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Abstract. We establish the equality of the specialization Pλ(x; q, 0) of the Macdonald poly-
nomial at t = 0, with the graded character Xλ(x; q) of a tensor product of “single-column”
Kirillov-Reshetikhin (KR) modules for untwisted affine Lie algebras. This is achieved by pro-
viding an explicit crystal isomorphism between the quantum alcove model, which is naturally
associated to Macdonald polynomials, and the projected level-zero affine Lakshmibai-Seshadri
path model, which is intimately related to KR crystals.

1. Introduction

We prove the equality of the specialization Pλ(x; q, 0) of the Macdonald polynomial at t = 0,
with the graded character Xλ(x; q) of a tensor product of “single-column” Kirillov-Reshetikhin
(KR) modules [KR] for untwisted affine Lie algebras. The proof is to connect two known com-
binatorial models: the quantum alcove model coming from the Macdonald specialization [LL1],
and a series of works by Naito and Sagaki [NS1, NS2, NS3, NS5, NS6] on the projections of
level-zero affine Lakshmibai-Seshadri (LS) paths and Xλ(x; q). The latter is combined with the
prequel paper [LNSSS1], which gives a precise characterization of Littelmann’s level-zero weight
poset [Li] in terms of the parabolic quantum Bruhat graph [BFP, P, LS] which originated from
(small) quantum cohomology of partial flag manifolds.

The context of this project has its origins in Ion’s observation [Ion] that when the affine
simple root α0 is short (which includes the duals of untwisted affine root systems) Pλ(x; q, 0)
is an affine Demazure character (see [Sa] for type A). On the other hand, Fourier and Lit-
telmann [FL] showed that for simply-laced affine Lie algebras, these Demazure characters are
graded characters of tensor products of KR modules, and hence of local Weyl modules for
current algebras, making use of results in [NS2]. Combining [Ion] and [FL] one deduces the
equality Pλ = Xλ in the simply-laced cases.

Braverman and Finkelberg [BF2] have shown that for simply-laced affine root systems, the
characters Ψλ(x; q) of the duals of the current algebra modules, called global Weyl modules,
coincide with the characters of the spaces of global sections of line bundles on quasi-maps spaces,
which arise in the study of quantum cohomology and quantum K-theory of the flag manifold. In
simply-laced types the characters Ψλ(x; q) are equal to Xλ(x; q) (which is the graded character
of a local Weyl module) times an explicit product of geometric series whose ratios are powers of
q [CFK]. The characters Ψλ(x; q) are called q-Whittaker functions due to their appearance in the
quantum group version of the Kostant-Whittaker reduction of Etingof [E] and Sevostyanov [Se]
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Figure 1. Outline

for the q-Toda integrable system. The characters Ψλ(x; q) are eigenfunctions of the q-Toda
difference operators and their generating function yields the K-theoretic J-function of Givental
and Lee [BF1].

Finally, the quantum alcove model arises in Lenart and Postnikov’s conjectural description of
the quantum product by a divisor in quantum K-theory [LP]. We summarize the connections
discussed above in Figure 1.

Combinatorial models for all nonexceptional KR crystals (not just of column shape) were
given in [FOS]. The quantum LS path model and the quantum alcove model uniformly describe
tensor products of column shape KR crystals, for all untwisted affine types. More precisely,
these models realize the root operators on the aforementioned tensor product, and also give
efficient formulas for the corresponding energy function [HKOTY]. (The energy can be viewed
as an affine grading on a tensor product of KR crystals [NS6, ST].) Another application of
the quantum alcove model, currently under investigation in [LL2], is a uniform realization of
the combinatorial R-matrix (i.e., the unique affine crystal isomorphism commuting factors in a
tensor product of KR crystals).

There have been several developments related to the work in this paper. Based on our re-
sults, an interpretation of the q-Whittaker functions Ψλ(x; q) above is given in [INS, NS7], in
terms of the crystal bases of level-zero extremal weight modules over quantum affine algebras.
On another hand, our work was used in [CSSW] to provide the character of a stable level-one
Demazure module associated to type B(1)

n as an explicit combination of suitably specialized
Macdonald polynomials. In addition, our results were used in a crucial way by Chari and Ion
in [CI, Theorem 4.2] to show that Macdonald polynomials at t = 0 are characters of local Weyl
modules for current algebras. Based on this, they prove a Bernstein-Gelfand-Gelfand (BGG)
reciprocity theorem for the category of representations of a current algebra. In a related work,
Khoroshkin [Kho] exhibits a categorification of Macdonald polynomials, by realizing them as
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the Euler characteristic of bigraded characters for certain complexes of modules over a cur-
rent algebra. This realization simplifies considerably if BGG reciprocity holds (the mentioned
complexes become actual modules concentrated in homological degree zero).

The paper is organized as follows. In Sections 2 and 3, we review the Lakshmibai-Seshadri
(LS) and the quantum Lakshmibai-Seshadri path model, respectively. Theorem 3.3 shows that
the set of projected level-zero affine LS paths B(λ)cl is the same as the set of quantum LS
paths QLS(λ), where λ is a (level-zero) dominant integral weight. This fact is also proven
in [LNSSS2] in a somewhat roundabout way, by providing an explicit description of the image
of a quantum LS path under root operators and showing that the set of quantum LS paths is
stable under the action of the root operators. (Quantum) LS paths carry a grading by a degree
function (which is closely related to the energy function on KR crystals). We provide an explicit
formula for the degree function of quantum LS paths in Theorem 4.6 in terms of the parabolic
quantum Bruhat graph. For KR crystals, there exist the head and the tail energy functions. In
Section 5, we relate the tail energy with the tail degree function using the Lusztig involution.
It was conjectured in [HKOTT] and proven in [FOS1] for all nonexceptional types, which KR
crystals are perfect. Since here we provide explicit models in terms of quantum LS paths of
the single column KR crystals for exceptional types, we verify the conjectures of [HKOTT] for
exceptional simply-laced types in Section 6 (except for two Dynkin nodes for type E(1)

8 ). In
Section 7 the quantum alcove model and its crystal structure are defined. In Section 8, we show
that there is a bijection between quantum alcove paths and quantum LS paths by exhibiting a
forgetful map and its inverse. We show that up to Kashiwara operators f0 at the end of their
strings, there is an affine crystal isomorphism between the quantum alcove paths and tensor
products KR crystals. Section 9 contains the main application of this work: by showing that
the energy/degree function under the affine crystal isomorphism maps to a height function in
the alcove path model, we show that the character of tensor products of single column KR
crystals is equal to the Macdonald polynomial evaluated at t = 0 (see Corollary 9.10). We
conclude in Section 10 with the proof of Lemmas from various sections.

We follow the same conventions and notation as in [LNSSS1].
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2. Lakshmibai-Seshadri paths

In this section we review Lakshmibai-Seshadri paths and the corresponding affine crystal
model. As summarized in Theorem 2.7 and Remark 2.8, the crystal of level-zero projected LS
paths is isomorphic to KR crystals.

2.1. Basic notation. Let gaf be an untwisted affine Lie algebra over C with Cartan matrix
A = (aij)i, j∈I . The index set Iaf of the Dynkin diagram of gaf is numbered as in [Kac, Section
4.8, Table Aff 1]. Take the distinguished vertex 0 ∈ Iaf as in [Kac], and set I := Iaf \ {0}.
Let haf =

(⊕
j∈Iaf Cα∨j

)
⊕ Cd denote the Cartan subalgebra of gaf , where

{
α∨j
}
j∈Iaf

⊂ haf

is the set of simple coroots, and d ∈ haf is the scaling element (or degree operator). Also,
we denote by

{
αj
}
j∈Iaf

⊂ h∗af := HomC(haf ,C) the set of simple roots, and by Λj ∈ h∗af ,
j ∈ Iaf , the fundamental weights; note that αj(d) = δj,0 and Λj(d) = 0 for j ∈ Iaf . Let
δ =

∑
j∈Iaf ajαj ∈ h∗af and c =

∑
j∈Iaf a

∨
j α
∨
j ∈ haf denote the null root and the canonical central

element of gaf , respectively. The dual weight lattice X∨af and the weight lattice Xaf are defined
as follows:

(2.1) X∨af =

⊕
j∈Iaf

Zα∨j

⊕ Zd ⊂ haf and Xaf =

⊕
j∈Iaf

ZΛj

⊕ Zδ ⊂ h∗af .

It is clear that Xaf contains Qaf :=
⊕

j∈Iaf Zαj , and that Xaf
∼= HomZ(X∨af ,Z). Let g be the

classical subalgebra of gaf and denote the finite weight lattice by X =
⊕

i∈I Zωi, where ωi are
the fundamental weights associated to g. The natural projection cl : Xaf → X has kernel Zδ
and sends Λi − a∨i Λ0 7→ ωi for i ∈ I.

Let Waf (resp. W ) be the affine (resp. finite) Weyl group with simple reflections ri for i ∈ Iaf

(resp. i ∈ I). Waf acts on Xaf and X∨af by

riλ = λ− 〈α∨i , λ〉αi
riµ = µ− 〈µ, αi〉α∨i

for i ∈ Iaf , λ ∈ Xaf , and µ ∈ X∨af . We denote by ` the length function in Waf (resp. W ).

The set of affine real roots (resp. roots) of gaf (resp. g) are defined by Φaf = Waf {αi | i ∈ Iaf}
(resp. Φ = W {αi | i ∈ I}). The set of positive affine real (resp. positive) roots are the set
Φaf+ = Φaf ∩

⊕
i∈Iaf Z≥0αi (resp. Φ+ = Φ ∩

⊕
i∈I Z≥0αi). We have Φaf = Φaf+ t Φaf− where

Φaf− = −Φaf+ and Φ = Φ+ t Φ− where Φ− = −Φ+.

We have δ = α0 + θ, where θ is the highest root for g, and

Φaf+ = Φ+ t (Φ + Z>0 δ).

The level of a weight λ ∈ Xaf is defined by lev(λ) = 〈c, λ〉. Since the action of Waf on Xaf

is level-preserving, the sublattice X0
af ⊂ Xaf of level-zero elements is Waf -stable. There is a

section X → X0
af given by ωi 7→ Λi − lev(Λi)Λ0 for i ∈ I.

Finally, we briefly review the level-zero poset (see [LNSSS1, Definition 6.1]). Fix a dominant
weight λ in the finite weight lattice X and let WJ is the stabilizer of λ. More precisely, WJ is
the parabolic subgroup generated by ri for i ∈ J where

J = {i ∈ I | 〈α∨i , λ〉 = 0}.
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Let Q∨J =
⊕

i∈J Zα∨i be the associated coroot lattice, W J the set of minimum-length coset rep-
resentatives in W/WJ , ΦJ = Φ+

J tΦ−J the set of roots and positive/negative roots respectively,
and ρJ = 1

2

∑
α∈Φ+

J
α. We also use Q∨ = Q∨I and ρ = ρI .

We view X as a sublattice of X0
af . Let X0

af(λ) be the orbit of λ under the action of the affine
Weyl group Waf .

Definition 2.1. (Level-zero weight poset [Li]) A poset structure is defined on X0
af(λ) as the

transitive closure of the relation

(2.2) µ < rβµ ⇔ 〈β∨, µ〉 > 0 ,

where β ∈ Φaf+. This poset is called the level-zero weight poset for λ.

2.2. Definition of Lakshmibai-Seshadri paths. In this subsection, we fix a dominant inte-
gral weight λ ∈ X. We recall the definition of Lakshmibai-Seshadri (LS) paths of shape λ from
[Li, Section 4]. Let X0

af(λ) be the level-zero weight poset for λ (see [LNSSS1, Definition 6.1]).

Definition 2.2. For µ, ν ∈ X0
af(λ) with ν > µ and a rational number 0 < b < 1, a b-chain

for (ν, µ) is, by definition, a sequence ν = ξ0 m ξ1 m · · ·m ξn = µ of covers in X0
af(λ) such that

b〈γ∨k , ξk〉 ∈ Z for all k = 1, 2, . . . , n, where γk ∈ Φaf+ is the corresponding positive real root
for ξk−1 m ξk.

Definition 2.3. An LS path of shape λ is, by definition, a pair π = (ν ; b) of a sequence
ν : ν1 > ν2 > · · · > νs of elements in X0

af(λ) and a sequence b : 0 = b0 < b1 < · · · < bs = 1
of rational numbers satisfying the condition that there exists a bu-chain for (νu, νu+1) for each
u = 1, 2, . . . , s− 1.

Denote by B(λ) the set of all LS paths of shape λ. We identify an element

π = (ν1, ν2, . . . , νs ; b0, b1, . . . , bs) ∈ B(λ)

with the following piecewise-linear, continuous map π : [0, 1]→ R⊗Z X
0
af :

(2.3) π(t) =
p−1∑
q=1

(bq − bq−1)νq + (t− bp−1)νp for bp−1 ≤ t ≤ bp, 1 ≤ p ≤ s.

Remark 2.4. It follows from the definition of an LS path of shape λ that πν := (ν ; 0, 1) ∈ B(λ)
for every ν ∈ X0

af(λ), which corresponds to the straight line πν(t) = tν, t ∈ [0, 1].

Recall that X0
af/Zδ ∼= X. Denote by

cl : R⊗Z X
0
af � R⊗Z X

0
af/Rδ ∼= R⊗Z X

the canonical projection; remark that cl(X0
af(λ)) = Wλ ∼= W J (see [LNSSS1, Lemma 3.1]). For

π ∈ B(λ), we define cl(π) by: (cl(π))(t) := cl(π(t)) for t ∈ [0, 1]; note that cl(π) is a piecewise
linear, continuous map from [0, 1] to R⊗Z X. Then we set

B(λ)cl :=
{

cl(π) | π ∈ B(λ)
}

;

an element of this set is called a projected level-zero LS path.
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2.3. Crystal structures on B(λ) and B(λ)cl. As in the previous subsection, let λ ∈ X be a
dominant integral weight. We use the following notation:

(2.4) α̃i :=

{
αi if i 6= 0,

−θ if i = 0,
si :=

{
ri if i 6= 0,

rθ if i = 0.

Following [Li], we give B(λ) and B(λ)cl crystal structures with the weight lattices X0
af and

cl(X0
af) ∼= X, respectively. Here we focus on the crystal structure on B(λ)cl; for the crystal

structure on B(λ), in the argument below, replace η ∈ B(λ)cl with π ∈ B(λ), and then replace
α̃j ∈ Φ and sj ∈W with αj ∈ Φaf and rj ∈Waf .

