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Abstract. The present paper is a survey of a simple combinatorial model for the irreducible charac-
ters of complex semisimple Lie algebras, and, more generally, of complex symmetrizable Kac-Moody
algebras. This model, which will be referred to as the alcove path model, can be viewed as a discrete
counterpart to the Littelmann path model. It allows us to give character formulas and a Littlewood-
Richardson rule for decomposing tensor products of irreducible representations; it also leads to a nice
description of crystal graphs, including a combinatorial realization of them as self-dual posets via a
generalization of Schützenberger’s involution. Overall, we can say that the alcove path model leads to
an extensive generalization of the combinatorics of irreducible characters from Lie type A (where the
combinatorics is based on Young tableaux, for instance) to arbitrary type.

1. Introduction

We have recently given a simple combinatorial model for the irreducible characters of a complex
semisimple Lie group G and, more generally, for the Demazure characters [14]. For reasons explained
below, we call our model the alcove path model. This was extended to complex symmetrizable Kac-
Moody algebras in [15] (that is, to infinite root systems), and its combinatorics was investigated in more
detail in [13]. The exposition in [14] was in the context of the equivariant K-theory of the generalized
flag variety G/B; more precisely, we first derived a Chevalley-type multiplication formula in KT (G/B),
and then we deduced from it our Demazure character formula. By contrast, the exposition in [15] was
purely representation theoretic, being based on Stembridge’s combinatorial model for Weyl characters
[21].

Our model is based on enumerating certain saturated chains in the Bruhat order on the corresponding
Weyl groupW . This enumeration is determined by an alcove path, which is a sequence of adjacent alcoves
for the affine Weyl group Waff of the Langland’s dual group G∨. Alcove paths correspond to reduced
decompositions of elements in the affine Weyl group, as well as to certain sequences of positive roots
defined by interlacing conditions [15], which extend the notion of a reflection ordering [4].

The alcove path model leads to an extensive generalization of the combinatorics of irreducible char-
acters from Lie type A (where the combinatorics is based on Young tableaux, for instance) to arbitrary
type. More precisely, we gave:

(1) cancellation free character formulas, including Demazure character formulas (Theorems 3.6);
(2) a Littlewood-Richardson rule for decomposing tensor products of irreducible representations

(Theorem 5.3) and a branching rule;
(3) a combinatorial description of the crystal graphs corresponding to the irreducible representations

(Corollary 5.4); this result includes a transparent proof, based on the Yang-Baxter equation, of
the fact that the mentioned description does not depend on the choice involved in our model
(Corollary 6.6);

(4) a combinatorial realization of a certain fundamental involution on the canonical basis (Theorem
7.8, see also Example 7.10); this involution exhibits the crystals as self-dual posets, corresponds
to the action of the longest Weyl group element on an irreducible representation, and is a direct
generalization of Schützenberger’s involution on tableaux;
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(5) an analog for arbitrary root systems, based on the Yang-Baxter equation, of Schützenberger’s
sliding algorithm, which is also known as jeu de taquin (Section 6); this algorithm has many
applications to the representation theory of the Lie algebra of type A.

A future publication will be concerned with a direct generalization of the notion of the product of
Young tableaux in the context of the product of crystals.

There are other models for the characters of the irreducible representations of G with highest weight λ,
such as the Littelmann path model. Littelmann [16, 17, 19] showed that the characters can be described
by counting certain continuous paths in h∗

R
. These paths are constructed recursively, by starting with an

initial one, and by applying certain root operators. By making specific choices for the initial path, one
can obtain special cases which have more explicit descriptions. For instance, a straight line initial path
leads to the Lakshmibai-Seshadri paths (LS paths). These were introduced before Littelmann’s work, in
the context of standard monomial theory [12]. They have a nonrecursive description as weighted chains
in the Bruhat order on the quotient W/Wλ of the corresponding Weyl group W modulo the stabilizer
Wλ of the weight λ; therefore, we will use the term LS chains when referring to this description.
Recently, Gaussent and Littelmann [6], motivated by the study of Mirković-Vilonen cycles, defined
another combinatorial model for the irreducible characters of a complex semisimple Lie group. This
model is based on LS-galleries, which are certain sequences of faces of alcoves for the corresponding
affine Weyl group; these sequences are specified by several conditions (including some positivity and
dimension conditions). According to [6], for each LS-gallery there is an associated Littelmann path and
a saturated chain in the Bruhat order on W/Wλ. We explained in [15] the fact that we do not obtain
Littelmann paths by applying the same procedure as in [6] (or similar ones) to our model.

It was shown in [15] that LS chains are a certain limiting case of a special case of our model. Note
that LS chains cannot be entirely viewed as discrete objects since certain constructions related to them
(such as the definition of root operators) involve their description as piecewise-linear paths. In relation to
Littelmann paths in general, both LS-galleries and our model - which were developed independently - can
be viewed as discrete counterparts. However, unlike LS-galleries, our model extends to the Kac-Moody
case.

We believe that our model is more efficient in explicit computations than other known models due to
its simplicity and its combinatorial nature. For instance, our model is equally simple for both regular
and nonregular highest weights λ; indeed, instead of working with chains of cosets in W/Wλ (as in the
case of LS chains) or with possibly lower dimensional faces of alcoves (as in the case of LS-galleries),
we always work with chains in W and, in the case of a finite root system, with alcoves too. Compared
to LS chains and LS-galleries, we also eliminate the need for making specific choices when selecting the
corresponding chains in Bruhat order. We refer to Subsection 3.3 for a discussion about computational
complexities.

Finally, we believe that the aspects of our model that were investigated in [13, 14, 15] represent just
a small fraction of a rich combinatorial structure yet to be explored, which would generalize most of the
combinatorics of Young tableaux.

2. Preliminaries

We recall some background information on finite root systems, affine Weyl groups, Demazure charac-
ters, and crystal graphs.

2.1. Root systems. Let G be a connected, simply connected, simple complex Lie group. Fix a Borel
subgroup B and a maximal torus T such that G ⊃ B ⊃ T . As usual, we denote by B− be the opposite
Borel subgroup, while N and N− are the unipotent radicals of B and B−, respectively. Let g, h, n,
and n− be the complex Lie algebras of G, T , N , and N−, respectively. Let r be the rank of the Cartan
subalgebra h. Let Φ ⊂ h∗ be the corresponding irreducible root system, and let h∗

R
⊂ h∗ be the real span
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of the roots. Let Φ+ ⊂ Φ be the set of positive roots corresponding to our choice of B. Then Φ is the
disjoint union of Φ+ and Φ− := −Φ+. We write α > 0 (respectively, α < 0) for α ∈ Φ+ (respectively,
α ∈ Φ−), and we define sgn(α) to be 1 (respectively −1). We also use the notation |α| := sgn(α)α.
Let α1, . . . , αr ∈ Φ+ be the corresponding simple roots, which form a basis of h∗

R
. Let 〈 · , · 〉 denote the

nondegenerate scalar product on h∗
R

induced by the Killing form. Given a root α, the corresponding
coroot is α∨ := 2α/〈α, α〉. The collection of coroots Φ∨ := {α∨ | α ∈ Φ} forms the dual root system.

