6.9 and 5.14). Lemma 6.7 tells us that, by projecting its
edges pointing northwest (labeled by the simple root α) via the map cl, we obtain two up edges
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or two down edges in the parabolic quantum Bruhat graph (depending on α 6= α0 or α = α0,
respectively). Moreover, by Lemma 6.6, the four vertices of the projected diamond and its top
left edge are labeled as in left diamond in (5.3) (or (5.4), which has the same labels), and (5.7),
respectively, where γ is defined as in Lemma 6.6; indeed, if γ′ is defined with respect to β′ and rαw
as γ is defined with respect to β and w in Lemma 6.6, then γ′ = γ in the first case, and γ′ = z(γ)
in the second case. Since 〈β, α∨〉 > 0, the height of β′ is strictly smaller than the height of β; so by
induction we know that the top left edge of the projected diamond is an up or down edge in the
parabolic quantum Bruhat graph, depending on β′ ∈ Φ+ or β′ ∈ δ − Φ+, respectively.

By Lemma 6.8, we have one of the following three cases:

(6.6) (β ∈ Φ+, α 6= α0) , (β ∈ δ − Φ+, α 6= α0) , (β ∈ δ − Φ+, α = α0) .

By calculating β′ = rαβ, we deduce that, in the mentioned three cases, we have

(6.7) β′ ∈ Φ+ , β′ ∈ δ − Φ+ , β′ ∈ Φ+ ,

respectively. For the last computation, let β = δ − β and write

(6.8) β′ = rα0(δ − β) = rθt−θ∨(δ − β) = −rθβ + (1− 〈β, θ∨〉)δ ;

here the coefficient of δ needs to be 0 or 1, as noted above, but the second case cannot happen since

(6.9) 〈β, θ∨〉 = 〈β, α∨〉 6= 0 .

Hence, in the three cases in (6.6) and (6.7), the top two edges of the projected diamond (and
their vertices) are as in the left diamonds in (5.3), (5.4), and (5.7), respectively. By Remark 5.15,
these three diamonds coincide, up to relabeling, with the right diamonds in (5.3), (5.4), and (5.5),
respectively. Therefore, we can apply the statements in Lemma 5.14 associated with the latter
diamonds (stating that their top two edges imply their bottom two edges) to deduce that the
projection of the edge µl ν is as claimed, namely an up edge in the first case, and a down edge in
the last two cases (in the parabolic quantum Bruhat graph). Note that the condition γ 6= |w−1α|
needed in the first case is satisfied since β = |wγ| in this case and β 6= α; here |α| = ±α depending
on whether α is positive or negative. In addition, the condition 〈w−1θ, γ∨〉 = 〈θ, wγ∨〉 6= 0 needed
in the third case is precisely (6.9). This concludes the induction step. �

Now let us turn to the converse statement.

Proof of (⇐) in Theorem 6.5. Assume that cl(µ) = w and we have the edge in the parabolic quan-

tum Bruhat graph w wrγ = w′-γ or w bwrγc = w′p p p p-γ . Defining β as in (6.5), we claim

that ν := rβµ satisfies the conditions in the theorem. Indeed, note first that cl(ν) = w′, by Lemma
6.6 (1). We now proceed by induction on the height of β. If β is an affine simple root, the conclusion
follows directly from Lemma 6.7. If β is not a simple root, we apply Lemma 6.10; this gives an
affine simple root α 6= β satisfying 〈β, α∨〉 > 0 and either condition (1) or (2) in the mentioned
lemma. Assume that condition (1) holds, as the reasoning is completely similar if condition (2)
holds (we simply interchange the statements of the form “bottom implies top” and “top implies
bottom” provided by Lemmas 5.14 and 6.9).

By Lemma 6.10, we have one of the following three cases:

(6.10) (β ∈ Φ+, α 6= α0) , (β ∈ δ − Φ+, α 6= α0) , (β ∈ δ − Φ+, α = α0) .