Let η ∈ B(λ)cl. We see from [Li, Lemma 4.5 a)] that η(1) ∈ cl(X0
af) ∼= X. So we set

wt(η) := η(1) ∈ X.
Next we define root operators ej and fj for j ∈ Iaf = I t{0} as follows (see [Li, Section 1]): Set

(2.5)
H(t) = Hη

j (t) := 〈α̃∨j , η(t)〉 for t ∈ [0, 1],

m = mη
j := min

{
Hη
j (t) | t ∈ [0, 1]

}
.

It follows from [Li, Lemma 4.5 d)] that all local minima of H(t) are integers; in particular,
m ∈ Z≤0. If m = 0, then ejη := 0, where 0 is an extra element not contained in B(λ)cl. If
m ≤ −1, then set

t1 := min
{
t ∈ [0, 1] | H(t) = m

}
,

t0 := max
{
t ∈ [0, t1] | H(t) = m+ 1

}
.

Remark 2.5.

(1) Recall that all local minima of H(t) are integers by [Li, Lemma 4.5 d)]. Hence we deduce
that H(t) is strictly decreasing on [t0, t1].

(2) Because H(t) attains the minimum m at t = t1, it follows immediately that H(t1 +ε) ≥
H(t1) for sufficiently small ε > 0.

(3) We deduce that H(t0 − ε) ≥ H(t0) for sufficiently small ε > 0. Indeed, suppose that
H(t0− ε) < H(t0). Then the minimum m′ of H(t) on [0, t0] is less than H(t0) = m+ 1.
Since all local minima of H(t) are integers, we obtain m′ = m. However, this contradicts
the definition of t1; recall that t0 < t1.

Define ejη for j ∈ Iaf by:

(2.6) (ejη)(t) =


η(t) if 0 ≤ t ≤ t0,

η(t0) + sj(η(t)− η(t0)) if t0 ≤ t ≤ t1,

η(t) + α̃j if t1 ≤ t ≤ 1,

where sj ∈ W is the reflection with respect to α̃j ∈ Φ. We see from [Li, Corollary 2 a)] that
ejη ∈ B(λ)cl. The definition of fjη ∈ B(λ)cl ∪ {0} is similar (see also [NS6, Section 2.2]). In
addition, for η ∈ B(λ)cl and j ∈ Iaf , we set

(2.7) εj(η) := max
{
n ≥ 0 | enj η 6= 0

}
, ϕj(η) := max

{
n ≥ 0 | fnj η 6= 0

}
.

We see from [Li, Section 2] that the set B(λ)cl together with the map wt : B(λ)cl → X, the root
operators ej , fj , j ∈ Iaf , and the maps εj , ϕj , j ∈ Iaf , becomes a crystal with cl(X0

af(λ)) ∼= X
the weight lattice.
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Remark 2.6. It is easily verified that

wt(cl(π)) = cl(wt(π)) for π ∈ B(λ),

cl(ejπ) = ej cl(π) and cl(fjπ) = fj cl(π) for π ∈ B(λ) and j ∈ Iaf ,

εj(cl(π)) = εj(π) and ϕj(cl(π)) = ϕj(π) for π ∈ B(λ) and j ∈ Iaf .

We know the following theorem from [NS1, NS2, NS3].

Theorem 2.7.

(1) For each i ∈ I, the crystal B(ωi)cl is isomorphic to the crystal basis of W (ωi), the
level-zero fundamental representation, introduced by Kashiwara [Kas].

(2) The crystal graph of B(λ)cl is connected.
(3) Let i = (i1, i2, . . . , ip) be an arbitrary sequence of elements of I (with repetitions

allowed), and set λi := ωi1 + ωi2 + · · · + ωip. Then, there exists an isomorphism
Ψi : B(λi)cl

∼→ B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗ B(ωip)cl of crystals.

Remark 2.8. It is known that the fundamental representation W (ωi) of level-zero is isomorphic
to the Kirillov-Reshetikhin (KR) module W (i)

1 in the sense of [HKOTT, Section 2.3] (for the
Drinfeld polynomials of W (ωi), see [N, Remark 3.3]). Also we can prove that the crystal basis
of W (ωi) ∼= W

(i)
1 is unique, up to a nonzero constant multiple (see also [NS4, Lemma 1.5.3]); we

call this crystal basis a (one-column) KR crystal, and denote by Bi,1. By the theorem above,
the crystal B(λ)cl of projected level-zero LS paths of shape λ is a model for the corresponding
tensor product of KR crystals.

In this paper we use the Kashiwara convention for the tensor product. More precisely, for
two crystals B1 and B2, the tensor product B1 ⊗ B2 as a set is the Cartesian product of the
two sets. For b = b1 ⊗ b2 ∈ B1 ⊗B2, the weight function is simply wt(b) = wt(b1) + wt(b2). In
the Kashiwara convention the crystal operators are given by

fi(b1 ⊗ b2) =

{
b1 ⊗ fi(b2) if εi(b2) ≥ ϕi(b1),
fi(b1)⊗ b2 otherwise,

and similarly for ei(b), where εj and ϕj are defined as in (2.7).

3. Quantum Lakshmibai-Seshadri paths

In this section we review quantum Lakshmibai-Seshadri paths, which were defined in [LNSSS1]
in terms of the parabolic quantum Bruhat graph. The main result of this section is Theo-
rem 3.3, which shows that projected level-zero LS paths are quantum LS paths. In [LNSSS2]
this is proved in a different fashion using root operators.

3.1. The parabolic quantum Bruhat graph. The quantum Bruhat graph was first intro-
duced in a paper by Brenti, Fomin and Postnikov [BFP] motivated by work of Fomin, Gelfand
and Postnikov [FGP] in type A. It later appeared in connection with the quantum cohomology
of flag varieties in a paper by Fulton and Woodward [FW].

We denote by QB(W J) the parabolic quantum Bruhat graph. Its vertex set is W J . There are
two kinds of directed edges. Both are labeled by some α ∈ Φ+ \ Φ+

J . We use the notation bwc
to indicate the minimum-length coset representative in the coset wWJ . For w ∈W J there is a
directed edge w α−→ bwrαc if α ∈ Φ+ \ Φ+

J and one of the following holds:
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(1) (Bruhat edge) wlwrα is a covering relation in Bruhat order, that is, `(wrα) = `(w)+1.
(One may deduce that wrα ∈W J .)

(2) (Quantum edge)

`(bwrαc) = `(w) + 1− 〈α∨, 2ρ− 2ρJ〉.(3.1)

We define the weight of an edge w α−→ bwrαc in the parabolic quantum Bruhat graph to be
either α∨ or 0, depending on whether it is a quantum edge or not, respectively. Then the weight
of a directed path p, denoted by wt(p), is defined as the sum of the weights of its edges.

3.2. Definition of quantum Lakshmibai-Seshadri paths. In this subsection, we fix a
dominant integral weight λ ∈ X. Set J :=

{
j ∈ I | 〈α∨j , λ〉 = 0

}
, so that WJ is the stabilizer

of λ. Given a rational number b, we define QBbλ(W J) to be the subgraph of the parabolic
quantum Bruhat graph QB(W J) with the same vertex set but having only the edges:

(3.2) x
γ→ y with 〈γ∨, bλ〉 = b〈γ∨, λ〉 ∈ Z.

Definition 3.1. A quantum Lakshmibai-Seshadri (QLS) path of shape λ is a pair η = (x ; b)
of a sequence x : x1, x2, . . . , xs of elements in W J with xu 6= xu+1 for 1 ≤ u ≤ s − 1 and a
sequence b : 0 = b0 < b1 < · · · < bs = 1 of rational numbers satisfying the condition that there
exists a directed path from xu+1 to xu in QBbuλ(W J) for each 1 ≤ u ≤ s− 1.

Denote by QLS(λ) the set of QLS paths of shape λ. We use the notation x b=⇒ y to indicate
that there exists a directed path from x to y in QBbλ(W J); so we can write the element

η = (x1, x2, . . . , xs ; b0, b1, . . . , bs)

in QLS(λ) as follows:

(3.3) x1
b1⇐= x2

b2⇐= . . . xs−2
bs−2⇐= xs−1

bs−1⇐= xs .

Since W J can be identified with Wλ under the canonical bijection w 7→ wλ, we will sometimes
think of the elements xi as weights. Moreover, we identify η with the following piecewise-linear,
continuous map η : [0, 1]→ R⊗Z X:

(3.4) η(t) =
p−1∑
q=1

(bq − bq−1)xqλ+ (t− bp−1)xpλ for bp−1 ≤ t ≤ bp, 1 ≤ p ≤ s.

Remark 3.2. It follows from the definition of a QLS path of shape λ that ηx := (x ; 0, 1) ∈
QLS(λ) for every x ∈ W J , which corresponds to the straight line ηxλ(t) = txλ, t ∈ [0, 1]. We
can easily see that cl(πν) = ηcl(ν) for ν ∈ X0

af(λ); recall that cl(X0
af(λ)) = Wλ.

3.3. Relation between LS paths and QLS paths. We now establish the correspondence
between projected level-zero LS paths and quantum LS paths. As before, λ ∈ X is a fixed
dominant integral weight.

Theorem 3.3. B(λ)cl = QLS(λ) under the identification cl(X0
af(λ)) = Wλ.

In order to prove this theorem, we need the following lemma.

Lemma 3.4. Let 0 < b < 1 be a rational number.

(1) Let µ, ν ∈ X0
af(λ). If there exists a b-chain for (ν, µ), then there exists a directed path

from cl(µ) to cl(ν) in QBbλ(W J).
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(2) Let w, w′ ∈ W J . If there exists a directed path from w to w′ in QBbλ(W J), then for
each µ ∈ X0

af(λ) with cl(µ) = w, there exists a b-chain for (ν, µ) for some ν ∈ X0
af(λ) with

cl(ν) = w′.

Proof. (1) It suffices to show the assertion in the case that ν is a cover of µ, i.e., µlν in X0
af(λ).

Let β ∈ Φaf+ be such that rβµ = ν and b〈β∨, µ〉 ∈ Z. Then, β ∈ Φ+ or β ∈ δ−Φ+ (see [LNSSS1,
Lemma 6.4 (1)]). Set w := cl(µ) ∈ Wλ ∼= W J . If β ∈ Φ+, then it follows from [LNSSS1,
Theorem 6.5] that γ := w−1β ∈ Φ+ \ Φ+

J and cl(µ) = w
γ→ cl(ν) in QB(W J). In addition, we

see that b〈γ∨, λ〉 = b〈β∨, µ〉 ∈ Z, which implies that cl(µ) = w
γ→ cl(ν) in QBbλ(W J). Similarly,

if β ∈ δ − Φ+, then it follows from [LNSSS1, Theorem 6.5] that γ := w−1(β − δ) ∈ Φ+ \ Φ+
J

and cl(µ) = w
γ→ cl(ν) in QB(W J). We see that b〈γ∨, λ〉 = b〈β∨ − c, µ〉 = b〈β∨, µ〉 ∈ Z, which

implies that cl(µ) = w
γ→ cl(ν) in QBbλ(W J). Thus we have proved part (1).

(2) Fix µ ∈ X0
af(λ) such that cl(µ) = w. Assume that

w = x0
γ1→ x1

γ2→ · · · γu→ xu = w′

is a directed path from w to w′ in QBbλ(W J). We show the assertion by induction on the
length u of the directed path above. Assume first that u = 1; for simplicity of notation, we set
γ := γ1. Set

β :=

{
wγ if w

γ→ w′ is a Bruhat edge,

δ + wγ if w
γ→ w′ is a quantum edge.

It follows from [LNSSS1, Theorem 6.5] that β ∈ Φaf+ and µ l rβµ =: ν. Also, we see that
cl(ν) = w′. In addition, b〈β∨, µ〉 = b〈γ∨, λ〉 ∈ Z. Thus, µ l ν is a b-chain for (ν, µ). Assume
that u ≥ 2. By our induction hypothesis, there exists a b-chain for (ξ, µ) for some ξ ∈ X0

af(λ)
with cl(ξ) = xu−1. Also, by our induction hypothesis, there exists a b-chain for (ν, ξ) for some
ν ∈ X0

af(λ) with cl(ν) = xu = w′. Concatenating these b-chains, we obtain a b-chain for (ν, µ).
Thus we have proved the lemma. �

Proof of Theorem 3.3. First, let us show that B(λ)cl ⊂ QLS(λ). Let

π = (ν1, ν2, . . . , νs−1, νs ; b0, b1, b2, . . . , bs−1, bs) ∈ B(λ).

We show cl(π) ∈ QLS(λ) by induction on s. If s = 1, then the assertion is obvious by Re-
mark 3.2. Assume that s > 1. Set

π′ := (ν2, . . . , νs−1, νs ; b0, b2, . . . , bs−1, bs).

Then we see that π′ ∈ B(λ), and hence cl(π′) ∈ QLS(λ) by our induction hypothesis. Write
cl(π′) as:

cl(π′) := (y1, y2, . . . , yu ; c0, c1, . . . , cu−1, cu)

for some y1, y2, . . . , yu ∈ W J and 0 = c0 < c1 < · · · < cu−1 < cu = 1; we should remark
that 0 < b1 < b2 ≤ c1 and y1 = cl(ν2). The inequality b2 ≤ c1 comes from the fact that
cl(π′)(t) = t cl(ν2) for t ∈ [0, b2] and cl(π′)(t) = b2 cl(ν2) + (t − b2) cl(ν3) for t ∈ [b2, b3].
Therefore,

(a) if cl(ν2) 6= cl(ν3), then the first turning point c1 of cl(π′) is equal to b2.
(b) if cl(ν2) = cl(ν3), then the first turning point c1 of cl(π′) is greater than b2.
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If cl(ν1) = cl(ν2), then it follows immediately that cl(π) = cl(π′), and hence cl(π) ∈ QLS(λ).
Assume that cl(ν1) 6= cl(ν2) = y1; set x1 := cl(ν1) ∈Wλ ∼= W J . Because there exists a b1-chain
for (ν1, ν2) by the definition of an LS path, we deduce from Lemma 3.4 (1) that there exists a
directed path from y1 = cl(ν2) to x1 = cl(ν1) in QBb1λ(W J). Therefore, we see that

(x1, y1, y2, . . . , yu ; c0, b1, c1, . . . , cu−1, cu)

is a QLS path of shape λ, which is identical to cl(π). Thus we obtain cl(π) ∈ QLS(λ), as
desired.

Next, let us show the opposite inclusion, i.e., B(λ)cl ⊃ QLS(λ). Let

η = (x1, x2, . . . , xs−1, xs ; b0, b1, b2, . . . , bs−1, bs) ∈ QLS(λ).