The Weyl group W ⊂ Aut(h∗
R
) of the Lie group G is generated by the reflections sα : h∗

R
→ h∗

R
, for

α ∈ Φ, given by
sα : λ 7→ λ− 〈λ, α∨〉α.

In fact, the Weyl group W is generated by the simple reflections s1, . . . , sr corresponding to the simple
roots si := sαi

, subject to the Coxeter relations:

(si)
2 = 1 and (sisj)

mij = 1 for any i, j ∈ {1, . . . , r},

where mij is half of the order of the dihedral subgroup generated by si and sj . An expression of a Weyl
group element w as a product of generators w = si1 · · · sil

which has minimal length is called a reduced
decomposition for w; its length ℓ(w) = l is called the length of w. The Weyl group contains a unique
longest element w◦ with maximal length ℓ(w◦) = #Φ+. For u,w ∈W , we say that u covers w, and write
u ⋗ w, if w = usβ, for some β ∈ Φ+, and ℓ(u) = ℓ(w) + 1. The transitive closure “>” of the relation
“⋗” is called the Bruhat order on W .

The weight lattice Λ is given by

(2.1) Λ := {λ ∈ h∗
R
| 〈λ, α∨〉 ∈ Z for any α ∈ Φ}.

The weight lattice Λ is generated by the fundamental weights ω1, . . . , ωr, which are defined as the
elements of the dual basis to the basis of simple coroots, i.e., 〈ωi, α

∨
j 〉 = δij . The set Λ+ of dominant

weights is given by
Λ+ := {λ ∈ Λ | 〈λ, α∨〉 ≥ 0 for any α ∈ Φ+}.

Let ρ := ω1 + · · · + ωr = 1
2

∑
β∈Φ+ β. The height of a coroot α∨ ∈ Φ∨ is 〈ρ, α∨〉 = c1 + · · · + cr if

α∨ = c1α
∨
1 + · · ·+crα∨

r . Since we assumed that Φ is irreducible, there is a unique highest coroot θ∨ ∈ Φ∨

that has maximal height. (In other words, θ∨ is the highest root of the dual root system Φ∨. It should
not be confused with the coroot of the highest root of Φ.) We will also use the Coxeter number, that
can be defined as h := 〈ρ, θ∨〉 + 1.

2.2. Affine Weyl groups. In this subsection, we remind a few basic facts about affine Weyl groups
and alcoves, cf. Humphreys [7, Chaper 4] for more details.

Let Waff be the affine Weyl group for the Langland’s dual group G∨. The affine Weyl group Waff is
generated by the affine reflections sα,k : h∗

R
→ h∗

R
, for α ∈ Φ and k ∈ Z, that reflect the space h∗

R
with

respect to the affine hyperplanes

(2.2) Hα,k := {λ ∈ h∗
R
| 〈λ, α∨〉 = k}.

Explicitly, the affine reflection sα,k is given by

sα,k : λ 7→ sα(λ) + k α = λ− (〈λ, α∨〉 − k)α.

The hyperplanes Hα,k divide the real vector space h∗
R

into open regions, called alcoves. Each alcove A
is given by inequalities of the form

A := {λ ∈ h∗
R
| mα < 〈λ, α∨〉 < mα + 1 for all α ∈ Φ+},

where mα = mα(A), α ∈ Φ+, are some integers.

A proof of the following important property of the affine Weyl group can be found, e.g., in [7,
Chapter 4].

Lemma 2.1. The affine Weyl group Waff acts simply transitively on the collection of all alcoves.
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The fundamental alcove A◦ is given by

A◦ := {λ ∈ h∗
R
| 0 < 〈λ, α∨〉 < 1 for all α ∈ Φ+}.

Lemma 2.1 implies that, for any alcove A, there exists a unique element vA of the affine Weyl group
Waff such that vA(A◦) = A. Hence the map A 7→ vA is a one-to-one correspondence between alcoves
and elements of the affine Weyl group.

Recall that θ∨ ∈ Φ∨ is the highest coroot. Let θ ∈ Φ+ be the corresponding root, and let α0 := −θ.
The fundamental alcove A◦ is, in fact, the simplex given by

(2.3) A◦ = {λ ∈ h∗
R
| 0 < 〈λ, α∨

i 〉 for i = 1, . . . , r, and 〈λ, θ∨〉 < 1},

Lemma 2.1 also implies that the affine Weyl group is generated by the set of reflections s0, s1, . . . , sr

with respect to the walls of the fundamental alcove A◦, where s0 := sα0,−1 and s1, . . . , sr ∈ W are the
simple reflections si = sαi,0. Like the Weyl group, the affine Weyl group Waff is a Coxeter group. As
in the case of the Weyl group, a decomposition v = si1 · · · sil

∈ Waff is called reduced if it has minimal
length; its length ℓ(v) = l is called the length of v.

We say that two alcoves A and B are adjacent if B is obtained by an affine reflection of A with respect
to one of its walls. In other words, two alcoves are adjacent if they are distinct and have a common wall.

For a pair of adjacent alcoves, let us write A
β

−→ B if the common wall of A and B is of the form Hβ,k

and the root β ∈ Φ points in the direction from A to B.

Let Z be the set of the elements of the lattice Λ/h that do not belong to any affine hyperplane Hα,k

(recall that h is the Coxeter number). Each alcove A contains precisely one element ζA of the set Z (cf.
[11, 14]); this will be called the central point of A. In particular, ζA◦

= ρ/h.

Proposition 2.2. [14] For a pair of adjacent alcoves A
α

−→ B, we have ζB − ζA = α/h.

2.3. Demazure characters. The generalized flag variety G/B is a smooth projective variety. It de-
composes into a disjoint union of Schubert cells X◦

w := BwB/B indexed by elements w ∈ W of the Weyl
group. The closures of Schubert cells Xw := X◦

w are called Schubert varieties. We have u > w in the
Bruhat order (defined above) if and only if Xu ⊃ Xw. Let OXw

be the structure sheaf of the Schubert
variety Xw. Let Lλ be the line bundle over G/B associated with the weight λ, that is, Lλ := G×B C−λ,
where B acts on G by right multiplication, and the B-action on C−λ = C corresponds to the charac-
ter determined by −λ. (This character of T extends to B by defining it to be identically one on the
commutator subgroup [B,B].)