By Lemma 5.14, we have the left diamonds in (5.3), (5.4), and (5.7), respectively. Note that the
conditions γ 6= w−1α and γ 6= −w−1θ needed in the first and third cases, respectively, are satisfied
since β 6= α, where we recall the definition of β in (6.5); in addition, the condition 〈w−1θ, γ∨〉 6= 0
needed in the third case follows from 〈β, α∨〉 > 0, cf. (6.9) above. Let β′ be defined as in (6.5) for
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the top left edge of these diamonds. It is not hard to check that in all cases β′ = rαβ. For instance,
letting β = δ − β in the third case (where β = −wγ ∈ Φ+), we have

β′ = brθwcz(γ) = rθwγ = −rθβ = rα0(δ − β) ;

here the last equality follows from (6.8) and (6.9) above, as well as the well-known fact that 〈β, θ∨〉
can only be 0 or 1 if β 6= θ (which is clearly true).

Since 〈β, α∨〉 > 0, the height of β′ = rαβ is strictly smaller than the height of β. Therefore, we
can use induction (together with the calculation of cl(rαµ) from Lemma 6.6 (2)) to deduce that we
have a cover

rαµ rβ′rαµ = rαrβµ-β
′

in X0
af(λ). On the other hand, by Lemma 6.6, we can see that rβµ and rαrβµ project to the

vertices of the top right edge of the left diamonds in (5.3), (5.4), and (5.7), depending on the case.
Therefore, by Lemma 6.7, we also have the cover

rβµ rαrβµ-α

in X0
af(λ). We now proved that we have the top two edges in the left diamond in (6.4). As β 6= α,

we can now apply the statement of Lemma 6.9 corresponding to the right diamond in (6.4) (which
is just a relabeling of the left one) to deduce that we have the cover µl rβµ labeled by β in X0

af(λ).
This concludes the induction step. �

6.6. Connectivity of the parabolic quantum Bruhat graph and quantum length. In this
subsection we show that the parabolic quantum Bruhat graph is strongly connected when using
only simple reflections. For the quantum Bruhat graph, this result is [HST, Theorem 4.2].

We use the following notation:

α̃i :=

{
αi if i 6= 0,

−θ if i = 0,
si :=

{
ri if i 6= 0,

rθ if i = 0.

Also, in this subsection we do not draw quantum edges in the parabolic quantum Bruhat graph by
dotted lines.

Lemma 6.12. For each u, v ∈ W J , there exist a sequence u = x0, x1, . . . , xn = v of elements of
W J and a sequence i1, i2, . . . , in ∈ I ∪ {0} such that xk+1 = bsik+1

xkc with x−1
k α̃ik+1

∈ Φ+ \ Φ+
J

for each 0 ≤ k ≤ n− 1.

Remark 6.13. Keep the notation in the lemma above. We see from Lemma 6.7 and Lemma 6.4 (2)
that

u = x0
x−1
0 α̃i1−−−−→ x1

x−1
1 α̃i2−−−−→ · · · · · ·

x−1
n−2α̃in−1−−−−−−−→ xn−1

x−1
n−1α̃in−−−−−→ xn = v

in the parabolic quantum Bruhat graph. In particular, the parabolic quantum Bruhat graph is
strongly connected using only simple reflections (i.e., for each u, v ∈ W J , there exists a directed
path from u to v in the parabolic quantum Bruhat graph, where the edges correspond to multiplying
on the left by simple reflections).

We are now ready to define the notion of quantum length of an element in W . This will be used
in the proof of the tilted Bruhat Theorem 7.1.

Definition 6.14. Let u ∈ W . We see from Lemma 6.12 (with J = ∅ and v = e, where e is the
identity in W ) and Remark 6.13 that there exist a sequence u = x0, x1, . . . , xn = v of elements of
W and a sequence i1, i2, . . . , in ∈ I ∪ {0} such that

u = x0
x−1
0 α̃i1−−−−→ x1

x−1
1 α̃i2−−−−→ · · · · · ·

x−1
n−2α̃in−1−−−−−−−→ xn−1

x−1
n−1α̃in−−−−−→ xn = e
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in the quantum Bruhat graph. We define the quantum length q`(u) of u to be the minimal of the
length n of such sequences.