We show by induction on s that there exists π ∈ B(λ) such that cl(π) = η. If s = 1, then the
assertion is obvious by Remark 3.2. Assume that s > 1. We see that

η′ := (x2, . . . , xs−1, xs ; b0, b2, . . . , bs−1, bs)

is contained in QLS(λ). Hence, by our induction hypothesis, there exists π′ ∈ B(λ) such that
cl(π′) = η′. Write π′ as:

π′ = (µ1, µ2, . . . , µu ; c0, c1, . . . , cu−1, cu)

for some µ1, µ2, . . . , µu ∈ X0
af(λ) and 0 = c0 < c1 < · · · < cu−1 < cu = 1; we should remark

that 0 < b1 < b2 ≤ c1 and cl(µ1) = x2. Because there exists a directed path from x2 = cl(µ1)
to x1 in QBb1λ(W J), it follows from Lemma 3.4 (2) that there exists a b1-chain for (ν1, µ1) for
some ν1 ∈ X0

af(λ) with cl(ν1) = x1. Therefore,

π := (ν1, µ1, µ2, . . . , µu ; c0, b1, c1, . . . , cu−1, cu) ∈ B(λ).

It can be easily seen that cl(π) = η. Thus we have proved the opposite inclusion, thereby
completing the proof of the theorem. �

4. Formula for the degree function

Throughout this section, we fix a dominant integral weight λ ∈ X, and set J :=
{
i ∈ I |

〈α∨i , λ〉 = 0
}

. We define the degree function on projected level-zero LS paths in Section 4.2
and recall the relation with the energy function on KR crystals in Theorem 4.5. Theorem 4.6
is the main result of this section and provides an explicit expression for the degree function as
sums of weights of shortest paths in the parabolic quantum Bruhat graph.

4.1. Weights of directed paths. We know the following proposition from [LNSSS1, Propo-
sition 8.1].

Proposition 4.1. Let x, y ∈ W J . Let p and q be a shortest and an arbitrary directed path
from x to y in QB(W J), respectively. Then there exists h ∈ Q∨+ such that

wt(q)− wt(p) ≡ h mod Q∨J .

In addition, if q is also shortest, then wt(q) ≡ wt(p) mod Q∨J .

Let x, y ∈ W J . By Proposition 4.1, the pairing of λ and the weight of a shortest directed
path from x to y does not depend on the choice of a shortest directed path from x to y. Define
wtλ(x⇒ y) to be the pairing of λ and the weight of a shortest directed path from x to y.

The following is a corollary to [LNSSS1, Lemma 7.7].
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Corollary 4.2. Let w1, w2 ∈W J , and j ∈ Iaf .

(1) If 〈α̃∨j , w1λ〉 > 0 and 〈α̃∨j , w2λ〉 ≤ 0, then

wtλ(bsjw1c ⇒ w2) = wtλ(w1 ⇒ w2)− δj, 0〈α̃∨j , w1λ〉.

(2) If 〈α̃∨j , w1λ〉 < 0 and 〈α̃∨j , w2λ〉 < 0, then

wtλ(bsjw1c ⇒ bsjw2c) = wtλ(w1 ⇒ w2)− δj, 0〈α̃∨j , w1λ〉+ δj, 0〈α̃∨j , w2λ〉.

(3) If 〈α̃∨j , w1λ〉 ≥ 0 and 〈α̃∨j , w2λ〉 < 0, then

wtλ(w1 ⇒ bsjw2c) = wtλ(w1 ⇒ w2) + δj, 0〈α̃∨j , w2λ〉.

Proof. We give a proof only for part (1); the proofs for parts (2) and (3) are similar. Let p be
a shortest directed path from w1 to w2. Then it follows from [LNSSS1, Lemma 7.7 (3) and (5)]
that there exists a shortest directed path p′ from bsjxc to w2 such that

wt(p′) = wt(p)− δj, 0w−1
1 α̃∨j .

Hence,

wtλ(bsjw1c ⇒ w2) = 〈wt(p′), λ〉 = 〈wt(p), λ〉 − δj, 0〈w−1
1 α̃∨j , λ〉

= wtλ(w1 ⇒ w2)− δj, 0〈α̃∨j , w1λ〉.
Thus we have proved the corollary. �

4.2. Definition of the degree function. Let us recall from [NS6, Section 3.1] the definition
of the degree function

Deg = Degλ : B(λ)cl → Z≤0.

Denote by B0(λ) the connected component of B(λ) containing the straight line πλ = (λ ; 0, 1).
Also, for π = (ν1, . . . , νs ; b0, . . . , bs) ∈ B(λ), we set ι(π) := ν1, and call it the initial direction
of π; note that ι(π) = π(ε)/ε for sufficiently small ε > 0. We know from [NS6, Proposition
3.1.3] that for each η ∈ B(λ)cl, there exists a unique πη ∈ B0(λ) satisfying the conditions that
cl(πη) = η and ι(πη) ∈ λ−Q+. Then it follows from [NS6, Lemma 3.1.1] that πη(1) ∈ X0

af is of
the form:

πη(1) = λ− β +Kδ

for some β ∈ Q+ and K ∈ Z≥0. We define the degree Deg(η) ∈ Z≤0 of η ∈ B(λ)cl by:

(4.1) Deg(η) = −K ∈ Z≤0.

Remark 4.3. It is known (see, e.g., [NS6, Proposition 4.3.1]) that for each η ∈ B(λ)cl, there
exist j1, j2, . . . , jk ∈ Iaf such that ejkej2 · · · ej1η = ηλ. Therefore, we deduce from [NS6, Lemma
3.2.1] that Deg = Degλ : B(λ)cl → Z≤0 is a unique function satisfying the following conditions:

(i) Deg(ηλ) = 0;

(ii) for η ∈ B(λ)cl and j ∈ Iaf with ejη 6= 0,

(4.2) Deg(ejη) =


Deg(η)− 1 if j = 0 and ι(e0η) = ι(η),

Deg(η)− 〈α̃∨0 , ι(η)〉 − 1 if j = 0 and ι(e0η) = s0(ι(η)),

Deg(η) if j 6= 0,

where ι(η) := η(ε)/ε for sufficiently small ε > 0.
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4.3. Relation between the degree function and the energy function. Write λ as λ =
ωi1 + ωi2 + · · ·+ ωip with i1, i2, . . . , ip ∈ I. By Theorem 2.7 (3), there exists an isomorphism

(4.3) Ψ : B(λ)cl
∼→ B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗ B(ωip)cl =: B

of crystals. Here we should recall from Remark 2.8 that B(ωi)cl is isomorphic to the one-column
KR crystal Bi,1. Also, recall from Section 2.3 that we are using the Kashiwara convention for
tensor products in this paper. So, following [HKOTY, Section 3] and [HKOTT, Section 3.3]
(see also [SS] and [NS6, Section 4.1]), we define the energy function D = DB : B→ Z≤0 on B as
follows. First, for each 1 ≤ k, l ≤ p, there exists a unique isomorphism (called a combinatorial
R-matrix)

Rk,l : B(ωik)cl ⊗ B(ωil)cl
∼→ B(ωil)cl ⊗ B(ωik)cl

of crystals. Also, there exists a unique Z-valued function (called a local energy function)
Hk,l : B(ωik)cl ⊗ B(ωil)cl → Z satisfying the following conditions (H1) and (H2):

(H1) For ηk ⊗ ηl ∈ B(ωik)cl ⊗ B(ωil)cl and j ∈ Iaf such that ej(ηk ⊗ ηl) 6= 0,

Hk,l(ej(ηk ⊗ ηl)) =

Hk,l(ηk ⊗ ηl) + 1

if j = 0, and if e0(ηk ⊗ ηl) = e0ηk ⊗ ηl, e0(η̃l ⊗ η̃k) = e0η̃l ⊗ η̃k,

Hk,l(ηk ⊗ ηl)− 1

if j = 0, and if e0(ηk ⊗ ηl) = ηk ⊗ e0ηl, e0(η̃l ⊗ η̃k) = η̃l ⊗ e0η̃k,

Hk,l(ηk ⊗ ηl) otherwise,

where we set η̃l ⊗ η̃k := Rk,l(ηk ⊗ ηl) ∈ B(ωil)cl ⊗ B(ωik)cl.

(H2) Hk,l(ηωik ⊗ ηωil ) = 0.

Now, for each 1 ≤ k < l ≤ p, there exists a unique isomorphism

B(ωik)cl ⊗ B(ωik+1
)cl ⊗ · · · ⊗ B(ωil−1

)cl ⊗ B(ωil)cl

∼→ B(ωil)cl ⊗ B(ωik)cl ⊗ · · · ⊗ B(ωil−2
)cl ⊗ B(ωil−1

)cl

of crystals, which is given by composition of combinatorial R-matrices. Given ηk⊗ ηk+1⊗· · ·⊗
ηl ∈ B(ωik)cl ⊗ B(ωik+1

)cl ⊗ · · · ⊗ B(ωil)cl, we define η(k)
l ∈ B(ωil)cl to be the first factor of the

image of ηk ⊗ ηk+1 ⊗ · · · ⊗ ηl under the above isomorphism of crystals. For convenience, we
set η(l)

l := ηl for ηl ∈ B(ωil)cl, 1 ≤ l ≤ p. In addition, for each 1 ≤ k ≤ p, take (and fix) an
arbitrary element η[k ∈ B(ωik)cl such that fjη[k = 0 for all j ∈ I. Then we define the energy
function D = DB : B = B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗ B(ωip)cl → Z by:

D(η1 ⊗ η2 ⊗ · · · ⊗ ηp) =∑
1≤k<l≤p

Hk,l(ηk ⊗ η
(k+1)
l ) +

p∑
k=1

Hk,k(η[k ⊗ η
(1)
k ).(4.4)

Remark 4.4. The energy function D above corresponds to the “right” energy function DR in
[LeS, Section 2.4]; we should remark that the order of tensor products of crystals in [LeS] is
“opposite” to that in this paper. In this paper, we call the energy defined in (4.4) the head
energy since the tensor factors move towards the head (or first) tensor factor.
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We know the following theorem from [NS6, Theorem 4.1.1].

Theorem 4.5. Using the same notation as above, for every η ∈ B(λ)cl, we have

(4.5) Deg(η) = D(Ψ(η))−Dext,

where Dext ∈ Z is a constant defined by

Dext :=
p∑

k=1

Hk,k(η[k ⊗ ηωik ).

4.4. Formula for the degree function. Let η ∈ B(λ)cl. Because B(λ)cl = QLS(λ) by Theo-
rem 3.3, we can write η as:

η = (x1, x2, . . . , xs ; b0, b1, . . . , bs) ∈ QLS(λ)

for some x1, x2, . . . , xs ∈W J and 0 = b0 < b1 < · · · < bs = 1; note that ι(η) = x1λ.

Theorem 4.6. With the same notation as above, we have the following equality:

(4.6) Deg(η) = −
s−1∑
k=1

(1− bk) wtλ(xk+1 ⇒ xk).

Proof. For η ∈ QLS(λ) = B(λ)cl, we define F (η) by the right-hand side of (4.6). It suffices to
show that F satisfies conditions (i) and (ii) in Remark 4.3, i.e.,

(i) F (ηλ) = 0;

(ii) for η ∈ B(λ)cl and j ∈ Iaf with ejη 6= 0,

(4.7) F (ejη) =


F (η)− 1 if j = 0 and ι(e0η) = ι(η),

F (η)− 〈α̃∨0 , ι(η)〉 − 1 if j = 0 and ι(e0η) = s0(ι(η)),

F (η) if j 6= 0.

It is obvious that F satisfies condition (i). Let us show that F satisfies condition (ii). Let
η ∈ B(λ)cl and j ∈ Iaf be such that ejη 6= 0. We deduce that the point t1 = min

{
t ∈ [0, 1] |

Hη
j (t) = mη

j

}
is equal to bu for some 0 < u ≤ s. Let 0 < v ≤ u be such that bv−1 ≤ t0 < bv;

recall that t0 = max
{
t ∈ [0, t1] | Hη

j (t) = mη
j + 1

}
. It follows from the definition of the root

operator ej that ejη ∈ QLS(λ) can be written as follows:

x1
b1⇐= . . . xv−1

bv−1⇐= xv
t0⇐=︸ ︷︷ ︸

(a)

bsjxvc
bv⇐= bsjxv+1c

bv+1⇐= . . . bsjxuc
bu=t1⇐= xu+1︸ ︷︷ ︸
(b)

bu+1⇐= . . . xs .

Here, if bv−1 = t0, then we drop (a) from the diagram above; note that in this case, xv−1 6=
bsjxvc since 〈α̃∨j , xv−1λ〉 ≤ 0 and 〈α̃∨j , sjxvλ〉 = −〈α̃∨j , xvλ〉 > 0 by Remark 2.5 (1), (3). Also,
if bsjxuc = xu+1, then we replace (b) by xu+1 (or bsjxuc) in the diagram above. We should
remark that ι(ejη) = sjι(η) if and only if m = mη

j = 1 (see (2.5)) and t0 = b0 = 0.
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Now, by the definition of F , we have

F (ejη) = −

{
v−2∑
k=1

(1− bk) wtλ(xk+1 ⇒ xk) +R︸ ︷︷ ︸
=:U1

+
u−1∑
k=m

(1− bk) wtλ(bsjxk+1c ⇒ bsjxkc)︸ ︷︷ ︸
=:U2

+ (1− bu) wtλ(xu+1 ⇒ bsjxuc)︸ ︷︷ ︸
=:U3

+
s−1∑

k=u+1

(1− bk) wtλ(xk+1 ⇒ xk)

}
,(4.8)

where

(4.9) R :=



(1− bv−1) wtλ(xv ⇒ xv−1)

+(1− t0) wtλ(bsjxvc ⇒ xv) if t0 6= bv−1,

(1− bv−1) wtλ(bsjxvc ⇒ xv−1) if v > 1 and t0 = bv−1,

0 if v = 1 and t0 = b0 = 0,

and if u = s (resp., v = 1), then wtλ(xu+1 ⇒ bsjxuc) in U3 (resp., wtλ(xv ⇒ xv−1) in R) is
understood to be 0; notice that the equality (4.8) is valid even when bsjxuc = xu+1. Also, in
(4.9), notice that

(4.10) wtλ(bsjxvc ⇒ xv) = −δj, 0〈α̃∨j , xvλ〉.

First, let us show that if v > 1 and t0 = bv−1 (cf. the second case of (4.9)), then

(4.11) R = (1− bv−1) wtλ(xv ⇒ xv−1)− (1− t0)δj, 0〈α̃∨j , xvλ〉.