For a dominant weight λ ∈ Λ+, let Vλ denote the finite dimensional irreducible representation of the
Lie group G with highest weight λ. For λ ∈ Λ+ and w ∈W , the Demazure module Vλ,w is the B-module
that is dual to the space of global sections of the line bundle Lλ on the Schubert variety Xw:

(2.4) Vλ,w := H0(Xw,Lλ)∗.

For the longest Weyl group element w = w◦, the space Vλ,w◦
= H0(G/B,Lλ)∗ has the structure of a

G-module. The classical Borel-Weil theorem says that Vλ,w◦
is isomorphic to the irreducible G-module

Vλ.

Let Z[Λ] be the group algebra of the weight lattice Λ, which is isomorphic to the representation
ring of T . The algebra Z[Λ] has a Z-basis of formal exponents {eλ | λ ∈ Λ} with multiplication
eλ · eµ := eλ+µ; in other words, Z[Λ] = Z[e±ω1 , · · · , e±ωr ] is the algebra of Laurent polynomials in
r variables. The formal characters of the modules Vλ,w , called Demazure characters, are given by
ch(Vλ,w) =

∑
µ∈Λmλ,w(µ) eµ ∈ Z[Λ], where mλ,w(µ) is the multiplicity of the weight µ in Vλ,w. These

characters generalize the characters of the irreducible representations ch(Vλ) = ch(Vλ,w◦
). Demazure [3]

gave a formula expressing the characters ch(Vλ,w) in terms of certain operators known as Demazure
operators.
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2.4. Crystal graphs and Schützenberger’s involution. Let U(g) be the enveloping algebra of the
Lie algebra g, which is generated by Ei, Fi, Hi, for i = 1, . . . , r, subject to the Serre relations. Let B be
the canonical basis of U(n−), and let Bλ := B∩Vλ be the canonical basis of the irreducible representation
Vλ with highest weight λ. Let vλ and vlow

λ be the highest and lowest weight vectors in Bλ, respectively.

Let Ẽi, F̃i, for i = 1, . . . , r, be Kashiwara’s operators [8, 20]; these are also known as raising and lowering
operators, respectively. The crystal graph of Vλ is the directed colored graph on Bλ defined by arrows

x → y colored i for each F̃i(x) = y or, equivalently, for each Ẽi(y) = x. (In fact, Kashiwara introduced
the notion of a crystal graph of an Uq(g)-representation, where Uq(g) is the Drinfeld-Jimbo q-deformation
of U(g), also known as a quantum group; using the quantum deformation, one can associate a crystal
graph to a g-representation.) One can also define partial orders �i on Bλ by

x �i y if x = F̃ k
i (y) for some k ≥ 0 .

We let � denote the partial order generated by all partial orders �i, for i = 1, . . . , r. The poset (Bλ,�)
has maximum vλ and minimum vlow

λ .

In order to proceed, we need the following general setup. Let V be a module over an associative
algebra U and σ an automorphism of U . The twisted U -module V σ is the same vector space V but with
the new action u ∗ v := σ(u)v for u ∈ U and v ∈ V . Clearly, V στ = (V σ)τ for every two automorphisms
σ and τ of U . Furthermore, if V is a simple U -module, then so is V σ. In particular, if U = U(g) and
V = Vλ, then (Vλ)σ is isomorphic to Vσ(λ) for some dominant weight σ(λ). Thus there is an isomorphism
of vector spaces σλ : Vλ → Vσ(λ) such that

σλ(uv) = σ(u)σλ(v) , u ∈ U(g) , v ∈ Vλ .

By Schur’s lemma, σλ is unique up to a scalar multiple.

The longest Weyl group element w◦ defines an involution on the simple roots by αi 7→ αi∗ := −w◦(αi).
Consider the automorphisms of U(g) defined by

φ(Ei) = Fi , φ(Fi) = Ei , φ(Hi) = −Hi ,(2.5)

ψ(Ei) = Ei∗ , ψ(Fi) = Fi∗ , ψ(Hi) = Hi∗ ,(2.6)

and η := φψ. Clearly, these three automorphisms together with the identity automorphism form a group
isomorphic to Z/2Z × Z/2Z. It also easily follows from (2.5)-(2.6) that

φ(λ) = ψ(λ) = −w◦(λ) , η(λ) = λ .

We can normalize each of the maps φλ, ψλ, and ηλ by the requirement that

(2.7) φλ(vλ) = vlow
−w◦(λ) , ψλ(vλ) = v−w◦(λ) , ηλ(vλ) = vlow

λ .

(Of course, we also set Idλ to be the identity map on Vλ.) By [20, Proposition 21.1.2], cf. also [1,
Proposition 7.1], we have the following result.

Proposition 2.3. [1, 20] (1) Each of the maps φλ and ψλ sends Bλ to B−w◦(λ), while ηλ sends Bλ to
itself.

(2) For every two (not necessarily distinct) elements σ, τ of the group {Id, φ, ψ, η}, we have (στ)λ =
στ(λ)τλ. In particular, the map ηλ is an involution.

(3) For every i = 1, . . . , r, we have

(2.8) φλF̃i = Ẽiφλ , ψλF̃i = F̃i∗ψλ , ηλF̃i = Ẽi∗ηλ .

In particular, the poset (Bλ,�) is self-dual, and ηλ is the corresponding antiautomorphism.

Berenstein and Zelevinsky [1] showed that, in type An−1 (that is, in the case of the Lie algebra sln),
the operator ηλ is given by Schützenberger’s evacuation procedure for semistandard Young tableaux (see
e.g. [5]). More precisely, it is known that, for each partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0), the
semistandard Young tableaux of shape λ and entries 1, . . . , n parametrize the the canonical basis Bλ

of Vλ. Hence, we can transfer the action of ηλ on Bλ to an action on the corresponding tableaux. As
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mentioned above, the latter action coincides with Schützenberger’s evacuation map. One way to realize
this map on a tableau T is the following three-step procedure.

(1) Rotate the tableau 180◦, such that its row/column words get reversed.
(2) Complement the entries via the map i 7→ w◦(i) = n+ 1 − i, where w◦ is the longest element in

the symmetric group Sn.
(3) Apply jeu de taquin to construct the rectification of the skew tableau obtained in the previous

step, that is, successively apply Schützenberger’s sliding algorithm for the inside corners of the
mentioned tableau.

For convenience, we will call these steps: REVERSE, COMPLEMENT, SLIDE. They are illustrated in
Figure 1 below.

1

SLIDE

SLIDE

SLIDE

COMPLEMENT

REVERSE

5
3
43 5

43
2121

554
4333

1
3

3 3 5
1
3

4 5
33

4321

554

42

1
2

23
33

45

54
3

3
2

21

Figure 1. The evacuation map.

3. The Alcove Path Model

This section describes the basics of the model for the irreducible characters of semisimple Lie algebras
that was introduced and investigated introduced in [13, 14, 15]. We refer to these papers for more details,
including the proofs of the results mentioned in this survey. Although some of these results hold for
infinite root systems (cf. [15]), the setup in this survey is that of a finite irreducible root system, as
discussed in Section 2.