Proof of Lemma 6.12. Let λ be a dominant weight such that
{
j ∈ I | 〈α∨j , λ〉 = 0

}
= J ; note

that the stabilizer of λ in W is identical to WJ , and hence Wλ ∼= W/WJ = W J . Set µ := uλ and
ν := vλ. We see from [AK, Lemma 1.4] that there exists i1, i2, . . . , in ∈ I ∪ {0} such that{

sin · · · si2si1µ = ν,

〈α∨ik+1
, sik · · · si2si1µ〉 > 0 for all 0 ≤ k ≤ n− 1.

For each 0 ≤ k ≤ n, we define xk ∈ W J to be the minimal coset representative for the coset
containing sik · · · si2si1 ; note that x0 = u and xn = v. It is obvious that xk+1 = bsik+1

xkc for every
0 ≤ k ≤ n− 1. Also, because

〈α∨ik+1
, xkλ〉 = 〈α∨ik+1

, sik · · · si2si1µ〉 > 0,

it follows immediately that x−1
k α̃ik+1

∈ Φ+ \ Φ+
J . Thus we have proved the lemma. �

7. Tilted Bruhat theorem

Given u ∈W the u-tilted Bruhat order on W [BFP] is defined by w1 4u w2 if there is a shortest
path in the quantum Bruhat graph QB(W ) from u to w2 that passes through w1. More precisely,
if we denote by `(w1 → w2) the length of a shortest directed path from w1 to w2 in the quantum
Bruhat graph QB(W ), then for u, w1, w2 ∈W ,

w1 4u w2 ⇐⇒ `(u→ w2) = `(u→ w1) + `(w1 → w2).

It was shown in [BFP] that this is a partial order. In [LS, Theorem 4.8] it was reproved by showing
that (W,4) is (dual to) an induced subposet of the affine Bruhat order.

Here we prove a property of the u-tilted Bruhat order with respect to any parabolic subgroup
WJ ⊂W of the finite Weyl group.

Theorem 7.1 (Tilted Bruhat Theorem). For every u, z ∈W and any parabolic subgroup WJ ⊂W ,
the coset zWJ contains a unique 4u-minimal element.

The tilted Bruhat theorem is a quantum Bruhat graph analogue of the Deodhar lift [De] (see
also [LeSh, Proposition 3.1]) which states that if τ ∈ W/WJ and v ∈ W such that vWJ ≤ τ in
W/WJ , then the set

{w ∈W | v ≤ w and wWJ = τ}
has a Bruhat-minimum.

We start by stating a weaker version of Theorem 7.1, which is easily proved.

Proposition 7.2. Fix u, z ∈ W . There exists a unique element x ∈ zWJ such that the distance
`(u→ x) attains its minimum value.

Proposition 7.2 suffices for our main application in [LNSSS], namely for bijecting the models
for KR crystals based on projected LS-path and quantum Bruhat chains. However, an explicit
construction of this bijection depends on an algorithm for determining x = x0 ∈ zWJ minimizing
`(u → x); such an algorithm is given in the proof of Theorem 7.1. The proof of Proposition 7.2
relies on the shellability of the quantum Bruhat graph with respect to a reflection ordering on the
positive roots [Dy], which we now recall.

Theorem 7.3. [BFP] Fix a reflection ordering on Φ+.

(1) For any pair of elements v, w ∈W , there is a unique path from v to w in the quantum Bruhat
graph QB(W ) such that its sequence of edge labels is strictly increasing (resp., decreasing)
with respect to the reflection ordering.



26 C. LENART, S. NAITO, D. SAGAKI, A. SCHILLING, AND M. SHIMOZONO

(2) The path in (1) has the smallest possible length `(v → w) and is lexicographically minimal
(resp., maximal) among all shortest paths from v to w.