Recall that 〈α̃∨j , xv−1λ〉 ≤ 0 and 〈α̃∨j , sjxvλ〉 = −〈α̃∨j , xvλ〉 > 0 by Remark 2.5 (1), (3). Thus,
applying Corollary 4.2 (1) to w1 = bsjxvc and w2 = xv−1, we obtain

R = (1− bv−1) wtλ(bsjxvc ⇒ xv−1)

= (1− bv−1) wtλ(xv ⇒ xv−1)− (1− bv−1)δj, 0〈α̃∨j , xvλ〉
= (1− bv−1) wtλ(xv ⇒ xv−1)− (1− t0)δj, 0〈α̃∨j , xvλ〉,

as desired. Combining (4.9), (4.10), and (4.11), we obtain

(4.12) U1 =


v−1∑
k=1

(1− bk) wtλ(xk+1 ⇒ xk)− (1− t0)δj, 0〈α̃∨j , xvλ〉 if t0 6= 0,

0 if t0 = 0.

Next, we remark that the function Hη
j (t) is strictly decreasing on [t0, t1] (see Remark 2.5 (1)),

which implies that 〈α̃∨j , xkλ〉 < 0 for all v ≤ k ≤ u. By Corollary 4.2 (2), we have

wtλ(bsjxk+1c ⇒ bsjxkc) = wtλ(xk+1 ⇒ xk)− δj, 0〈α̃∨j , xk+1λ〉+ δj, 0〈α̃∨j , xkλ〉
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for each m ≤ k ≤ u− 1. Therefore,

U2 =
u−1∑
k=v

(1− bk) wtλ(xk+1 ⇒ xk)− δj, 0
u−1∑
k=v

(1− bk)〈α̃∨j , xk+1λ〉︸ ︷︷ ︸
=

Pu
k=v+1(1−bk−1)〈eα∨j , xkλ〉

+δj,0
u−1∑
k=v

(1− bk)〈α̃∨j , xkλ〉

=
u−1∑
k=v

(1− bk) wtλ(xk+1 ⇒ xk) + δj, 0(1− bv)〈α̃∨j , xvλ〉

− δj, 0
u−1∑
k=v+1

(bk − bk−1)〈α̃∨j , xkλ〉 − δj, 0(1− bu−1)〈α̃∨j , xuλ〉.

(4.13)

Finally, let us show that

(4.14) U3 = (1− bu) wtλ(xu+1 ⇒ xu)− δj, 0(1− bu)〈α̃∨j , xuλ〉,

where if u = s, then wtλ(xu+1 ⇒ xu) is understood to be 0. If u = s, then the equality obviously
holds. Assume that u < s. Then, since 〈α̃∨j , xuλ〉 < 0 and 〈α̃∨j , xu+1λ〉 ≥ 0 by Remark 2.5 (2),
the equality (4.14) follows immediately from Corollary 4.2 (3) (applied to w1 = xu+1 and w2 =
xu).

Substituting (4.12), (4.13), (4.14) into (4.8), we deduce that

F (ejη) = −
u−1∑
k=1

(1− bk) wtλ(xk+1 ⇒ xk)︸ ︷︷ ︸
=F (η)

−T

+ δj, 0

{
(bv − t0)〈α̃∨j , xvλ〉+

u∑
k=v+1

(bk − bk−1)〈α̃∨j , xkλ〉︸ ︷︷ ︸
=:V

}
,

where

T :=

{
0 if t0 6= 0,

δj, 0〈α̃∨j , x1λ〉 = δj, 0〈α̃∨j , ι(η)〉 if t0 = 0.

Here, observe that

V = Hη
j (bu)−Hη

j (t0) = Hη
j (t1)−Hη

j (t0) = mη
j − (mη

j + 1) = −1.

Thus we have shown that F satisfies (4.7), thereby completing the proof of Theorem 4.6. �

5. Tail degree function and tail energy function

Throughout this section, we fix a dominant integral weight λ ∈ X, and set J :=
{
i ∈ I |

〈α∨i , λ〉 = 0
}

. Here we define the tail analogue of the head degree and energy function of the
previous section using the Lusztig involution. In Theorem 5.5 we prove the tail analogue of the
relation between the degree and energy function.
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5.1. Lusztig involution on B(λ)cl. For each η ∈ B(λ)cl, we define η∗ : [0, 1] → R ⊗Z X by
η∗(t) = η(1− t)− η(1) for t ∈ [0, 1]. We see that if η = (µ1, µ2, . . . , µs ; b0, b1, . . . , bs), then

(5.1) η∗ = (−µs, −µs−1, . . . , −µ1 ; 1− bs, 1− bs−1, . . . , 1− b0);

note that −µu ∈ W (−λ) = W (−w◦λ) for 1 ≤ u ≤ s, where w◦ is the longest Weyl group
element. It is easily checked that η∗ ∈ B(−w◦λ)cl. Also, we see that wt(η∗) = η∗(1) = −η(1) =
−wt(η), and from [Li, Lemma 2.1 e)] that

(5.2) (ejη)∗ = fjη
∗, (fjη)∗ = ejη

∗ for j ∈ Iaf .

Let us denote by σ : I → I the Dynkin diagram automorphism for g induced by the longest
element w◦ ∈ W , i.e., w◦αj = −ασ(j) for j ∈ I. If we set σ(0) := 0, then σ : Iaf → Iaf is
the Dynkin diagram automorphism for the affine Lie algebra gaf . Now, σ acts as −w◦ on the
integral weight lattice X and also on the Cartan subalgebra h of g; note that σ(θ) = θ, and

σsj = sσ(j)σ on X and on h

for j ∈ Iaf . Hence there exists a group automorphism, denoted also by σ, of the Weyl group W
such that σ(sj) = sσ(j) for all j ∈ Iaf ; notice that `(σ(w)) = `(w) for w ∈W , and σ(rα) = rσ(α)

for α ∈ Φ+. The following lemma is easily shown.

Lemma 5.1.

(1) If w ∈W J , then σ(w) ∈W σ(J).
(2) Let 0 ≤ b < 1 be a rational number. For w1, w2 ∈W J and β ∈ Φ+ \ Φ+

J ,

w1
β−→ w2 in QBbλ(W J) ⇐⇒ σ(w1)

σ(β)−→ σ(w2) in QBbσ(λ)(W
σ(J)).

In addition, the types (i.e., Bruhat or quantum) of these two edges coincide.

For η ∈ B(λ)cl, we define σ(η) by (σ(η))(t) = σ(η(t)) for t ∈ [0, 1]. Then, σ(η) ∈ B(σ(λ))cl =
B(−w◦λ)cl. Indeed, if η ∈ B(λ)cl = QLS(λ) is of the form

(5.3) η = (x1, x2, . . . , xs ; b0, b1, . . . , bs)

with x1, x2, . . . , xs ∈W J , then

(5.4) σ(η) = (σ(x1), σ(x2), . . . , σ(xs) ; b0, b1, . . . , bs);

we can easily check by using Lemma 3.4 that σ(η) ∈ QLS(σ(λ)) = B(σ(λ))cl. In addition, we
have

wt(σ(η)) = σ(wt(η)), σ(ejη) = eσ(j)σ(η), σ(fjη) = fσ(j)σ(η)

for η ∈ B(λ)cl and j ∈ Iaf .

For each η ∈ B(λ)cl, we set S(η) := σ(η∗); by the argument above, we see that S(η) ∈ B(λ)cl.
Furthermore, it is easily checked that S is an involution on B(λ)cl, which we call the Lusztig
involution (see also [LeS] for the affine version of the Lusztig involution in type C) such that

(5.5) wt(S(η)) = −σ(wt(η)), S(ejη) = fσ(j)S(η), S(fjη) = eσ(j)S(η)

for η ∈ B(λ)cl and j ∈ Iaf . We remark that if η is of the form (5.3), then

S(η) = (bσ(xsw◦)c, bσ(xs−1w◦)c, . . . , bσ(x1w◦)c ; 1− bs, 1− bs−1, . . . , 1− b0)

= (bw◦xsc, bw◦xs−1c, . . . , bw◦x1c ; 1− bs, 1− bs−1, . . . , 1− b0).
(5.6)
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5.2. Tail degree function. We define the tail degree function Degtail
λ : B(λ) → Z≤0 by

Degtail
λ (η) = Degλ(S(η)) for η ∈ B(λ)cl, where Degλ : B(λ)cl → Z≤0 is the degree function

defined in Section 4.2.

Remark 5.2. Let η ∈ B(λ)cl. As in [NS6, Proposition 3.1.3], we can show that there exists a
unique πLη ∈ B0(λ) satisfying the conditions that cl(πLη ) = η and κ(πLη ) ∈ λ − Q+, where for
π = (ν1, . . . , νs ; b0, . . . , bs) ∈ B(λ), we set κ(π) = νs, and call it the final direction of π. We
see that πLη (1) ∈ X0

af is of the form: πLη (1) = λ−β+Kδ for some β ∈ Q+ and K ∈ Z≤0. Then,
K = Degtail

λ (η).

Proposition 5.3. Let η = (x1, x2, . . . , xs ; b0, b1, . . . , bs) ∈ B(λ)cl = QLS(λ). Then,

Degtail
λ (η) = −

s−1∑
k=1

bk wtλ(xk+1 ⇒ xk).

Proof. It follows from Theorem 4.6 and (5.6) that

Degtail
λ (η) = −

s−1∑
k=1

{
1− (1− bs−k)

}
wtλ(bw◦xs−kc ⇒ bw◦xs−k+1c)

= −
s−1∑
k=1

bk wtλ(bw◦xkc ⇒ bw◦xk+1c).

Also, it follows from [LNSSS1, Proposition 4.3 (3)] that if the weight of a shortest directed path
from bw◦xkc to bw◦xk+1c is equal to ξ∨ ∈ Q∨, then the weight of a shortest directed path from
xk+1 to xk is equal to wJ◦ ξ

∨ ∈ Q∨, where wJ◦ is the longest element of WJ . Since wJ◦ λ = λ by
the definition of J , we have wtλ(bw◦xkc ⇒ bw◦xk+1c) = wtλ(xk+1 ⇒ xk). Thus we have proved
the proposition. �

5.3. Tail energy function. As in Section 4.3, write λ as λ = ωi1 + ωi2 + · · · + ωip with
i1, i2, . . . , ip ∈ I, and let

Ψ : B(λ)cl
∼→ B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗ B(ωip)cl = B

be the isomorphism of crystals; recall again that B(ωi)cl
∼= Bi,1 as crystals. Following [LeS,

Section 2.4], we define the tail energy function Dtail = Dtail
B : B → Z≤0 on B as follows. For

each 1 ≤ k < l ≤ p, there exists a unique isomorphism

B(ωik)cl ⊗ B(ωik+1
)cl ⊗ · · · ⊗ B(ωil−1

)cl ⊗ B(ωil)cl

∼→ B(ωik+1
)cl ⊗ B(ωik+2

)cl ⊗ · · · ⊗ B(ωil)cl ⊗ B(ωik)cl

of crystals, which is given by composition of combinatorial R-matrices. Given ηk⊗ ηk+1⊗· · ·⊗
ηl ∈ B(ωik)cl ⊗ B(ωik+1

)cl ⊗ · · · ⊗ B(ωil)cl, we define η(l)
k ∈ B(ωik)cl to be the last factor of the

image of ηk ⊗ ηk+1 ⊗ · · · ⊗ ηl under the above isomorphism of crystals. In addition, for each
1 ≤ k ≤ p, take (and fix) an arbitrary element η]k ∈ B(ωik)cl such that ejη

]
k = 0 for all j ∈ I.

Then we define the tail energy function Dtail = Dtail
B : B = B(ωi1)cl⊗B(ωi2)cl⊗· · ·⊗B(ωip)cl → Z

by:

(5.7) Dtail(η1 ⊗ η2 ⊗ · · · ⊗ ηp) =
∑

1≤k<l≤p
Hk,l(η

(l−1)
k ⊗ ηl) +

p∑
k=1

Hk,k(η
(p)
k ⊗ η

]
k).
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Also, we define a constant Dtail
ext ∈ Z by

(5.8) Dtail
ext =

p∑
k=1

Hk,k(ηw◦ωik ⊗ η
]
k).

Now, set B̃ := B(ωip)cl ⊗ B(ωip−1)cl ⊗ · · · ⊗ B(ωi1)cl, and define S : B→ B̃ by:

(5.9) S(η1 ⊗ · · · ⊗ ηp) = S(ηp)⊗ · · · ⊗ S(η1)

for η1 ⊗ · · · ⊗ ηp ∈ B = B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗ B(ωip)cl. Then we deduce that

(5.10) wt(S(η)) = −σ(wt(η)), S(ejη) = fσ(j)S(η), S(fjη) = eσ(j)S(η)

for η ∈ B and j ∈ Iaf .

Proposition 5.4 (cf. [LeS, Proposition 2.6]). For every η ∈ B = B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗
B(ωip)cl, we have

Dtail
B (η)−Dtail

ext = DeB(S(η))−Dext.

Proof. Observe that fjS(η]k) = 0 for every j ∈ I by (5.5). Because the right-hand side of the
equation above does not depend on the choice of η[k ∈ B(ωik)cl by Theorem 4.5, we may assume
that η[k = S(η]k) for each 1 ≤ k ≤ p. Also, notice that ηωik = S(ηw◦ωik ) for 1 ≤ k ≤ p. We can
show the assertion in exactly the same way as [LeS, Proposition 2.6]. For simplicity of notation,
we set Bk := B(ωik)cl and B̃k := B(ωip−k+1

)cl for 1 ≤ k ≤ p; notice that

B = B1 ⊗ · · · ⊗ Bp, B̃ = B̃1 ⊗ · · · ⊗ B̃p.

For each 1 ≤ k < l ≤ p, consider the following diagram:

(5.11)

Bk ⊗ Bk+1 ⊗ · · · ⊗ Bl Bk+1 ⊗ · · · ⊗ Bl ⊗ Bk

B̃p−l+1 ⊗ · · · ⊗ B̃p−k ⊗ B̃p−k+1 B̃p−k+1 ⊗ B̃p−l+1 ⊗ · · · ⊗ B̃p−k .
��

S

//∼

��
S

//∼

Here the vertical S’s are defined in the same manner as (5.9). Because the same commutative
relations as (5.10) hold for these S’s, we deduce from the connectedness of the crystals appearing
in the diagram above (see Theorem 2.7 (2), (3)) that the diagram above is commutative. Also,
we can show in exactly the same manner as for [LeS, (2.6)] that for each 1 ≤ k, l ≤ p,
(5.12) Hk,l(ηk ⊗ ηl) = Hl,k(S(ηl)⊗ S(ηk)) for every ηk ⊗ ηl ∈ Bk,l.

Now, let η = η1 ⊗ η2 ⊗ · · · ⊗ ηp ∈ B, and set η̃p−k+1 := S(ηk) ∈ B̃p−k+1 for 1 ≤ k ≤ p; note
that S(η) = η̃1 ⊗ · · · ⊗ η̃p. By the commutative diagram (5.11), we see that

S(η(l)
k ) = η̃

(p−l+1)
p−k+1 for 1 ≤ k < l ≤ p.