Our model is conveniently phrased in terms of several sequences, so let us mention some related
notation. Given a totally ordered index set I = {i1 < i2 < . . . < in}, a sequence (ai1 , ai2 , . . . , ain

) is
sometimes abbreviated to {aj}j∈I . We also let [n] := {1, 2, . . . , n}.
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3.1. λ-chains. The affine translations by weights preserve the set of affine hyperplanes Hα,k, cf. (2.1)
and (2.2). It follows that these affine translations map alcoves to alcoves. Let Aλ = A◦ + λ be the
alcove obtained by the affine translation of the fundamental alcove A◦ by a weight λ ∈ Λ. Let vλ be the
corresponding element of Waff , i.e,. vλ is defined by vλ(A◦) = Aλ. Note that the element vλ may not
be an affine translation itself.

Let us now fix a dominant weight λ. Let v 7→ v̄ be the homomorphism Waff →W defined by ignoring
the affine translation. In other words, s̄α,k = sα ∈W .

Definition 3.1. A λ-chain of roots is a sequence of positive roots (β1, . . . , βn) which is determined as
indicated below by a reduced decomposition v−λ = si1 · · · sin

of v−λ as a product of generators of Waff :

β1 = αi1 , β2 = s̄i1(αi2), β3 = s̄i1 s̄i2(αi3), . . . , βn = s̄i1 · · · s̄in−1
(αin

) .

When the context allows, we will abbreviate “λ-chain of roots” to “λ-chain”. The λ-chain of reflections
associated with the above λ-chain of roots is the sequence (r̂1, . . . , r̂n) of affine reflections in Waff given
by

r̂1 = si1 , r̂2 = si1si2si1 , r̂3 = si1si2si3si2si1 , . . . , r̂n = si1 · · · sin
· · · si1 .

We will present two equivalent definitions of a λ-chain of roots.

Definition 3.2. An alcove path is a sequence of alcoves (A0, A1, . . . , An) such that Ai−1 and Ai are
adjacent, for i = 1, . . . , n. We say that an alcove path is reduced if it has minimal length among all
alcove paths from A0 to An.

Given a finite sequence of roots Γ = (β1, . . . , βn), we define the sequence of integers (l∅1 , . . . , l
∅
n) by

l∅i := #{j < i | βj = βi}, for i = 1, . . . , n. We also need the following two conditions on Γ.

(R1) The number of occurrences of any positive root α in Γ is 〈λ, α∨〉.
(R2) For each triple of positive roots (α, β, γ) with γ∨ = α∨ + β∨, the subsequence of Γ consisting

of α, β, γ is a concatenation of pairs (α, γ) and (β, γ) (in any order).

Theorem 3.3. [14] The following statements are equivalent.

(a) The sequence of roots Γ = (β1, . . . , βn) is a λ-chain, and (r̂1, . . . , r̂n) is the associated λ-chain
of reflections.

(b) We have a reduced alcove path A0
−β1
−→ · · ·

−βn
−→ An from A0 = A◦ to An = A−λ, and r̂i is the

affine reflection in the common wall of Ai−1 and Ai, for i = 1, . . . , n.
(c) The sequence Γ satisfies conditions (R1) and (R2) above, and r̂i = sβi,−l∅

i
, for i = 1, . . . , n.

We now describe a particular choice of a λ-chain. First note that constructing a λ-chain amounts to
defining a total order on the index set

I := {(α, k) | α ∈ Φ+, 0 ≤ k < 〈λ, α∨〉} ,

such that condition (R2) above holds, where the sequence Γ = {βi}i∈I is defined by βi = α for i = (α, k).
Fix a total order on the set of simple roots α1 < α2 < . . . < αr. For each i = (α, k) in I, let
α∨ = c1α

∨
1 + . . .+ crα

∨
r , and define the vector

vi :=
1

〈λ, α∨〉
(k, c1, . . . , cr)

in Qr+1. It turns out that the map i 7→ vi is injective. Hence, we can define a total order on I by i < j
iff vi < vj in the lexicographic order on Qr+1.

Proposition 3.4. [15] Given the total order on I defined above, the sequence {βi}i∈I defined by βi = α
for i = (α, k) is a λ-chain.
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3.2. Admissible subsets. For the remainder of this section, we fix a λ-chain Γ = (β1, . . . , βn). Let
ri := sβi

. We now define the centerpiece of our combinatorial model for characters, which is our
generalization of semistandard Young tableaux in type A.

Definition 3.5. An admissible subset is a subset of [n] (possibly empty), that is, J = {j1 < j2 < . . . <
js}, such that we have the following saturated chain in the Bruhat order on W :

1 ⋖ rj1 ⋖ rj1rj2 ⋖ . . .⋖ rj1rj2 . . . rjs
.

We denote by A(Γ) the collection of all admissible subsets corresponding to our fixed λ-chain Γ. Given
an admissible subset J , we use the notation

µ(J) := −r̂j1 . . . r̂js
(−λ) , w(J) := rj1 . . . rjs

.

We call µ(J) the weight of the admissible subset J .

Theorem 3.6. [14, 15] (1) We have the following character formula:

ch(Vλ) =
∑

J∈A(Γ)

eµ(J) .

(2) More generally, the following Demazure character formula holds for any u ∈ W :

ch(Vλ,u) =
∑

J

e−u r̂j1
···r̂js (−λ) ,

where the summation is over all subsets J = {j1 < · · · < js} ⊆ [n] such that

u⋗ u rj1 ⋗ u rj1rj2 ⋗ · · · ⋗ u rj1rj2 · · · rjs

is a saturated decreasing chain in the Bruhat order on the Weyl group W .

(3) Assume that the λ-chain Γ has the property that the second occurence of a root can never be before
the first occurence of another root. Then we also have the following Demazure character formula:

ch(Vλ,u) =
∑

J∈A(Γ)

w(J)≤u

eµ(J) .

Remark 3.7. Theorem 3.6 (3) is the analog of the Demazure character formula due to Littelmann [16],
[18, Theorem 9.1]. Compared to the formula in Theorem 3.6 (2), the former has the advantage of
realizing all Demazure characters ch(Vλ,u) (for a fixed λ) in terms of the same combinatorial objects,
i.e., in terms of certain subsets of A(Γ).