The proof of Proposition 7.2 is immediate once we have the following two easy lemmas. These
are in terms of a reflection ordering whose top (also called an initial section) consists of the roots in
Φ+ \Φ+

J , while its bottom is a reflection ordering on Φ+
J . Such an order was constructed in [LeSh,

Section 4.3] in terms of a dominant weight λ whose stabilizer is WJ . The roots in Φ+ \ Φ+
J are

ordered according to the lexicographic order on their images in Qr via the injective map

α 7→ 1

〈λ, α∨〉
(c1, . . . , cr) ,

where α∨ = c1α
∨
1 + · · ·+crα∨r expresses α∨ in the basis of simple coroots (on which we fix an order).

For the roots in Φ+
J , we choose any reflection ordering.

Lemma 7.4. Assume that `(u→ x), as a function of x ∈ zWJ , has a minimum at x = x0. Then
the path from u to x0 with increasing edge labels has all its labels in Φ+ \ Φ+

J .

Proof. The mentioned path has length `(u→ x0), by Theorem 7.3 (2). Assume that it has at least
one label in Φ+

J . By the structure of our particular reflection ordering, all of these labels must be
at the end of the path. This means that the tail of the path starting with some x1 6= x0 consists
entirely of elements in zWJ . Since `(u→ x1) < `(u→ x0), we reached a contradiction. �

Lemma 7.5. Assume that the paths with increasing edge labels from u to two elements x0, x1 in
zWJ have all labels in Φ+ \ Φ+

J . Then x0 = x1.

Proof. Assume x0 6= x1. The induced subgraph of QB(W ) on zWJ , to be denoted QB(zWJ), is
isomorphic to QB(WJ) under the map w 7→ bzcw for w ∈ WJ (this is immediate from definitions
and the length-additive factorization of the elements in zWJ). Thus, by Theorem 7.3 (1), we can
consider the path from x0 to x1 in QB(zWJ) with increasing edge labels (in Φ+

J ). By concatenating

this path with the one from u to x0 in the hypothesis (whose labels are in Φ+ \ Φ+
J ), we obtain a

path with increasing edge labels from u to x1. But this path is clearly different from the one in
the hypothesis between the same vertices. This contradicts the uniqueness statement in Theorem
7.3 (1). �

Proof of Proposition 7.2. This is immediate by combining Lemmas 7.4 and 7.5. �

Next we prepare for the proof of the tilted Bruhat Theorem 7.1.

7.1. Preliminaries. We use the following notation:

α̃i :=

{
αi if i 6= 0,

−θ if i = 0,
si :=

{
ri if i 6= 0,

rθ if i = 0.

Also, we denote the identity of W by e.

Remark 7.6. Let w ∈W , and i ∈ I ∪ {0}. If w−1α̃i is positive, then we have

w siw-w−1α̃i

in the quantum Bruhat graph by Theorem 6.5. Here, this arrow is an up arrow (resp., down arrow)
if i 6= 0 (resp., i = 0).

Lemma 7.7. Let w1, w2 ∈ W , and let i ∈ I ∪ {0}. Assume that w−1
1 α̃i is positive, and w−1

2 α̃i is
negative.

(1) If there exists a directed path from w1 to w2 of length a, then there exists a directed path
from siw1 to w2 of length a− 1.
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(2) If there exists a directed path from w1 to w2 of length a, then there exists a directed path
from w1 to siw2 of length a− 1.

Proof. We give a proof only for part (1); part (2) can be shown similarly. We prove the assertion
by induction on a. Assume that a = 1; we show that siw1 = w2. Let γ be the positive root such

that w1
γ−→ w2 = w1rγ (this arrow is either an up arrow or a down arrow). Then, by Remark 7.6,

we have in the quantum Bruhat graph,

siw1

w1 w2

6
w−1

1 α̃i

-
γ

where the arrow from w1 to siw1 is an up arrow (resp., a down arrow) if i 6= 0 (resp., i = 0).
Suppose that γ 6= w−1

1 α̃i. Then, by Lemma 5.14 (use the left diagram in part (1) or (2) if i 6= 0,
and use the left diagram in part (3) or (4) if i = 0; note that z = e), we have

siw1 siw2

w1 w2

-γ

6

w−1
1 α̃i

-
γ

6

w−1
2 α̃i

We should note that the arrow from w2 to siw2 in the diagram above is an up arrow (resp., a down
arrow) if i 6= 0 (resp., if i = 0). However, we deduce from Remark 7.6, along with the assumption
that w−1

2 α̃i is negative, that if i 6= 0 (resp., i = 0), then there exists an up (resp., down) arrow from

siw2 to w2, which is a contradiction. Thus we have γ = w−1
1 α̃i, and hence siw1 = w1rγ = w2.