Hence we obtain

Hl,k(η̃p−l+1 ⊗ η̃
(p−l+2)
p−k+1 ) = Hl,k(S(ηl)⊗ S(η(l−1)

k )) = Hk,l(η
(l−1)
k ⊗ ηl) by (5.12);

remark that Hl,k is the local energy function on B̃p−l+1 ⊗ B̃p−k+1. Similarly,

Hk,k(η[k ⊗ η̃
(1)
p−k+1) = Hk,k(S(η]k)⊗ S(η(p)

k )) = Hk,k(η
(p)
k ⊗ η

]
k).
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Furthermore, since S(ηw◦ωik ) = ηωik , we have

Hk,k(η[k ⊗ ηωik ) = Hk,k(S(η]k)⊗ S(ηw◦ωik )) = Hk,k(ηw◦ωik ⊗ η
]
k).

Combining these, we deduce that

Dtail
B (η) = Dtail

B (η1 ⊗ η2 ⊗ · · · ⊗ ηp)

=
∑

1≤k<l≤p
Hk,l(η

(l−1)
k ⊗ ηl) +

p∑
k=1

Hk,k(η
(p)
k ⊗ η

]
k)

=
∑

1≤k<l≤p
Hl,k(η̃p−l+1 ⊗ η̃

(p−l+2)
p−k+1 ) +

p∑
k=1

Hk,k(η[k ⊗ η̃
(1)
p−k+1)

= DeB(η̃1 ⊗ η̃2 ⊗ · · · ⊗ η̃p) = DeB(S(η))

and

Dtail
ext =

p∑
k=1

Hk,k(ηw◦ωik ⊗ η
]
k) =

p∑
k=1

Hk,k(η[k ⊗ ηωik ) = Dext.

Thus we have proved the proposition. �

5.4. Relation between the tail degree function and the tail energy function.

Theorem 5.5. Keep the notation and setting at the beginning of Section 5.3. For each η ∈
B(λ)cl, we have

Degtail
λ (η) = Dtail

B (Ψ(η))−Dtail
ext .

Proof. As in the previous subsection, set B̃ := B(ωip)cl ⊗ B(ωip−1)cl ⊗ · · · ⊗ B(ωi1)cl, and let
Ψ̃ : B(λ)cl

∼→ B̃ be the isomorphism of crystals given by Theorem 2.7 (3). By the connectedness
of the crystals (see Theorem 2.7 (2), (3)) and (5.5), (5.10), we have the following commutative
diagram:

(5.13)

B(λ)cl B

B(λ)cl B̃
���
� �
� �
� �
�

S

//Ψ

���
� �
� �
� �
�

S

//eΨ
Now, we see that

Degtail
λ (η) = Degλ(S(η)) = DeB(Ψ̃(S(η)))−Dext by Theorem 4.5

= DeB(S(Ψ(η)))−Dext by (5.13)

= Dtail
B (Ψ(η))−Dtail

ext by Proposition 5.4.

Thus we have proved the theorem. �
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6. Perfectness and classical decomposition

The notion of perfectness plays an important role for level-zero crystals. It ensures for
example that the Kyoto path model is applicable, which gives a model for highest weight affine
crystals as a semi-infinite tensor product of Kirillov–Reshetikhin crystals. Let us define perfect
crystals, see for example [HK]. Given a crystal B and b ∈ B, we need the definition

ε(b) =
∑
i∈Iaf

εi(b)Λi and ϕ(b) =
∑
i∈Iaf

ϕi(b)Λi

with εi(b) and ϕi(b) as defined in (2.7). Furthermore, denote by X+`
af = {λ ∈ X+

af | lev(λ) = `}
the set of dominant weights of level `, where X+

af :=
⊕

i∈Iaf Z≥0Λi.

Definition 6.1. For a positive integer ` > 0, a crystal B is called a perfect crystal of level `, if
the following conditions are satisfied:

(1) B is isomorphic to the crystal graph of a finite-dimensional U
′
q(g)-module.

(2) B ⊗ B is connected.
(3) There exists a λ ∈

⊕
i∈Iaf ZΛi, such that wt(B) ⊂ λ+

∑
i∈I Z≤0αi and there is a unique

element in B of classical weight λ.
(4) ∀ b ∈ B, lev(ε(b)) ≥ `.
(5) ∀ Λ ∈ X+`

af , there exist unique elements bΛ, bΛ ∈ B, such that

ε(bΛ) = Λ = ϕ(bΛ).

We denote by Bmin the set of minimal elements in B, namely

Bmin = {b ∈ B | lev(ε(b)) = `}.

Note that condition (5) of Definition 6.1 ensures that ε, ϕ : Bmin → X
+`
af are bijections.

Recall from Section 2.1 that δ =
∑

j∈Iaf ajαj ∈ h∗af and c =
∑

j∈Iaf a
∨
j α
∨
j ∈ haf . Define

cr = max{ ara∨r , a
∨
0 }.

Conjecture 6.2. [HKOTT, Conjecture 2.1] The Kirillov-Reshetikhin crystal Br,s is perfect if
and only if s

cr
is an integer. If Br,s is perfect, its level is s

cr
.

For all nonexceptional types this conjecture was proven in [FOS1]. Given the explicit mod-
els for Br,1 for all untwisted types in this paper and their implementation into Sage [Sage,
Sage-comb], we have verified Conjecture 6.2 also for untwisted exceptional types when s = 1.
For type G(1)

2 , perfectness was also treated in [Y].

Theorem 6.3. Conjecture 6.2 holds for Br,1 for types G(1)
2 , F

(1)
4 , E

(1)
6 , E

(1)
7 for all Dynkin nodes,

and type E(1)
8 for all nodes (except possibly 5, 8 in the labeling of [HKOTT]). In addition, the

graded classical decompositions of [HKOTY, Appendix A] were verified (except for type E(1)
8 ).

For the other nodes in type E(1)
8 the program is currently too slow to test it.

Proof. Point (1) of Definition 6.1 follows from Remark 2.8. Point (2) can be deduced from [Kas].
Points (3)-(5) were checked explicitly on the computer using the implementation of level-zero
LS paths in Sage [Sage, Sage-comb] (version sage-6.1 or higher), see for example
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sage: C = CartanType([’E’,6,1])
sage: R = RootSystem(C)
sage: La = R.weight_space().basis()
sage: LS = CrystalOfProjectedLevelZeroLSPaths(La[1])
sage: LS.is_perfect()

This showed that Br,1 is perfect

• for all nodes of type E(1)
6,7 and the nodes specified in the theorem for type E(1)

8 ;

• the first 2 nodes of F (1)
4 (long roots);

• the second node of G(1)
2 (long root).

This confirms the perfectness claim of the theorem. The graded classical decompositions
of [HKOTY, Appendix A] were also confirmed by computer. �

7. The quantum alcove model

Now let us recall the quantum alcove model [LL1]. Throughout this section we refer to roots
and weights in the corresponding finite lattices. Fix a dominant integral weight λ ∈ X.

7.1. The objects of the model. We say that two alcoves are adjacent if they are distinct and
have a common wall. Given a pair of adjacent alcoves A and B, we write A

β−→ B for β ∈ Φ
if the common wall is orthogonal to β and β points in the direction from A to B. Recall that
alcoves are separated by hyperplanes of the form

Hβ,l = {µ ∈ h∗R | 〈β∨, µ〉 = l} ,
where h∗R = R⊗X. We denote by rβ,l the affine reflection in this hyperplane.

Definition 7.1. [LP] An alcove path is a sequence of alcoves Π = (A0, A1, . . . , Am) such that
Aj−1 and Aj are adjacent, for j = 1, . . . ,m. We say that Π is reduced if it has minimal length
among all alcove paths from A0 to Am.

Let Aλ = A◦ + λ be the translation of the fundamental alcove A◦ by the weight λ. The
fundamental alcove is defined as

A◦ = {µ ∈ h∗R | 0 < 〈α∨, µ〉 < 1 for all α ∈ Φ+} .

Definition 7.2. [LP] The sequence of roots (β1, β2, . . . , βm) is called a λ-chain if

A0 = A◦
−β1−→ A1

−β2−→ · · · −βm−→ Am = A−λ

is a reduced alcove path.

A reduced alcove path Π = (A0 = A◦, A1, . . . , Am = A−λ) can be identified with the cor-
responding total order on the hyperplanes Hβ,−l, to be called λ-hyperplanes, which separate
A◦ from A−λ (i.e., are subject to β ∈ Φ+ and 0 ≤ l < 〈β∨, λ〉); we refer here to the sequence
Hβi,−li for i = 1, . . . ,m, where Hβi,−li contains the common wall of Ai−1 and Ai. Note also
that a λ-chain (β1, . . . , βm) determines the corresponding reduced alcove path. Indeed, we can
recover the corresponding sequence (l1, . . . , lm), to be called the height sequence, by setting
li := | {j < i | βj = βi} |. Therefore, we will sometimes refer to the sequence of λ-hyperplanes
considered above as a λ-chain. Let ri := rβi and r̂i := rβi,−li .
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Remark 7.3. An alcove path corresponds to the choice of a reduced word for the affine Weyl
group element sending A◦ to A−λ [LP, Lemma 5.3]. Another equivalent definition of an al-
cove path/λ-chain, based on a root interlacing condition which generalizes a similar condition
characterizing reflection orderings, can be found in [LP1, Definition 4.1 and Proposition 10.2].

We will work with a special choice of a λ-chain in [LP1, Section 4], which we now recall.

Proposition 7.4. [LP1] Given a total order I = {1 < 2 < · · · < r} on the set of Dynkin nodes,
one may express a coroot β∨ =

∑r
i=1 ciα

∨
i in the Z-basis of simple coroots. Consider the total

order on the set of λ-hyperplanes defined by the lexicographic order on their images in Qr+1

under the map

(7.1) Hβ,−l 7→
1

〈β∨, λ〉
(l, c1, . . . , cr).

This map is injective, thereby endowing the set of λ-hyperplanes with a total order, which is a
λ-chain. We call it the lexicographic (lex) λ-chain.

The objects of the quantum alcove model are defined next.

Definition 7.5. [LL1] Given a λ-chain Γ = (β1, . . . , βm), a finite subset A = {j1 < j2 < · · · < js}
of [m] := {1, . . . ,m} (possibly empty) is an admissible subset if we have the following path in
the quantum Bruhat graph on W :

(7.2) 1
βj1−→ rj1

βj2−→ rj1rj2
βj3−→ . . .

βjs−→ rj1rj2 . . . rjs .

The weight of A (not necessarily admissible) is defined by

(7.3) wt(A) := −r̂j1 . . . r̂js(−λ) .

We let A(Γ) be the collection of all admissible subsets of [m].

Remark 7.6. If we restrict to admissible subsets for which the path (7.2) has no down steps,
we recover the classical alcove model in [LP, LP1].

7.2. Root operators in the quantum alcove model. We continue to use the notation in
Section 7. Fix a λ-chain Γ = (β1, . . . , βm) and the corresponding reduced alcove path Π. In this
section, we recall from [LL1] the construction of (combinatorial) root operators in the quantum
alcove model, namely on the collection A(Γ) of admissible subsets of [m].

Let A = {j1 < j2 < · · · < js} be an arbitrary subset of [m]. The elements of A are called
folding positions. We “fold” Π in the hyperplanes corresponding to these positions and obtain
a “folded alcove path”. Like Π, this can be recorded by a sequence of roots, namely Γ(A) =
(γ1, γ2, . . . , γm); here

(7.4) γi := rj1rj2 . . . rjk(βi) ,

with jk the largest folding position less than i. We define γ∞ := rj1rj2 . . . rjs(ρ). Upon folding,
the hyperplane separating the alcoves Ai−1 and Ai in Π is mapped to

(7.5) H|γi|,−lAi
= r̂j1 r̂j2 . . . r̂jk(Hβi,−li) ,

for some lAi , which is defined by this relation. Here we write |α| := sgn(α)α, where sgn(α) is
the sign of the root α.

Given A ⊆ [m] and α ∈ Φ, we will use the following notation:

Iα = Iα(A) := {i ∈ [m] | γi = ±α} , Îα = Îα(A) := Iα ∪ {∞} ,
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and l∞α := 〈sgn(α)α∨,wt(A)〉. The following graphical representation of the heights lAi for
i ∈ Iα and l∞α is useful for defining the root operators. Let

Îα = {i1 < i2 < · · · < in ≤ m < in+1 =∞} and εi :=

{
1 if i 6∈ A,
−1 if i ∈ A.

If α ∈ Φ+, we define the continuous piecewise linear function gα : [0, n+ 1
2 ]→ R by

(7.6) gα(0) = −1
2
, g′α(t) =


sgn(γik) if t ∈ (k − 1, k − 1

2), k = 1, . . . , n
εiksgn(γik) if t ∈ (k − 1

2 , k), k = 1, . . . , n
sgn(〈α∨, γ∞〉) if t ∈ (n, n+ 1

2).

If α ∈ Φ−, we define gα to be the graph obtained by reflecting g−α in the x-axis. By
[LP1][Propositions 5.3 and 5.5], for any α we have

(7.7) sgn(α)lAik = gα

(
k − 1

2

)
, k = 1, . . . , n, and sgn(α)l∞α := 〈α∨,wt(A)〉 = gα

(
n+

1
2

)
.

Let A now be an admissible subset, so A ∈ A(Γ). Let δi,j be the Kronecker delta function.
Fix p in Iaf , so α̃p is a simple root if p > 0, or −θ if p = 0, see (2.4). Let M be the maximum
of geαp . Let m be the minimum index i in Îeαp for which we have sgn(α̃p)lAi = M . It was proved
in [LL1] that, if M ≥ δp,0, then either m ∈ A or m =∞; furthermore, if M > δp,0, then m has
a predecessor k in Îeαp , and we have k 6∈ A. We define

(7.8) fp(A) :=

{
(A\ {m}) ∪ {k} if M > δp,0

0 otherwise .

Now we define ep. Again let M := max geαp . Assuming that M > 〈α̃∨p ,wt(A)〉, let k be the
maximum index i in Ieαp for which we have sgn(α̃p)lAi = M , and let m be the successor of k
in Îeαp . Assuming also that M ≥ δp,0, it was proved in [LL1] that k ∈ A, and either m 6∈ A or
m =∞. Define

(7.9) ep(A) :=

{
(A\ {k}) ∪ {m} if M > 〈α̃∨p ,wt(A)〉 and M ≥ δp,0
0 otherwise.

In the above definitions, we use the convention that A\ {∞} = A∪ {∞} = A. For an example,
we refer to [LL1][Examples 3.6-3.7].

The following theorem about the (combinatorial) root operators was proved in [LL1].