Example 3.8. Consider G = SLn whose root system Φ is of type An−1, and whose Weyl group is
the symmetric group Sn. We can identify the space h∗

R
with the quotient space V := Rn/R(1, . . . , 1),

where R(1, . . . , 1) denotes the subspace in Rn spanned by the vector (1, . . . , 1). Let ε1, . . . , εn ∈ V be
the images of the coordinate vectors in Rn. The positive roots are αij := εi − εj for 1 ≤ i < j ≤ n,
and the simple roots are αi := αi,i+1 for i = 1, . . . , n − 1. The longest root is θ = α1n. The root
system Φ is self-dual, that is, every coroot coincides with the corresponding root. The weight lattice is
Λ = Zn/Z(1, . . . , 1). We use the notation [λ1, . . . , λn] for a weight, as the coset of (λ1, . . . , λn) in Zn.

Suppose that n = 3 and λ = 2ω1 + ω2 = 3ε1 + ε2. Ordering the simple roots (α23 < α12), Proposi-
tion 3.4 gives the following λ-chain:

(β1, . . . , β6) = (α12, α13, α23, α13, α12, α13).

This is associated with the reduced decomposition v−λ = s1s2s1s0s1s2 in the affine Weyl group. The
corresponding λ-chain of reflections is

(r̂1, . . . , r̂6) = (sα12,0, sα13,0, sα23,0, sα13,−1, sα12,−1, sα13,−2).

Assume that we want to compute the Demazure character ch(Vλ,u) for u = s2s1. There are five
saturated chains in Bruhat order descending from u: (empty chain), (u⋗ usα12

= s2), (u⋗ usα13
= s1),
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(u ⋗ usα12
⋗ usα12

sα23
= 1), (u ⋗ usα13

⋗ usα13
sα12

= 1). Thus, the Demazure character formula in
Theorem 3.6 (2) requires us to sum over the following subsequences in the λ-chain (β1, . . . , β6):

(empty subsequence), (α12), (α13), (α12, α23), (α13, α12).

The sequence (β1, . . . , β6) contains one empty subsequence, two subsequences of the form (α12), three
subsequences of the form (α13), one subsequence of the form (α12, α23), and two subsequence of the form
(α13, α12). Hence, we have

ch(V[3,1,0],s2s1
) = e−u(−λ) + e−ur̂1(−λ) + e−ur̂5(−λ) + e−ur̂2(−λ) + e−ur̂4(−λ) + e−ur̂6(−λ)+

+e−ur̂1r̂3(−λ) + e−ur̂2r̂5(−λ) + e−ur̂4r̂5(−λ).

We can explicitly write this expression as

ch(V[3,1,0],s2s1
) =

e[1,0,3] + e[3,0,1] + e[2,0,2] + e[1,3,0] + e[1,2,1] + e[1,1,2] + e[3,1,0] + e[2,2,0] + e[2,1,1].

Example 3.9. Suppose that the root system Φ is of type G2. The positive roots are γ1 = α1, γ2 =
3α1 + α2, γ3 = 2α1 + α2, γ4 = 3α1 + 2α2, γ5 = α1 + α2, γ6 = α2. The corresponding coroots are
γ∨1 = α∨

1 , γ
∨
2 = α∨

1 + α∨
2 , γ

∨
3 = 2α∨

1 + 3α∨
2 , γ

∨
4 = α∨

1 + 2α∨
2 , γ

∨
5 = α∨

1 + 3α∨
2 , γ

∨
6 = α∨

2 .

Suppose that λ = ω2. Proposition 3.4 gives the following ω2-chain:

(β1, . . . , β10) = (γ6, γ5, γ4, γ3, γ2, γ5, γ3, γ4, γ5, γ3) .

Thus, we have r̂1 = sγ6,0, r̂2 = sγ5,0, r̂3 = sγ4,0, r̂4 = sγ3,0, r̂5 = sγ2,0, r̂6 = sγ5,1, r̂7 = sγ3,1, r̂8 = sγ4,1,
r̂9 = sγ5,2, r̂10 = sγ3,2. There are six saturated chains in the Bruhat order (starting at the identity) on
the corresponding Weyl group that can be retrieved as subchains of the ω2-chain. We indicate each such
chain and the corresponding admissible subsets in {1, . . . , 10}.

(1) 1: {};
(2) 1 < sγ6

: {1};
(3) 1 < sγ6

< sγ6
sγ5

: {1, 2}, {1, 6}, {1, 9};
(4) 1 < sγ6

< sγ6
sγ5

< sγ6
sγ5

sγ4
: {1, 2, 3}, {1, 2, 8}, {1, 6, 8};

(5) 1 < sγ6
< sγ6

sγ5
< sγ6

sγ5
sγ4

< sγ6
sγ5

sγ4
sγ3

: {1, 2, 3, 4}, {1, 2, 3, 7}, {1, 2, 3, 10}, {1, 2, 8, 10},
{1, 6, 8, 10};

(6) 1 < sγ6
< sγ6

sγ5
< sγ6

sγ5
sγ4

< sγ6
sγ5

sγ4
sγ3

< sγ6
sγ5

sγ4
sγ3

sγ2
: {1, 2, 3, 4, 5}.

The weight of each admissible subset is now easy to compute. We are lead to the expression for the
character ch(Vω2

) as the following sum over admissible subsets:

ch(Vω2
) = eω2 + er̂1(ω2) + er̂1 r̂2(ω2) + er̂1 r̂6(ω2) + er̂1 r̂9(ω2) + · · · + er̂1 r̂6 r̂8 r̂10(ω2) + er̂1 r̂2 r̂3 r̂4 r̂5(ω2).

3.3. Computational complexities. In this subsection, we compare the computational complexity of
our model with that of LS-paths constructed via root operators.

Fix a root system of rank r with N positive roots, a dominant weight λ, and a Weyl group element u
of length l. We want to determine the character of the Demazure module Vλ,u. Let d be its dimension,
and let L be the length of the affine Weyl group element v−λ (that is, the number of affine hyperplanes
separating the fundamental alcove A◦ and A◦ − λ). Note that L = 2(λ, ρ∨), where ρ∨ = 1

2

∑
β∈Φ+ β∨.

We claim that the complexity of the character formula in Theorem 3.6 (2) is O(d lL). Indeed, we start by
determining an alcove path via the method underlying Proposition 3.4, which involves sorting a sequence
of L rational numbers. The complexity is O(L logL), and note that logL is, in general, much smaller
than d (see below for some examples). Whenever we examine some subword of the word of length L we
fixed at the beginning, we have to check at most L−1 ways to add an extra reflection at the end. On the
other hand, in each case, we have to check whether, upon multiplying by the corresponding nonaffine
reflection, the length decreases by precisely 1. The complexity of the latter operation is O(l), based
on the Strong Exchange Condition [7, Theorem 5.8]. Then, for each “good” subword, we have to do a
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calculation, namely applying at most 2l affine reflections to −λ. In fact, it is fairly easy to implement
this algorithm.