Now, assume that a ≥ 2, and let

w1 = x0
γ1−→ x1

γ2−→ · · · γa−→ xa = w2

be a directed path from w1 to w2 of length a. If γ1 = w−1
1 α̃i, then x1 = siw1. Thus we have a

directed path

siw1 = x1
γ2−→ · · · γa−→ xa = w2

of length a− 1. Assume that γ1 6= w−1
1 α̃i. By the same argument as above, we have

siw1 six1

w1 x1 · · · xa = w2

-γ1

6

w−1
1 α̃i

-
γ1

6

x−1
1 α̃i

-
γ2

-
γa

Because the arrow from x1 to six1 in the diagram above is an up arrow (resp., a down arrow) if
i 6= 0 (resp., if i = 0), it follows that x−1

1 α̃i is positive. Applying the induction hypothesis to x1

and w2, we obtain a directed path from six1 to w2 of length a− 2:

siw1 six1

w1 x1 · · · xa = w2

-γ1 p p p p p p p p p p p p p p p p p p p p p p p p pj
∃directed path of length a− 2

6

w−1
1 α̃i

-
γ1

6

x−1
1 α̃i

-
γ2

-
γa
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Concatenating this directed path with siw1
γ1−→ six1, we obtain a directed path from siw1 to w2 of

length a− 1. Thus we have proved part (1) of the lemma. �

7.2. Proof of the tilted Bruhat Theorem 7.1. We prove Theorem 7.1 by induction on q`(u).
If q`(u) = 0, then u = e. We know from [BFP, p.435] that the e-tilted Bruhat order 4e on W is
just the Bruhat order on W . Hence, for each z ∈ W , the minimal coset representative in zWJ is
the unique 4e-minimal element. Therefore the assertion holds.

Assume that q`(u) > 0. Let u = x0, x1, . . . , xn = e be a sequence of elements in W satisfying
the condition in Lemma 6.12, with n = q`(u). Put v := x1; note that q`(v) = q`(u)− 1. Thus the
inductive assumption is:

Theorem 7.1 is true for this v (and arbitrary z ∈W ).

Assume that v = siu for some i ∈ I ∪ {0}. Since u−1α̃i is positive, it follows from Remark 7.6
that

(7.1) u v = siu,-u−1α̃i

where this arrow is an up arrow (resp., a down arrow) if i 6= 0 (resp., i = 0).
Case 1. Assume that z−1α̃i ∈ ∆− \∆−J ; note that (zy)−1α̃i is negative for all y ∈WJ .

By the inductive assumption, there exists a unique minimal element in the coset zWJ with
respect to 4v, which we denote by min(zWJ , 4v). Let x ∈WJ be such that

min(zWJ , 4v) = zx.

Let us show that zx ∈ zWJ is a unique minimal element in the coset zWJ with respect to 4u, that
is,

min(zWJ , 4u) = zx.

Let y ∈WJ be an arbitrary element in WJ . There exists a shortest directed path from v to zy that
passes through zx:

v → · · · → zx→ · · · → zy.

Concatenating u→ v of (7.1) and this directed path, we obtain a directed path

(7.2) u→ v → · · · → zx→ · · · → zy

of length `(v → zy) + 1. Let us show that this directed path is shortest. Suppose that `(u →
zy) < `(v → zy) + 1. Recall that u−1α̃i is positive, and (zy)−1α̃i is negative. By Lemma 7.7 (1),
we obtain a directed path from siu = v to zy whose length is equal to `(u→ zy)− 1. Hence,

`(v → zy) ≤ `(u→ zy)− 1 < `(v → zy) + 1− 1 = `(v → zy),

which is a contradiction. Therefore, the directed path (7.2) is shortest.
Case 2. Assume that z−1α̃i ∈ ∆+\∆+

J ; note that (zy)−1α̃i is positive for all y ∈WJ , which implies
that zy → sizy by Remark 7.6.