Theorem 7.7. [LL1][Theorem 3.8]

(1) If A is an admissible subset and if fp(A) 6= 0, then fp(A) is also an admissible subset.
Similarly for ep(A). Moreover, fp(A) = A′ if and only if ep(A′) = A.

(2) We have wt(fp(A)) = wt(A)− α̃p. Moreover, if M ≥ δp,0, then

ϕp(A) = M − δp,0 , εp(A) = M − 〈α̃∨p ,wt(A)〉 ,
while otherwise ϕp(A) = εp(A) = 0.

Remark 7.8. Let A = {j1 < · · · < js} be an admissible subset, and wi := rj1rj2 . . . rji . Let
M, m, k be as in the above definition of fp(A), assuming M > δp,0. Now assume that m 6=∞,
and let a < b be such that

ja < k < ja+1 < · · · < jb = m < jb+1 ;
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if a = 0 or b + 1 > s, then the corresponding indices ja, respectively jb+1, are missing. In the
proof of Theorem 7.7 in [LL1], it was shown that fp has the effect of changing the path in the
quantum Bruhat graph

1 = w0 → . . .→ wa → wa+1 → . . .→ wb−1 → wb → . . .→ ws

corresponding to A into the following path corresponding to fp(A):

1 = w0 → . . .→ wa → spwa → spwa+1 → . . .→ spwb−1 = wb → . . .→ ws ,

see (2.4). The case m =∞ is similar.

8. The bijection between projected LS paths and the quantum alcove model

The main result of this section is the crystal isomorphism between the quantum LS paths of
Section 3 and the quantum alcove model of Section 7 as stated in Theorem 8.10.

8.1. The forgetful map. Fix a dominant integral weight λ, and recall from Sections 3.2 and
7.1 the notation related to quantum LS paths and the quantum alcove model, respectively. We
will also use the notation QLS(−λ) for QLS(−w◦λ).

We will now define a forgetful map from the quantum alcove model based on a lex λ-chain
Γlex = (β1, . . . , βm) (see Proposition 7.4), namely from A(λ) := A(Γlex), to the set of quantum
LS paths QLS(−λ). Given an index i ∈ [m], we let ti := li/〈β∨i , λ〉, where li is the height
defined in Section 7. Note that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm, by the definition of Γ. Consider an
admissible subset A = {j1 < j2 < · · · < js}, and let

{0 = a0 < a1 < · · · < ap} := {tj1 ≤ tj2 ≤ · · · ≤ tjs} ∪ {0} .
Let 0 = n0 ≤ n1 < . . . < np+1 = s be such that tjh = ak if and only if nk < h ≤ nk+1, for
k = 0, . . . , p. Define Weyl group elements uh for h = 0, . . . , s and wk for k = 0, . . . , p by u0 := 1,
uh := rj1 . . . rjh , and wk := unk+1

. Let also µk := wk(λ). For any k = 1, . . . , p, we have the
following path in the quantum Bruhat graph QB(W ):

(8.1) wk−1 = unk
βnk+1−−−−→ unk+1

βnk+2−−−−→ . . .
βnk+1−−−−→ unk+1

= wk .

We claim that this is a path in QBakλ
(W ). Indeed, for nk < h ≤ nk+1, we have

ak〈β∨jh , λ〉 = ljh ∈ Z≥0 ,

by the definition of ak = tjh . By Lemma 8.1 below, for each edge ui → ui+1 in the path (8.1)
there is a path from buic to bui+1c in QBakλ

(W J). Therefore, we have bwk−1c
ak=⇒ bwkc, or

equivalently −µk−1
ak⇐= −µk. We conclude that

(8.2) − µ0
a1⇐= −µ1

a2⇐= . . .
ap⇐= −µp

is an LS path in QLS(−λ). We denote it by Π(A), and the dual LS path defined in (5.1) by
Π∗(A).

We now state Lemma 8.1, which is the main ingredient in the above construction. We need
the b-Bruhat order on Waf , denoted <b, which is defined by a condition completely similar
to (3.2) applied to the covers in Waf . This lemma will be proved in Section 10.1 below.

Lemma 8.1. Let w
γ−→ wrγ be an edge in QBbλ(W ) for some b, which is viewed as a path q.

Then there exists a path p from bwc to bwrγc in QBbλ(W J) (possibly of length 0), such that
wt(p) ≡ wt(q) mod Q∨J .
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Remarks 8.2.

(1) The special case of the lemma corresponding to the b-Bruhat order on W and W J (i.e.,
the subgraphs of QBbλ(W ) and QBbλ(W J) with no down edges) was proved in [LeSh,
Lemma 4.16]. For b = 0, i.e., the usual Bruhat order, the latter result is well-known;
see, e.g., [BB, Proposition 2.5.1].

(2) Based on the strong connectivity of the quantum Bruhat graph (cf. Theorem 8.3 below),
the lemma implies the same property for the parabolic quantum Bruhat graph. Note
that this was proved by different methods (and, in fact, in a slightly stronger form)
in [LNSSS1, Lemma 6.12].

8.2. The inverse map. Next we prove that the forgetful map in Section 8.1, from the quantum
alcove model to quantum LS paths, is a bijection, by exhibiting the inverse map. We will use
the shellability of the quantum Bruhat graph QB(W ) with respect to a reflection ordering on
the positive roots [Dy], which we now recall. We denote by `(v → w) the length of a shortest
directed path from v to w in QB(W ).

Theorem 8.3. [BFP] Fix a reflection ordering on Φ+.

(1) For any pair of elements v, w ∈ W , there is a unique path from v to w in the quantum
Bruhat graph QB(W ) such that its sequence of edge labels is strictly increasing (resp.,
decreasing) with respect to the reflection ordering.

(2) The path in (1) has the smallest possible length `(v → w) and is lexicographically mini-
mal (resp., maximal) among all shortest paths from v to w.

In [LeSh, Section 4.3], we constructed a reflection ordering <λ on Φ+ which depends on λ.
The bottom of the order <λ consists of the roots in Φ+ \Φ+

J . For two such roots α and β, define
α < β whenever the hyperplane H(α,0) precedes H(β,0) in the lex λ-chain (see Proposition 7.4).
This forms an initial section [Dy] of <λ. The top of the order <λ consists of the positive roots
for the Weyl group WJ , and we fix any reflection ordering for them. We refer to the reflection
ordering <λ throughout this section.

Remark 8.4. Given a λ-hyperplane Hβ,−l, we call the first component of the vector associated
with it in (7.1), namely l/〈β∨, λ〉, the relative height of Hβ,−l. It is not hard to see that, in the
lex λ-chain, the order on the λ-hyperplanes Hβ,−l with the same relative height is given by the
order <λ on the corresponding roots β. We will use this fact implicitly below.

Recall from [LNSSS1, Proposition 7.2] that the distance `(v → x) has a unique minumum as
a function of x ∈ wWJ , for fixed v, w ∈ W . We refer also to [LNSSS1, Theorem 7.1], stating
that the mentioned minimum is, in fact, the minimum of the coset wWJ with respect to the
v-tilted Bruhat order �v on W [BFP]; therefore, it makes sense to denote it by min(wWJ ,�v),
although we will not use this stronger result.

Lemma 8.5. Consider σ, τ ∈W J and wJ ∈WJ . Let τw′J = min(τWJ ,�σwJ ).

(1) There is a unique path in QB(W ) from σwJ to some x ∈ τWJ whose edge labels are
increasing and lie in Φ+ \ Φ+

J . This path ends at τw′J .
(2) Assume that there is a path from σ to τ in QBbλ(W J) for some b ∈ Q. Then the path

in (1) from σwJ to τw′J is in QBbλ(W ).
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Proof. The first part is just the content of [LNSSS1, Lemmas 7.4 and 7.5], based on the results
recalled above. For the second part, we start by considering a second path in QB(W ) from σwJ
to τw′J , beside the one given by (1). This path is formed by concatenating the following:

• a path from σwJ to σ with only down edges and all edge labels in Φ+
J (for instance

simple roots in ΦJ);
• a path from σ to τ constructed from the path in QB(W J) between the same two

elements by replacing each edge u α−→ burαc with u
α−→ urα (cf. [LNSSS1, Condition

(2′) in Section 4.2]) followed by a path from urα to burαc with only down edges and all
edge labels in Φ+

J (for instance simple roots in ΦJ);
• a path from τ to τw′J with only up edges and all edge labels in Φ+

J .

By Theorem 8.3 (2), we know that the first of the two paths above is a shortest one (from
σwJ to τw′J). Furthermore, by the hypothesis, the second path is in QBbλ(W ) (any edge in
QB(W ) labeled by a root in Φ+

J is by default in QBbλ(W )). So we can apply Lemma 8.6 below
and deduce that the first path is also in QBbλ(W ). �

Let us now state Lemma 8.6, which will be proved in Section 10.2 below.

Lemma 8.6. Consider two paths in QB(W ) between some v and w. Assume that the first one
is a shortest path, while the second one is in QBbλ(W ), for some b. Then the first path is in
QBbλ(W ) as well.

We now construct the inverse of the forgetful map in Section 8.1. We begin with a quantum
LS path in QLS(−λ), which is written in the form

(8.3) σ0
a1=⇒ σ1

a2=⇒ . . .
ap=⇒ σp ,

where σi ∈ W J and 0 = a0 < a1 < . . . < ap < 1, cf. (8.2). We will now associate with it an
admissible subset (see Definition 7.5), i.e., a lex increasing sequence of λ-hyperplanes, and the
corresponding path in QB(W ) defined in (7.2).

We start by defining the sequence w−1, w0, . . . , wp in W recursively by w−1 = 1, and by
wi = min(σiWJ ,�wi−1) for i = 0, . . . , p. Note that w0 = σ0. For each i = 0, . . . , p, consider
the unique path in QB(W ) with increasing edge labels (with respect to <λ, cf. Theorem 8.3)
from wi−1 to wi. Note that the path corresponding to i = 0 is, in fact, a saturated chain in the
Bruhat order on W J . By (8.3) and Lemma 8.5, for any i, the edges of the corresponding path
are in QBaiλ(W ) and no edge label is in Φ+

J . We define the path in the quantum alcove model
corresponding to the quantum LS path (8.3) by concatenating the paths constructed above, for
i = 0, . . . , p. The corresponding sequence of λ-hyperplanes is defined by associating with a label
β in the path from wi−1 to wi the λ-hyperplane (β,−ai〈β∨, λ〉); this is indeed a λ-hyperplane:
ai〈β∨, λ〉 is an integer, and we have 0 ≤ ai〈β∨, λ〉 < 〈β∨, λ〉, as 0 ≤ ai < 1 and β ∈ Φ+ \Φ+

J , so
〈β∨, λ〉 > 0. The constructed sequence of λ-hyperplanes is lex increasing because the sequence
(ai) is increasing and the edge labels in the path from wi−1 to wi increase (with respect to <λ).
So we constructed an admissible sequence, which is now associated with the quantum LS path
in (8.3).

Proposition 8.7. The forgetful map A 7→ Π∗(A) is a weight-preserving bijection from A(λ) to
QLS(λ).

Proof. We need to show that the maps in Sections 8.1 and 8.2 are mutually inverse. The crucial
fact to check is that the map Π followed by the backward one is the identity. This follows from
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the uniqueness part in Lemma 8.5 (1). To prove that the map Π∗ preserves weights, we note
that the proof of [LeSh][Proposition 4.18] carries through in our setup. �

8.3. The crystal isomorphism of A(λ) and B. We will now prove that, up to the f0 arrows
at the end of a string, we can view A(λ) as a model for the tensor product of KR crystals B
via the bijection Ψ̃ := Ψ ◦Π∗, see (4.3).

Definition 8.8. Let b → fi(b) be an arrow in B. It is called a Demazure arrow if i 6= 0, or
i = 0 and ε0(b) ≥ 1. It is called a dual Demazure arrow if i 6= 0, or i = 0 and ϕ0(b) ≥ 2.

Remark 8.9. In the case when all of the tensor factors of B are perfect crystals (see Definition
6.1), the subgraph of B consisting of the dual Demazure arrows is connected. Recall the
discussion in Section 6 about which column shape KR crystals are perfect.

We now state the main result of this section, relating the crystal structures in the quantum
LS path model and the quantum alcove model.

Theorem 8.10. Consider the root operator ep (and the corresponding map εp) for quantum LS
paths, as defined in Section 2.3, and the root operator fp in the quantum alcove model defined
in Section 7.2. Given A in A(λ), we have fp(A) 6= 0 if and only if εp(Π(A)) > δp,0; in this
case, we have

ep(Π(A)) = Π(fp(A)) .

Proof. The proof of the similar result for the classical alcove model, namely [LP1][Theorem 9.4],
carries through (cf. Remark 7.6). The main fact underlying this proof is the similarity between
the definition (2.6) of ep for quantum LS paths, and the change under fp of the relevant path
in the quantum Bruhat graph, which is explained in Remark 7.8; note that in both cases the
reflection sp is applied to a segment of the corresponding path.

To be more precise, the proof is based on deforming the path Π(A) to a path Π̂ε(A) be-
tween the same endpoints (where ε is a sufficiently small positive real number), such that the
latter does not pass through the intersection of two or more λ-hyperplanes (here we exclude
the endpoints). The path Π̂ε(A) encodes the same information as the “folded alcove path”
corresponding to A or, equivalently, the sequence of roots Γ(A), see Section 7.2. Therefore, the
action of ep on Π̂ε(A) and of fp on A (where the latter is based on Γ(A)) are equivalent. The
proof concludes by taking the limit ε→ 0, under which Π̂ε(A) goes to Π(A).

We will now point out the additional elements in the proof. First, some results invoked in
the proof of [LP1][Theorem 9.4] need to be replaced, as follows: [LP1][Corollary 6.11] with
[LL1][Propositions 3.15 and 3.18], [LP1][Corollary 6.12] with [LL1][Propositions 3.16 and 3.19],
and [LP1][Proposition 7.3] with Remark 7.8. Other than this, there is just one notable addition
to the proof, which has to do with the case p = 0. Consider the number M in the definition
of f0(A), and assume for the moment that M ≥ 1. By the same reasoning as in [LP1], we can
see that the minimum of the function t 7→ 〈α̃∨0 , Π̂ε(A)(t)〉 is −M . Therefore, as discussed in
[LNSSS2][Section 2.2], cf. also [Li][Lemma 2.1 (c)], the maximum number of times e0 can be
applied to Π̂ε(A) is M . Meanwhile, the maximum number of times f0 can be applied to A is
M − 1, by Theorem 7.7 (2). In the remaining case, namely M < 1, we have f0(A) = 0, and
the minimum of the function mentioned above is 0, so e0 is not defined on Π̂ε(A). We conclude
that f0(A) 6= 0 if and only if ε0(Π̂ε(A)) ≥ 2. The rest of the argument is identical to the one
in [LP1]. �
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Remarks 8.11.