Now let us examine at the complexity of the algorithm based on root operators for constructing
the LS-paths associated with λ. In other words, we are looking at the complexity of constructing the
corresponding crystal graph. We have to generate the whole crystal graph first, and then figure out
which paths give weights for the Demazure module. For each path, we can apply r root operators. Each
path has at most N linear steps, so applying a root operator has complexity O(N). But now we have
to check whether the result is a path already determined, so we have to compare the obtained path
with the other paths (that were already determined) of the same rank in the crystal graph (viewed as a
ranked poset). This has complexity O(NM), where M is the maximum number of elements of the same
rank. Since we have at most N + 1 ranks, M is at least d/(N + 1). In conclusion, the complexity is
O(drNM), which is at least O(d2r).

Let us get a better picture of how the two results compare. Assume we are in a classical type, and let
us first take λ to be the i-th fundamental weight, with i fixed, plus u = w◦. Clearly l is O(r2), L is O(r),
and d is O(ri), so the complexity of our formula is O(ri+3). For LS-paths, we get at least O(r2i+1). So
the ratio between the complexity in the model based on LS-paths and our model is at least O(ri−2).

Let us also take λ = ρ. In this case d = 2N , and a simple calculation shows that L is O(r3). Our
formula has complexity O(2N r5), while the model based on LS-paths has complexity at least O(22N r).
So the ratio between the complexities is at least O(2N/r4), where N is r(r+1)/2, r2, and r2− r in types
A, B/C, and D, respectively.

4. Related Structures and Properties

In the first two subsections, we present two alternative ways of viewing admissible subsets, which are
closely related to the equivalent definitions of λ-chains in Theorem 3.3 (b) and (c). We conclude this
section with some combinatorial properties of admissible subsets.

4.1. Galleries.

Definition 4.1. A gallery is a sequence γ = (F0 = {0}, A0 = A◦, F1, A1, F2, . . . , Fn, An, F∞ = {µ})
such that A0, . . . , An are alcoves; Fi is a codimension one common face of the alcoves Ai−1 and Ai, for
i = 1, . . . , n; and F∞ is a vertex of the last alcove An. The weight µ is called the weight of the gallery
and is denoted by µ(γ). The folding operator φi is the operator which acts on a gallery by leaving
its initial segment from A0 to Ai−1 intact and by reflecting the remaining tail in the affine hyperplane
containing the face Fi. In other words, we define

φi(γ) := (F0, A0, F1, A1, . . . , Ai−1, F
′
i = Fi, A

′
i, F

′
i+1, A

′
i+1, . . . , A

′
n, F

′
∞) ;

here A′
j := t̂i(Aj) for j ∈ {i, . . . , n}, F ′

j := t̂i(Fj) for j ∈ {i, . . . , n} ∪ {∞}, and t̂i is the affine reflection
in the hyperplane containing Fi, as in Theorem 3.3.

The galleries defined above are special cases of the generalized galleries in [6].

Recall that our fixed λ-chain Γ = (β1, . . . , βn) determines a reduced alcove path A0 = A◦
−β1
−→ · · ·

−βn
−→

An = A−λ. This alcove path determines, in turn, an obvious gallery

γ(∅) = (F0, A0, F1, . . . , Fn, An, F∞)

of weight −λ.

Definition 4.2. Given a subset J = {j1 < · · · < js} ⊆ [n], we associate with it the gallery γ(J) :=
φj1 · · ·φjs

(γ(∅)). If J is an admissible subset, we call γ(J) an admissible gallery.
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Remarks 4.3. (1) The weight of the gallery γ(J), i.e. µ(γ(J)), is −µ(J).

(2) In order to define the gallery γ(J), we augmented the index set [n] corresponding to the fixed
λ-chain by adding a new minimum 0 and a new maximum ∞. The same procedure is applied when the
initial index set is an arbitrary (finite) totally ordered set.

4.2. Chains of roots.

Definition 4.4. A chain of roots is an object of the form

(4.1) Γ = ((γ1, γ
′
1), . . . , (γn, γ

′
n), γ∞) ,

where (γi, γ
′
i) are pairs of roots with γ′i = ±γi, for i = 1, . . . , n, and γ∞ is a weight. Given a chain of

roots Γ and i in [n], we let ti := sγi
and we define

φi(Γ) := ((δ1, δ
′
1), . . . , (δn, δ

′
n), δ∞)) ,

where δ∞ := ti(γ∞) and

(δj , δ
′
j) :=






(γj , γ
′
j) if j < i

(γj , ti(γ
′
j)) if j = i

(ti(γj), ti(γ
′
j)) if j > i .

Our fixed λ-chain Γ = (β1, . . . , βn) determines the chain of roots

Γ(∅) := ((β1, β1), . . . , (βn, βn), ρ) ;

recall that ρ was defined in Subsection 2.1.

Definition 4.5. Given a subset J = {j1 < · · · < js} ⊆ [n], we associate with it the chain of roots
Γ(J) := φj1 · · ·φjs

(Γ(∅)). If J is an admissible subset, we call Γ(J) an admissible folding (of Γ(∅)).

Remark 4.6. We can also define folding operators on subsets J of [n] by φi : J 7→ J△{i}, where △
denotes the symmetric difference of sets. The folding operators φi on J , γ(J), and Γ(J) are commuting
involutions (for J ⊆ [n]), and their actions are compatible. Throughout this paper, we use J , γ(J), and
Γ(J) interchangeably. We will call the elements of J the folding positions in γ(J) and Γ(J).

Given a fixed subset J of [n], we will now discuss the relationship between the gallery γ(J) and the
chain of roots Γ(J).

Let γ = (F0, A0, F1, . . . , Fn, An, F∞) be an arbitrary gallery. Let t̂i be the affine reflection in the com-
mon wall of Ai−1 and Ai, as usual. We associate with γ a chain of roots Γ(γ) = ((γ1, γ

′
1), . . . , (γn, γ

′
n), γ∞)

as follows:

(4.2) γi := h(ζAi−1
− ζt̂i(Ai−1)

) , γ′i := h(ζt̂i(Ai)
− ζAi

) , γ∞ := h(ζAn
− µ(γ)) ;

here h is the Coxeter number, i = 1, . . . , n, and ζA is the central point of the alcove A, as defined in
Subsection 2.2. By Proposition 2.2, we have

(4.3) t̂i(Ai−1)
γi
−→ Ai−1 , Ai

γ′
i−→ t̂i(Ai) .

On the one hand, Γ(γ) uniquely determines the gallery γ. On the other hand, we have Γ(J) = Γ(γ(J)).

Remark 4.7. In [15], we also associated with an admissible subset J a certain piecewise-linear path π(J).
This is closely related to γ(J) and Γ(J); essentially, it is obtained from the path joining the central points
of the alcoves in the gallery γ(∅) via the folding operators used to construct γ(J) from γ(∅). However,
the path π(J) is not a Littelmann path in general.
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4.3. Combinatorial properties. Let J be a fixed admissible subset, and let

γ(J) = (F0, A0, F1, . . . , Fn, An, F∞) , Γ(J) = ((γ1, γ
′
1), . . . , (γn, γ

′
n), γ∞) .