By the inductive assumption, there exists a unique minimal element in the coset sizWJ with
respect to 4v, which we denote by min(sizWJ , 4v). Let x ∈WJ be such that

min(sizWJ , 4v) = sizx.

Let us show that zx ∈ zWJ is a unique minimal element in the coset zWJ with respect to 4u;

min(zWJ , 4u) = zx.

Let y ∈WJ be an arbitrary element in WJ . We construct a directed path from u to zy that passes
through zx as follows: First, we construct a directed path from u to zx. Concatenating u → v
of (7.1) and a shortest directed path from v to sizx, we obtain a directed path from u to sizx of
length `(v → sizx) + 1:

u→ v → · · · → sizx
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Because u−1α̃i is positive and (sizx)−1α̃i is negative, it follows from Lemma 7.7 (2) that there exists
a directed path from u to zx of length `(v → sizx) + 1− 1 = `(v → sizx):

zx

u · · · sizx
?p p p p p p p p p p p

p p p p p p p p p p p
p*∃directed path

of length `(v → sizx)

- -

Next, we construct a directed path from zx to zy. Concatenating zx→ sizx and a shortest directed
path from sizx to sizy, we obtain a directed path from zx to sizy of length `(sizx→ sizy) + 1:

zx

u · · · sizx · · · sizy
?

p p p p p p p p p p p p p p p p p p p p pj
Concatenation of directed paths

p p p p p p p p p p p
p p p p p p p p p p p

p*directed path

of length `(v → sizx)

- - - -

Because (zx)−1α̃i is positive and (sizy)−1α̃i is negative, it follows from Lemma 7.7 (2) that there
exists a directed path from zx to zy of length `(sizx→ sizy) + 1− 1 = `(sizx→ sizy).

zx zy

u · · · sizx · · · sizy
?

p p p p p p p p p p p p p p p p p p p p pj
p p p p p p p p p p p p p p p p p p p p p p-
∃directed path

of length `(sizx→ sizy)

?p p p p p p p p p p p
p p p p p p p p p p p

p*directed path

of length `(v → sizx)

- - - -

Concatenating the directed paths above, we obtain a directed path from u to zy of length `(v →
sizx) + `(sizx → sizy) = `(v → sizy) (recall that sizx 4v sizy by the definition of x ∈ WJ) that
passes through zx.

Let us show that this directed path is shortest. Suppose that `(u → zy) < `(v → sizy).
Concatenating a shortest directed path from u to zy and the directed path zy → sizy, we obtain
a directed path from u to sizy of the form:

u→ · · · → zy︸ ︷︷ ︸
shortest

→ sizy;

note that its length is `(u → zy) + 1. Because u−1α̃i is positive, and (sizy)−1α̃i is negative,
it follows from Lemma 7.7 (1) that there exists a directed path from siu = v to sizy of length
`(u→ zy) + 1− 1 = `(u→ zy). Since `(u→ zy) < `(v → sizy), this is a contradiction.
Case 3. Assume that z−1α̃i ∈ ∆J ; note that sizWJ = zWJ .

By the inductive assumption, there exists a unique minimal element in the coset zWJ with
respect to 4v, which we denote by min(zWJ , 4v). Let x ∈WJ be such that

min(zWJ , 4v) = zx.

Subcase 3.1. Assume that (zx)−1α̃i ∈ ∆+
J . Let us show that

min(zWJ , 4u) = zx.

Take an arbitrary y ∈WJ .
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3.1.1. Assume first that (zy)−1α̃i ∈ ∆−J . Then we can check in exactly the same way as in Case 1
that concatenating u → v of (7.1) and a shortest directed path from v to zy that passes through
zx gives a shortest directed path from u to zy:

u→︸︷︷︸
(7.1)

v→ · · · → zx→ · · · → zy︸ ︷︷ ︸
shortest

.