(1) The forgetful map Π from the quantum alcove model to the quantum LS path model is a
very natural map. Therefore, we think of the former model as a mirror image of the latter,
via this bijection. If we use the mentioned identification to construct the non-dual Demazure
arrows in the quantum alcove model, we quickly realize that, in general, the constructions are
considerably more involved than (7.8)-(7.9), see [LL1][Example 4.9].

(2) Although the quantum alcove model so far misses the non-dual Demazure arrows, it has
the advantage of being a discrete model. Therefore, combinatorial methods are applicable, for
instance in proving the independence of the model from the choice of an initial alcove path
(or λ-chain of roots), see below, including the application in Remark 8.14 (2). This should be
compared with the subtle continuous arguments used for the similar purpose in the Littelmann
path model [Li].

Based on (5.2), we immediately obtain the following corollary of Theorems 2.7, 3.3, 8.10, and
Proposition 8.7.

Corollary 8.12. The bijection Ψ̃ := Ψ ◦ Π∗ is a weight-preserving affine crystal isomorphism
from A(λ) to the subgraph of B consisting of the dual Demazure arrows.

Recall that the set A(λ) = A(Γlex) in Corollary 8.12 is based on a lex λ-chain Γlex. Thus, we
can conjecture the following stronger version of Corollary 8.12; below we discuss more evidence,
as well as future related work.

Conjecture 8.13. Given any λ-chain Γ, there is a weight-preserving affine crystal isomorphism
between A(Γ) and the subgraph of B consisting of the dual Demazure arrows.

We plan to prove this conjecture in [LL2] by using Corollary 8.12 as the starting point. Then,
given two λ-chains Γ and Γ′, we would construct a bijection between A(Γ) and A(Γ′) preserving
the dual Demazure arrows and the weights of the vertices; this would mean that the quantum
alcove model does not depend on the choice of a λ-chain. This construction will be based on
generalizing to the quantum alcove model the so-called Yang-Baxter moves in [Le1]. As a result,
we would obtain a collection of a priori different bijections between B and A(Γ).

Remarks 8.14.

(1) We believe that the bijections mentioned above would be identical. In fact, this would clearly
be the case if all the tensor factors of B are perfect crystals. Indeed, since the subgraph of B
consisting of the dual Demazure arrows is connected, there is no more than one isomorphism
between it and A(Γ).

(2) In the case when all the tensor factors of B are perfect crystals, a corollary of the work
in [LL2] would be the following application of the quantum alcove model, cf. Remark 8.14
(1). By making specific choices for the λ-chains Γ and Γ′, the bijection between A(Γ) and
A(Γ′) mentioned above would give a uniform realization of the combinatorial R-matrix (i.e.,
the unique affine crystal isomorphism commuting factors in a tensor product of KR crystals).
In fact, we believe that this statement would hold in full generality, rather than just the perfect
case.

(3) In [LL1] we proved that Conjecture 8.13 is true in types A and C, for certain λ-chains differ-
ent from the lex ones, via certain bijections constructed in [Le2]. Here we used the realization
of the corresponding crystal B in terms of Kashiwara-Nakashima (KN) columns [KN].
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9. The energy function in the quantum alcove model and P = X

We use the notation in Section 7. Given the lex λ-chain Γ = (β1, . . . , βm) with height sequence
(l1, . . . , lm), we define the complementary height sequence (l̃1, . . . , l̃m) by l̃i := 〈β∨i , λ〉 − li. In
other words, l̃i = |{j ≥ i | βj = βi}|.

Definition 9.1. Given A = {j1 < · · · < js} ∈ A(Γ), we let A− := {ji ∈ A | rj1 · · · rji−1 >
rj1 · · · rji} (in other words, we record the quantum steps in the path (7.2)). We also define

(9.1) height(A) :=
∑
j∈A−

l̃j .

For examples, we refer to [Le2].

Our goal is to show that the bijection in Section 8.1 translates the height statistic in the
quantum alcove model to the (tail) energy statistic in the quantum LS path model given in
Proposition 5.3. The main result we need is the following lemma, whose proof is given in
Section 10.3.

Lemma 9.2. Let σ and τ be in W J and v ∈ σWJ , w ∈ τWJ . Consider a shortest path p from
σ to τ in QB(W J), as well as a shortest path q from v to w in QB(W ). Then 〈wt(p), λ〉 =
〈wt(q), λ〉.

We can now state our main result.

Theorem 9.3. Consider an admissible subset A in A(λ), and the corresponding quantum LS
path Π(A) in QLS(−λ), written in the form (8.3), where σi ∈W J and 0 = a0 < a1 < · · · < ap.
Then we have

height(A) =
p∑
i=1

(1− ai) wtλ(σi−1 ⇒ σi) .

Proof. Recall from Section 8.2 that A (in fact, the corresponding path (7.2) in QB(W )) can be
reconstructed from the quantum LS path by first defining recursively a sequence wi ∈ σiWJ ,
i = 0, . . . , p (and w−1 = 1), and then by concatenating the unique paths qi with increasing
edge labels (with respect to <λ, cf. Section 8.2) between wi−1 and wi, for i = 0, . . . , p. By
Theorem 8.3 (2), the paths qi are shortest ones. Therefore, by Lemma 9.2, we have

(9.2) wtλ(σi−1 ⇒ σi) = 〈wt(qi), λ〉 for i = 1, . . . , p ;

we also have wt(q0) = 0.

Consider a quantum edge in some path qi, and let βj be the root in the lex λ-chain labeling
it (so j ∈ A−). As discussed in Section 8.2, we have

(9.3) ai〈β∨j , λ〉 = lj , so (1− ai)〈β∨j , λ〉 = l̃j .

By noting that wt(qi) is the sum of β∨j for all such βj , and by combining (9.1), (9.2), and (9.3),
the statement of the theorem follows. �

Corollary 9.4. Keep the notation of Sections 5 and 8.3. For each A ∈ A(λ), we have

Dtail
B (Ψ̃(A))−Dtail

ext = −height(A) .
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Proof. The statement follows directly from Proposition 5.3, Theorem 5.5, and Theorem 9.3,
where we also use the duality between QLS(λ) and QLS(−λ) via the sign change and reversal
map t 7→ 1− t of Section 5.1. �

We conjecture the following strengthening of Corollary 9.4, cf. Conjecture 8.13. This will be
addressed in [LL2], in the setup discussed previously in connection to Conjecture 8.13.

Conjecture 9.5. Corollary 9.4 holds for A(Γ) where Γ is an arbitrary λ-chain, with Ψ̃ replaced
with one of the isomorphisms in Conjecture 8.13.

Remark 9.6. In [LeS] the energy function in types A and C was realized in terms of a statistic in
the model based on KN columns, which is known as charge. Furthermore, in [Le2] it was shown
that this statistic is the translation of the height statistic via the bijections constructed there
(also mentioned in Remark 8.14 (3)), between the corresponding quantum alcove model and
models based on KN columns. This should be compared with Corollary 9.4 and Conjecture 9.5,
where the constant Dtail

ext is 0 in these cases.

The following is due to Ion [Ion, Thm. 4.2] for the dual of an untwisted affine root system.

Lemma 9.7. For λ dominant,

Pλ(x; q, 0) = Ew◦λ(x; q, 0)(9.4)

where Eµ is the nonsymmetric Macdonald polynomial [Ma2].

Proof. Applying [Ma2, (5.7.8)] and its notation, at t = 0 we have ξµ → 0 if µ is not the unique
antidominant element w◦λ in the finite Weyl group orbit of λ. Indeed, letting v(µ) = ri1ri2 · · · rip
be a reduced expression of the shortest element v(µ) in the finite Weyl group such that v(µ)µ
is antidominant, we obtain

ξµ =
p∏

k=1

tq−〈β
∨
k ,µ〉 − t−〈v(µ)β∨k ,ρ〉

q−〈β
∨
k ,µ〉 − t−〈v(µ)β∨k ,ρ〉

,

where βk := rip · · · rik+1
αik for 1 ≤ k ≤ p; here we note that 〈β∨k , µ〉 > 0 and 〈v(µ)β∨k , ρ〉 < 0 for

all 1 ≤ k ≤ p since the elements βk, 1 ≤ k ≤ p, comprise the inversion set S(v(µ)) for v(µ). �

Proposition 9.8. For λ dominant,

(9.5) Pλ(x; q, 0) =
∑

A∈A(λ)

qheight(A)xwt(A) .

Proof. By Lemma 9.7 and restating [OS, Corollary 4.4] in our setting for the quantum alcove
model of Section 7.1, we obtain

Pλ(x; q, 0) =
∑

A∈A(−w◦λ)

qheight(A)x−wt(A).

Since Pλ(x; q, t) is symmetric it follows that

Pλ(x; q, 0) =
∑

A∈A(−w◦λ)

qheight(A)x−w◦ wt(A).

It suffices to show that

(9.6)
∑

A∈A(−w◦λ)

qheight(A)x−w◦ wt(A) =
∑

A∈A(λ)

qheight(A)xwt(A).
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Recall from Proposition 8.7 that the forgetful map Π∗ : A(λ)→ QLS(λ) is a weight-preserving
bijection. Using the duality between QLS(λ) and QLS(−λ) via the sign change and reversal
map t 7→ 1− t of §5.1, we see from Theorem 9.3 and Proposition 5.3 that

−height(A) = Degtail
λ (Π∗(A)) for all A ∈ A(λ).

From this we deduce that the right hand side of (9.6) is equal to

(9.7)
∑

A∈A(λ)

qheight(A)xwt(A) =
∑

A∈A(λ)

q−Degtail
λ (Π∗(A))xwt(Π∗(A)) =

∑
η∈QLS(λ)

q−Degtail
λ (η)xwt(η).

Similarly, the left hand side of (9.6) is equal to

(9.8)
∑

A∈A(−w◦λ)

qheight(A)x−w◦ wt(A) =
∑

η∈QLS(−w◦λ)

q−Degtail
−w◦λ(η)x−w◦ wt(η).

Let σ be the Dynkin diagram automorphism defined by−w◦αi = ασ(i) for all i ∈ I. We obtain
a bijection σ : QLS(λ)→ QLS(σ(λ)), η 7→ σ(η) with σ(η) defined by (5.4); note that wt(σ(η)) =
σ(wt(η)) for all η ∈ QLS(λ). Writing η ∈ QLS(λ) as η = (x1, . . . , xs ; b0, b1, . . . , bs), then from
Proposition 5.3 and Lemma 5.1 we have

Degtail
λ (η) = −

s−1∑
k=1

bk wtλ(xk+1 ⇒ xk)

= −
s−1∑
k=1

bk wtσ(λ)(σ(xk+1)⇒ σ(xk)) = Degtail
σ(λ)(σ(η)).

Using this relation and the equality σ(λ) = −w◦λ, we compute the right-hand side of (9.7) as
follows: ∑

η∈QLS(λ)

q−Degtail
λ (η)xwt(η) =

∑
η∈QLS(λ)

q
−Degtail

σ(λ)(σ(η))
xσ(wt(σ(η)))

=
∑

η∈QLS(σ(λ))

q
−Degtail

σ(λ)(η)
xσwt(η) =

∑
η∈QLS(−w◦λ)

q−Degtail
−w◦λ(η)x−w◦ wt(η),

which is just the right-hand side of (9.8). �

Remark 9.9.

(1) The formula (9.5) holds for any λ-chain.
(2) Proposition 9.8 is stated in [Le2, Thm. 2.6, Prop. 2.7] but the above argument is needed

to complete its proof.

Now define the graded character corresponding to the KR crystal B (see for example [HKOTT,
HKOTY]) by

(9.9) Xλ(x; q) :=
∑
b∈B

qD
tail
B (b)−Dtail

ext xwt(b) ,

where wt(b) is the weight of the crystal element b. From Proposition 8.7 and Corollary 9.4, we
immediately derive our main result.

Corollary 9.10. We have
Pλ(x; q−1, 0) = Xλ(x; q) .
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Remark 9.11. In type A, the Macdonald polynomial at t = 0 can be expanded in terms of
Schur functions with Kostka-Foulkes polynomials as the transition matrix [Ma, Chapter III.6].
These in turn can be expressed as one-dimensional configuration sums X [NY], which implies
the P = X result in type A. In all simply-laced types it was known by combining the results in
[Ion] and [FL], which equate a certain affine Demazure character with P and X, respectively.
It was also known in type C by [Le2, LeS].

10. Proofs of the lemmas in Sections 8.1, 8.2, and 9

10.1. Proof of Lemma 8.1. In the proof of this lemma, a dotted (resp. plain) edge represents
a quantum (resp. Bruhat) edge in QB(W ) or QB(W J), while a dashed edge can be of both
types. Define β ∈ Φaf+ by

(10.1) β :=

{
wγ if wγ ∈ Φ+

δ + wγ if wγ ∈ Φ− .

As in the proof of one of the main results in [LNSSS1], namely Theorem 6.5 (more precisely, the
converse statement), we proceed by induction on the height of β (i.e., the sum of the coefficients
in its expansion in the basis of affine simple roots). The base case, when β is an affine simple
root, is treated in the following lemma.

Lemma 10.1. In QBbλ(W ) we have an edge w
w−1α−−−→ rαw for a finite simple root α with

w−1α 6∈ ΦJ (resp. w rθw//−w−1θ
, where w−1θ 6∈ ΦJ) if and only if in QBbλ(W J) we have

bwc bwc
−1α−−−−−→ rαbwc (resp. bwc brθwc//−bwc−1θ

).

Proof. Let us first ignore the parameter b (or just assume b = 0). By the trichotomy of cosets
in [LNSSS1, Propositions 5.10 and 5.11], there is a simple way to test whether we have the
mentioned edges in QB(W ), namely w−1(η) ∈ Φ± \ Φ±J , where η is the simple root α or θ,
respectively; similarly for the mentioned edges in QB(W J), with w replaced by bwc. The proof
is completed by noting that

w−1η ∈ Φ± \ Φ±J ⇔ bwc−1η ∈ Φ± \ Φ±J ,

where η can be any root, in fact; indeed, writing w = bwcwJ , we have bwc−1 = wJw
−1, and we

know that the elements of WJ permute Φ± \ Φ±J . For an arbitrary b (and η), we observe that

b〈w−1η∨, λ〉 = b〈η∨, wλ〉 = b〈η∨, bwcλ〉 = b〈bwc−1η∨, λ〉 .

�

We need the following result from [LNSSS1], which we recall.