Let us also fix a simple root αp. We associate with J the sequence of integers L(J) = (l1, . . . , ln) defined

by Fi ⊂ H−|γi|,li for i = 1, . . . , n. Note that L(∅) = (l∅1 , . . . , l
∅
n), as defined in Subsection 3.1. We also

define lp∞ := 〈µ(J), α∨
p 〉, which means that F∞ ⊂ H−αp,l

p
∞

. Finally, we let

(4.4) I(J, p) := {i ∈ [n] | γi = ±αp} , L(J, p) := ({li}i∈I(J,p), l
p
∞) , M(J, p) := max L(J, p) .

It turns out that M(J, p) ≥ 0.

Let I(J, p) = {i1 < i2 < . . . < im}. We associate with J and p the sequence Σ(J, p) = (σ1, . . . , σm+1),
where σj := (sgn(γij

), sgn(γ′ij
)) for j = 1, . . . ,m, and σm+1 := sgn(〈γ∞, α

∨
p 〉). We now present some

properties of the sequence Σ(J, p), which will be used later, and which reflect the combinatorics of
admissible subsets, as discussed in [15].

Proposition 4.8. [15] The sequence Σ(J, p) has the following properties:

(S1) σj ∈ {(1, 1), (−1,−1), (1,−1)} for j = 1, . . . ,m;
(S2) j = 0 or σj = (1, 1) implies σj+1 ∈ {(1, 1), (1,−1), 1}.

The sequence Σ(J, p) determines a continuous piecewise-linear function gJ,p : [0,m+ 1
2 ] → R as shown

below. By a step (h, k) of a function f at x = a, we understand that f(a + h) = f(a) + k, and that f
is linear between a and a + h. We set gJ,p(0) = − 1

2 and, by scanning Σ(J, p) from left to right while

ignoring brackets, we impose the following condition: the ith entry ±1 corresponds to a step (1
2 ,±

1
2 ) of

gJ,p at x = i−1
2 , respectively.

Proposition 4.9. [15] The function gJ,p encodes the sequence L(J, p) as follows:

lij
= gJ,p

(
j −

1

2

)
, j = 1, . . . ,m , and lp∞ = gJ,p

(
m+

1

2

)
.

Example 4.10. Assume that the entries of Γ(J) indexed by the elements of I(J, p) are (αp,−αp),
(−αp,−αp), (αp, αp), (αp, αp), (αp,−αp), (−αp,−αp), (αp,−αp), (αp, αp), in this order; also assume
that sgn(〈γ∞, α∨

p 〉) = 1. The graph of gJ,p is shown in Figure 2; this graph is separated into segments
corresponding to the entries of the sequence Σ(J, p).

1

0
1 8765432

−1

Figure 2. The graph of the function gJ,p in Example 4.10.

5. Root operators

We now define partial operators known as root operators on the collection A(Γ) of admissible subsets
corresponding to our fixed λ-chain. They are associated with a fixed simple root αp, and are traditionally
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denoted by Fp (also called a lowering operator) and Ep (also called a raising operator). The notation is
the one introduced in the previous section.

We first consider Fp on the admissible subset J . This is defined whenever M(J, p) > 0. Let m =
mF (J, p) be defined by

mF (J, p) :=

{
min {i ∈ I(J, p) | li = M(J, p)} if this set is nonempty
∞ otherwise .

Let k = kF (J, p) be the predecessor of m in I(J, p)∪ {∞}, which always exists. It turns out that m ∈ J
if m 6= ∞, but k 6∈ J (cf. Proposition 5.1 below). Finally, we set

(5.1) Fp(J) := (J \ {m}) ∪ {k} .

Proposition 5.1. [15] Given the above setup, the following hold.

(1) If m 6= ∞, then γ′m = −γm = −αp. We also have γk = γ′k = αp and lk = M(J, p) − 1.
(2) We have µ(Fp(J)) = µ(J) − αp .
(3) We have w(Fp(J)) = w(J) if m 6= ∞, and w(Fp(J)) = spw(J) otherwise.

Let us now define a partial inverse Ep to Fp. The operator Ep is defined on the admissible subset J
whenever M(J, p) > 〈µ(J), α∨

p 〉. Let k = kE(J, p) be defined by

kE(J, p) := max {i ∈ I(J, p) | li = M(J, p)} ;

the above set turns out to be always nonempty. Let m = mE(J, p) be the successor of k in I(J, p)∪{∞}.
It turns out that k ∈ J but m 6∈ J (cf. Proposition 5.2 below). Finally, we set

(5.2) Ep(J) := (J \ {k}) ∪ ({m} \ {∞}) .

Proposition 5.2. [15] Given the above setup, the following hold.

(1) We have γ′k = −γk = −αp. If m 6= ∞, then γm = γ′m = −αp, and lm = M(J, p) − 1.
(2) We have µ(Ep(J)) = µ(J) + αp .
(3) We have w(Ep(J)) = w(J) if m 6= ∞, and w(Ep(J)) = spw(J) otherwise.

In [15], we showed that the above root operators satisfy the axioms of the combinatorial model for Weyl
characters in [21]. As a consequence, we deduced the Littlewood-Richardson rule below for decomposing
tensor products of irreducible representations. The approach via Stembridge’s general model was already
applied to LS chains in [21, Section 8]. Compared to the proofs in [6, 17, 19], this approach has the
advantage of making a part of the proof independent of a particular model for Weyl characters, by using
a system of axioms for such models. For simplicity, we denote the character ch(Vλ) by χ(λ).

Theorem 5.3. [15] We have

χ(λ) · χ(ν) =
∑

χ(ν + µ(J)) ,

where the summation is over all J in A(Γ) satisfying 〈ν + µ(J), α∨
p 〉 ≥M(J, p) for all p = 1, . . . , r.

Similarly to Kashiwara’s operators (see Subsection 2.4), the root operators above define a directed
colored graph structure and a poset structure on the set A(Γ) of admissible subsets corresponding to a
fixed λ-chain Γ. The following result was proved in [13, 15].

Theorem 5.4. [13, 15] For any λ-chain Γ, the directed colored graph on the set A(Γ) defined by the
root operators is isomorphic to the crystal graph of the irreducible representation Vλ with highest weight
λ. Under this isomorphism, the weight of an admissible subset gives the weight space in which the
corresponding element of the canonical basis lies.

To be more precise, in [15] we proved the above theorem for the special λ-chain provided by Proposition
3.4. The general result then follows from Corollary 6.6 below (proved in [13]); this states that the directed
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colored graph structure on A(Γ) is independent of the λ-chain Γ. Based on Theorem 5.4, we will now
identify the elements of the canonical basis with the corresponding admissible subsets.