3.1.2. Assume next that (zy)−1α̃i ∈ ∆+
J . Concatenating u → v of (7.1) and a shortest directed

path from v to zx, we obtain a directed path from u to zx of length `(v → zx) + 1:

u→︸︷︷︸
(7.1)

v→ · · · → zx︸ ︷︷ ︸
shortest

.

Because (zx)−1α̃i is positive, and (sizy)−1α̃i is negative, we see by applying Lemma 7.7 (2) to a
shortest directed path from zx to sizy that there exists a directed path from zx to zy of length
`(zx→ sizy)− 1:

zy

u v · · · zx · · · sizy
?

- - -
p p p p p p p p p p p

p p p p p p p p p p p*
∃directed path

of length `(zx→ sizy)− 1

- -

Concatenating these directed paths, we obtain a directed path from u to zy that passes through
zx; its length is equal to

(`(v → zx) + 1) + (`(zx→ sizy)− 1) = `(v → zx) + `(zx→ sizy)

= `(v → sizy);

recall that zx 4v sizy. We can show in exactly the same way as in Case 2 that this directed path
is shortest.
Subcase 3.2. Assume that (zx)−1α̃i ∈ ∆−J . Let us show that

min(zWJ , 4u) = sizx.

Take an arbitrary y ∈WJ .
3.2.1. Assume that (zy)−1α̃i ∈ ∆−J . Concatenating u → v of (7.1) and a shortest directed path
from v to zx, we obtain a directed path from u to zx of length `(v → zx) + 1:

u→︸︷︷︸
(7.1)

v→ · · · → zx︸ ︷︷ ︸
shortest

.

Because u−1α̃i is positive, and (zx)−1α̃i is negative, it follows from Lemma 7.7 (2) that there exists
a directed path from u to sizx of length `(v → zx) + 1− 1 = `(v → zx):

sizx

u · · · zx
?p p p p p p p p p p p

p p p p p p p p p*
∃directed path

of length `(v → zx)

- -
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Concatenating this directed path, sizx→ zx, and a shortest directed path from zx to zy, we obtain
a directed path from u to zy that passes through sizx:

sizx

u · · · zx · · · zy
?

p p p p p p p p p p p p p p p p p p pj
Concatenation of directed paths

p p p p p p p p p p p
p p p p p p p p p*directed path

of length `(v → zx)

- - - -

The length of this directed path is equal to

`(v → zx) + 1 + `(zx→ zy) = `(v → zy) + 1;

recall that zx 4v zy. We can show in exactly the same way as the argument in Case 1 that this
directed path is shortest.
3.2.2. Assume that (zy)−1α̃i ∈ ∆+

J . By the same argument as in 3.2.1, we have

sizx

u · · · zx
?p p p p p p p p p p p

p p p p p p p p p*
∃directed path

of length `(v → zx)

- -

Concatenating sizx→ zx and a shortest directed path from zx to sizy, we obtain a directed path
from sizx to sizy of length `(zx→ sizy) + 1:

sizx

u · · · zx · · · sizy
?

p p p p p p p p p p p p p p p p p p p pj
Concatenation of directed paths

p p p p p p p p p p p
p p p p p p p p p p p*

directed path

of length `(v → zx)

- - - -

Since(sizx)−1α̃i is positive, and (sizy)−1α̃i is negative, it follows from Lemma 7.7 (2) that there
exists a directed path from sizx to zy of length `(zx→ sizy) + 1− 1 = `(zx→ sizy):

sizx zy

u · · · zx · · · sizy
?

p p p p p p p p p p p p p p p p p p p pj
p p p p p p p p p p p p p p p p p p p p p-
∃directed path

of length `(zx→ sizy)

?p p p p p p p p p p p
p p p p p p p p p p p*

directed path

of length `(v → zx)

- - - -

Concatenating these directed paths, we obtain a directed path from u to zy that passes through
sizx; its length is equal to

`(v → zx) + `(zx→ sizy) = `(v → sizy) (∵ zx 4v sizy).

We can show in exactly the same way as the argument in Case 2 that this directed path is shortest.
Thus we have proved Theorem 7.1. �
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