Lemma 10.2. [LNSSS1, Lemma 6.10] Let w ∈W , and let γ ∈ Φ+ \Φ+
J . Define β ∈ Φaf+ as in

(10.1). There exists an affine simple root α (in fact, α 6= α0 if wγ ∈ Φ+) such that 〈α∨, β〉 > 0,
and we have the edge in QB(W J) indicated either in case (1) or (2) below, where z is defined
by rθbwrγc = brθbwrγccz = brθwrγcz:

(1)

 bwc rαbwc//bwc−1α
if α 6= α0

bwc brθwc//−bwc−1θ
if α = α0 ,

(2)

 rαbwrγc bwrγc//
−bwrγc−1α

if α 6= α0

brθwrγc bwrγc//
zbwrγc−1θ

if α = α0 .
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We also need the following lemma.

Lemma 10.3. Consider any one of the diamonds in the parabolic quantum Bruhat graph
QB(W J) listed in [LNSSS1, Lemma 5.14]. If one the two paths (of length 2) is in QBbλ(W J),
for some fixed b, then the other one is too.

Proof. By [LNSSS1, Lemma 5.14], we know that, up to sign and left multiplication by elements
of WJ , the pairs of labels on the two paths are {w−1η, γ} and {γ, rγw−1η}, for some γ ∈ Φ+\Φ+

J

and w ∈ W J , while η is a finite simple root or θ. The equivalence of the integrality conditions
with respect to b for the two pairs follows from the simple calculation

b〈rγw−1η∨, λ〉 = b〈w−1η∨ + cγ∨, λ〉 = b〈w−1η∨, λ〉+ c
(
b〈γ∨, λ〉

)
,

where c is an integer. On another hand, it is clear that mapping roots via elements of WJ

preserves the integrality condition. �

Proof of Lemma 8.1. We can assume that γ 6∈ ΦJ , as otherwise the statement is obvious. As
stated above, we proceed by induction on the height of the affine root β. If β is an affine simple
root, the conclusion follows directly from Lemma 10.1. Otherwise, we apply Lemma 10.2 for
QB(W J); this gives an affine simple root α satisfying

(10.2) α 6= β , 〈α∨, β〉 > 0 ,

and either condition (1) or (2) in the mentioned lemma. Assume that condition (1) holds, as
the reasoning is completely similar if condition (2) holds. By Lemma 10.1, we have

w
w−1α−−−→ rαw if α 6= α0, where w−1α 6∈ ΦJ , and(10.3)

w rθw//−w−1θ
if α = α0, where w−1θ 6∈ ΦJ .

By Lemma 10.2, we have one of the following three cases:

(10.4) (β ∈ Φ+, α 6= α0) , (β ∈ δ − Φ+, α 6= α0) , (β ∈ δ − Φ+, α = α0) .

By [LNSSS1, Lemma 5.14], known as the “diamond lemma”, we have the left diamonds
in [LNSSS1, Eqs. (5.3), (5.4), and (5.7)], respectively. Note that all the necessary condi-
tions for applying the diamond lemma are checked as in the proof of the converse statement
of [LNSSS1, Theorem 6.5]. We can represent the diamonds in the three cases (10.4) using the
single diagram below, where η := α if α 6= α0, and η := θ, otherwise.

(10.5)

rηw rηwrγ

w wrγ

//___ γ

//____ γ

OO�
�
�
�
�

|w−1η|

OO�
�
�
�
�

|rγw−1η|

Recall that the bottom edge is viewed as a path q; similarly, we view the top edge as a path
q′, and we clearly have wt(q) = wt(q′).

Define β′ for the top edge of the diamond (10.5) in the same way as β was defined for the
bottom one in (10.1). As in the proof of the converse statement of [LNSSS1, Theorem 6.5], we
can check in all three cases (10.4) that β′ = rαβ. Since 〈α∨, β〉 > 0, this implies that the height
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of β′ is strictly smaller than that of β. Therefore, by applying the induction hypothesis to the
top edge of the diamond (10.5), which is clearly in QBbλ(W ), we obtain a path in QBbλ(W J):

(10.6) p′ : brηwc = y0 y1 · · · yn = brηwrγc .//___ //___ //___

By induction, we have wt(p′) ≡ wt(q′) mod Q∨J .

Case 1. Assume for the moment that rγw−1η 6∈ ΦJ . By Lemma 10.1, the right edge in
(10.5) implies that in QB(W J) we have an edge

(10.7) bwrγc brηwrγc//___ .

Assuming that the diamond lemma can be successively applied based on (10.6) and (10.7), we
exhibit the diamonds below in QB(W J), from right to left, where yi = brηxic.

(10.8)

brηwc = y0 y1 · · · yn = brηwrγc

bwc = x0 x1 · · · xn = bwrγc

//___ //___ //___

//___

OO�
�
�

//___

OO�
�
�

//___

OO�
�
�

Note that the labels on the top edges are the same as those on the corresponding edges on
the bottom, or at most differ from those by elements of WJ ; so all the bottom edges are in
QBbλ(W J) too, and we can define p to be the path formed by them.

Now let us prove that wt(p) ≡ wt(q) mod Q∨J . By [LNSSS1, Lemma 5.14], the weights of all
paths from bwc to brηwrγc in (10.8) are congruent mod Q∨J . If η 6= θ, then all the vertical edges
in (10.8) are Bruhat edges, so wt(p) ≡ wt(p′) mod Q∨J . Applying the induction hypothesis
and the fact that wt(q) = wt(q′) concludes the induction step in this case. If η = θ, then we
are in the third case in (10.4), so diagram (10.5) is the left one in [LNSSS1, Eq. (5.7)]; thus
its top edge is a Bruhat edge, which implies wt(p′) = wt(q′) = 0, and its bottom edge is a
quantum one, in particular wγ ∈ Φ−. Moreover, all the vertical edges in (10.8) are quantum
ones; in particular, the leftmost and the rightmost ones have weights

−bwc−1θ∨ ≡ w−1θ∨ mod Q∨J , and − bwrγc−1θ∨ ≡ rγw−1θ∨ mod Q∨J ,

respectively. Then, by the above observation about the paths from bwc to brηwrγc in (10.8),
we have mod Q∨J :

wt(p) ≡ wt(p′)− w−1θ∨ + rγw
−1θ∨ = −〈w−1θ∨, γ〉γ∨ = 〈θ∨,−wγ〉︸ ︷︷ ︸

=1

γ∨ = γ∨ = wt(q) .

Here we derived 〈θ∨,−wγ〉 = 1 by using the well-known fact that if φ 6= θ is a positive root,
then 〈θ∨, φ〉 is 0 or 1; indeed, in our case we saw that −wγ ∈ Φ+, while we have −wγ 6= θ and
〈θ∨,−wγ〉 6= 0 by (10.2).

Case 2. The reasoning in Case 1 fails, i.e., we cannot apply the diamond lemma at some
point, if we have the following situation for some i ≤ n.

yi−1 yi yi+1 · · · yn = brηwrγc

xi xi+1 · · · xn = bwrγc

//___

??????????

??????????
//___ //___ //___

//___

OO�
�
�
�

//___

OO�
�
�
�

//___

OO�
�
�
�
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In this case, the edge xi yi//___ is in QBbλ(W J), because it coincides with the edge
yi−1 yi//___ , which has this property by the induction hypothesis, cf. (10.6). By Lemma

10.3, all vertical edges are also in QBbλ(W J), in particular the rightmost one. By Lemma 10.1,
the edge wrγ rηwrγ//___ in (10.5) is in QBbλ(W ). By applying Lemma 10.3 to (10.5) this

time, we conclude that the edge w rηw//___ is in QBbλ(W ). But we showed in (10.3) that

w−1η 6∈ ΦJ , so by Lemma 10.1 the edge bwc brηwc//___ is in QBbλ(W J). We now define p

as the following path in QBbλ(W J):

p : x0 = bwc brηwc = y0 · · · yi−1 = xi · · · xn = bwrγc//___ //___ //___ //___ //___ .

We then prove that wt(p) ≡ wt(q) mod Q∨J in a completely similar way to Case 1, which
concludes the induction step.

Case 3. The last case to consider is the one when rγw
−1η ∈ ΦJ . We still have the edge

wrγ rηwrγ//_____
|rγw−1η|

in QBbλ(W ), because 〈rγw−1η, λ〉 = 0. So we can reason as in the previous paragraph in order

to prove that the edge bwc brηwc//___ is in QBbλ(W J). We now define p as the following

path in QBbλ(W J):

p : bwc brηwc = y0 y1 · · · yn = xn = bwrγc//___ //___ //___ //___ .

Note that this is the only case when the induction step produces a path of a different length
(more precisely, longer by 1) based on the path in the induction hypothesis.

Now let us prove that wt(p) ≡ wt(q) mod Q∨J . If η 6= θ, then the first edge of p is a Bruhat
edge, so wt(p) = wt(p′). Applying the induction hypothesis and the fact that wt(q) = wt(q′)
concludes the induction step in this case. If η = θ, then by the same reasoning as in Case 1, we
deduce

wt(p′) = wt(q′) = 0 , wt(q) = γ∨ , wγ ∈ Φ− .

We conclude that wt(p) ≡ −w−1θ∨ mod Q∨J (cf. Case 1), so we need to prove that −w−1θ∨ ≡
γ∨ mod Q∨J . This follows from

Φ∨J 3 rγw−1θ∨ = w−1θ∨ − 〈w−1θ∨, γ〉︸ ︷︷ ︸
=−1

γ∨ = w−1θ∨ + γ∨.

Here we derived the fact that 〈w−1θ∨, γ〉 = −1 as in Case 1. �

10.2. Proof of Lemma 8.6. We require some notation and results from [LS]. Let Q be the
finite root lattice, Q∨ the coroot lattice, Q∨+ =

⊕
i∈I Z≥0α

∨
i the positive cone of coroots, and

W−af the set of minimum coset representatives in Waf/W . We have Waf
∼= W nQ∨; denote by

tµ the image of µ ∈ Q∨ in Waf . Write y l x for the covering relation in the (strong) Bruhat
order on Waf . For an affine real root β let rβ ∈Waf be the associated reflection and write ri for
β = αi a simple root. For M ∈ Z>0 say that λ ∈ Q∨ is M -superantidominant if 〈λ, α〉 ≤ −M
for every positive root α. We fix once and for all a sufficiently large M ∈ Z>0 (M = 2|W |+ 2
is sufficient).
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Lemma 10.4. [LS, Lem. 3.3] Let w ∈ W and λ ∈ Q∨. Then wtλ ∈ W−af if and only if λ is
antidominant (that is, 〈λ, αi〉 ≤ 0 for all i ∈ I) and w ∈W λ where W λ is the set of minimum
length coset representatives for W/Wλ and Wλ is the stabilizer in W of λ.

Proposition 10.5. [LS, Prop. 4.4] Let λ ∈ Q∨ be superantidominant and let x = wtvλ with
v, w ∈W . Then y = xrvα+nδ l x if and only if one of the following conditions holds:

(i) `(wv) = `(wvrα)− 1 and n = 〈λ, α〉, giving y = wrvαtvλ;
(ii) `(wv) = `(wvrα) + 〈α∨, 2ρ〉 − 1 and n = 〈λ, α〉+ 1, giving y = wrvαtv(λ+α∨);

(iii) `(v) = `(vrα) + 1 and n = 0, giving y = wrvαtvrαλ;
(iv) `(v) = `(vrα)− 〈α∨, 2ρ〉+ 1 and n = −1, giving y = wrvαtvrα(λ+α∨).

We start with the following lemma.

Lemma 10.6. Assume that in W−af we have

vtµ > wtν , vtµ >b wtν′ , where ν ′ − ν ∈ Q∨+ ,

and µ, ν, ν ′ ∈ Q∨ are superantidominant. Then vtµ >b wtν , and in fact any saturated chain
between these elements is a chain in b-Bruhat order.

Proof. We claim that wtν > wtν′ using a downward chain in W−af . It suffices to prove this
when ν ′ − ν = α∨i for some i ∈ I. Suppose this is the case. Suppose first that wri < w. By
Proposition 10.5 we have wtν m writν+α∨i

m wtν+α∨i
as required. Otherwise we have wri > w.

Then by Proposition 10.5 we have wtν m writν m wtν+α∨i
as required.

Knowing this, using Proposition 10.5 we pick a downward saturated chain from vtµ to wtν ,
followed by one from wtν to wtν′ , all in W−af . By the hypothesis, there is a downward saturated
chain in b-Bruhat order from vtµ to wtν′ . By [LeSh, Lemma 4.15], we know that the first chain
is in b-Bruhat order too, which concludes the proof. �

Proof of Lemma 8.6. By Proposition 10.5 we can lift both paths to downward saturated chains
in W−af starting at vtµ, where µ is a fixed superantidominant weight. Denote the endpoints of the
two chains by wtµ+κ and wtµ+κ′ , respectively. Recall that κ and κ′ are the sums of the coroots
corresponding to (the labels of) the down steps in the paths in QB(W ) which are lifted. Since
the first path in QB(W ) is a shortest one, by [Po, Lemma 1], we have κ′−κ ∈ Q∨+. Furthermore,
by the hypothesis, the second chain in W−af is in b-Bruhat order. Thus the hypotheses of Lemma
10.6 are all satisfied, so we conclude that the first chain in W−af is also in b-Bruhat order, and
therefore the first path in QB(W ) is in QBbλ(W ). �

10.3. Proof of Lemma 9.2. Let us first recall Proposition 4.1, which is the parabolic gener-
alization of a lemma due to Postnikov [Po].

Proof of Lemma 9.2. By Lemma 8.1, we can construct a path from p′ from σ to τ in QB(W J)
with

(10.9) wt(p′) ≡ wt(q) mod Q∨J ;

namely, we simply concatenate the paths in QB(W J) that correspond, by the mentioned lemma,
to each edge of q, cf. the construction of the forgetful map in Section 8.1. By Lemma 4.1, we
have

(10.10) 〈wt(p′), λ〉 ≥ 〈wt(p), λ〉 .
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We then exhibit a path q′ from v to w like in the proof of Lemma 8.5 (on which the construc-
tion of the inverse map in Section 8.2 is based); we refer to this proof for the details. Namely,
we concatenate the following:

• a path from v to σ with only down edges and all edge labels in Φ+
J ;

• a path from σ to τ constructed based on p;
• a path from τ to w with only up edges and all edge labels in Φ+

J .

Note that

(10.11) 〈wt(q′), λ〉 = 〈wt(p), λ〉 ,
since all the edges in the first segment of q′, as well as the extra edges introduced in the second
segment, have labels orthogonal to λ. On another hand, by Lemma 4.1 (in fact, we only need
here the original version [Po, Lemma 1 (3)]), we have

(10.12) 〈wt(q′), λ〉 ≥ 〈wt(q), λ〉 .
The proof is concluded by combining (10.9), (10.10), (10.11), and (10.12). �
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