Define an action of a simple reflection sp on an admissible subset J by

(5.3) sp(J) := F
〈µ(J),α∨

p 〉
p (J) .

Up to the isomorphism in Theorem 5.4, this action coincides with the one on crystals defined by Kashi-
wara in [9] and [10, Theorem 11.1]; hence it leads to an action of the full Weyl group W .

Corollary 5.5. [13] Equation (5.3) defines a W -action on admissible subsets. We have µ(w(J)) =
w(µ(J)) for all w in W and all admissible subsets J .

Example 5.6. Figure 3 displays the galleries γ(J) corresponding to the admissible subsets J in Example
3.9, the associated paths π(J) mentioned in Remark 4.7, as well as the action of the root operators Fp on
J . For each path, we shade the fundamental alcove, mark the origin by a white dot “◦”, and mark the
endpoint of a black dot “•”. Since some linear steps in π(J) might coincide, we display slight deformations
of these paths, so that no information is lost in their graphical representations. As discussed above, the
weights of the irreducible representation Vω2

are obtained by changing the signs of the endpoints of the
paths π(J) (marked by black dots). The roots in the corresponding admissible foldings Γ(J) can also
be read off, as discussed above. At each step, a path π(J) either crosses a wall of the affine Coxeter
arrangement or bounces off a wall. The associated admissible subset J is the set of indices of bouncing
steps in the path.

6. Yang-Baxter Moves

In this section, we define the analog of Schützenberger’s sliding algorithm in our model, which we call
a Yang-Baxter move, for reasons explained below.

We start with some results on dihedral subgroups of Weyl groups. Let W be a dihedral Weyl group
of order 2q, that is, a Weyl group of type A1 ×A1, A2, B2, or G2 (with q = 2, 3, 4, 6, respectively). Let
Φ be the corresponding root system with simple roots α, β. The sequence

(6.1) β1 := α, β2 := sα(β), β3 := sαsβ(α), . . . , βq−1 := sβ(α), βq := β

is a reflection ordering on the positive roots of Φ (cf. [4]). As an illustration, we present the Bruhat
order on the Weyl group of type G2 in Figure 4. Here, as well as throughout this paper, we label a cover
v ⋖ vsγ in Bruhat order by the corresponding root γ.

Let us now consider an arbitrary Weyl group W with a dihedral reflection subgroup W and corre-
sponding root systems Φ ⊇ Φ. The roots of Φ are denoted as in (6.1), as we let ri := sβi

, as above.

Proposition 6.1. For each pair of elements u < w in the same (left) coset of W modulo W , there is a
unique saturated increasing chain in Bruhat order from u to w whose labels form a subsequence of (6.1).

It is known that any element w of W can be written uniquely as w = ⌊w⌋w, where ⌊w⌋ is the minimal
representative of the left coset wW , and w ∈W . Let

u⋖ urj1 ⋖ urj1rj2 ⋖ . . .⋖ urj1 . . . rjk
= w ,

be the chain in Bruhat order from u to w provided by Proposition 6.1, where k = ℓ(w) − ℓ(u). Clearly,
the set of indices {j1 < j2 < . . . < jk} only depends on u and w, so we will denote it by J(u,w).

We obtain another reflection ordering by reversing the sequence (6.1). Let us denote the corresponding
subset of [q] by J ′(u,w). We are interested in passing from the chain between u and w compatible with
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Figure 3. The crystal for the fundamental weight ω2 for type G2.

the ordering (6.1) to the chain compatible with the reverse ordering. If we fix a := ℓ(u) and b := ℓ(w),
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Figure 4. The Bruhat order on the Weyl group of type G2.

we can realize the passage from J(u,w) to J ′(u,w) via the involution Yq,a,b described below.

Case 0: ∅ ↔ ∅ if a = b .

Case 1.1: {1} ↔ {q} if 0 ≤ a = b− 1 ≤ q − 1 .

Case 1.2: {q − a} ↔ {a+ 1} if 0 < a = b− 1 < q − 1 .

Case 2.1: {1, a+ 2, a+ 3, . . . , b} ↔ {a+ 1, a+ 2, . . . , b− 1, q} if 0 ≤ a < a+ 2 ≤ b < q .

Case 2.2: {1, a+ 2, a+ 3, . . . , b− 1, q} ↔ {a+ 1, a+ 2, . . . , b} if 0 < a < a+ 2 ≤ b ≤ q .

Case 3: [q] ↔ [q] if a = 0 and b = q .

Let us now consider an index set

I := {1 < . . . < t < 1 < . . . < q < t+ 1 < . . . < n} ,

and let I := {1, . . . , n}. Let Γ = {βi}i∈I be a λ-chain, denote ri := sβi
as before, and let Γ′ = {β′

i}i∈I

be the sequence of roots defined by

β′
i =

{
βq+1−i if i ∈ I \ I
βi otherwise .

In other words, the sequence Γ′ is obtained from the λ-chain Γ by reversing a certain segment. Now
assume that {β1, . . . , βq} are the positive roots of a rank two root system Φ (without repetition). Let

W be the corresponding dihedral reflection subgroup of the Weyl group W .

Proposition 6.2. [14] (1) The sequence Γ′ is also a λ-chain, and the sequence β1, . . . , βq is a reflection
ordering.

(2) We can obtain any λ-chain for a fixed dominant weight λ from any other λ-chain by moves of the
form Γ → Γ′.

Let us now map the admissible subsets in A(Γ) to those in A(Γ′). Given J ∈ A(Γ), let

(6.2) J := J ∩ I , u := w(J ∩ {1, . . . , t}) , and w := w(J ∩ ({1, . . . , t} ∪ [q])) .
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Also let

(6.3) u = ⌊u⌋u , w = ⌊w⌋w , a := ℓ(u) , and b := ℓ(w) ,

as above. It is clear that we have a bijection Y : A(Γ) → A(Γ′) given by

(6.4) Y (J) := J ∪ Yq,a,b(J \ J) .

We call the moves J 7→ Y (J) Yang-Baxter moves (see Remark 6.4 (1)). Clearly, a Yang-Baxter move
preserves the Weyl group element w( · ) associated to an admissible subset, that is, w(Y (J)) = w(J). In
addition, Theorem 6.3 below holds.

Theorem 6.3. [13] The map Y preserves the weight of an admissible subset. In other words, µ(Y (J)) =
µ(J) for all admissible subsets J .

Remark 6.4. Consider the ring K := Z[Λ/h]⊗Z[W ], where Z[W ] is the group algebra of the Weyl group
W , and Z[Λ/h] is the group algebra of Λ/h := {λ/h | λ ∈ Λ} (i.e., of the weight lattice shrunk h times, h
being the Coxeter number defined in Subsection 2.1). In [14], we defined certain Z[Λ/h]-linear operators
Rα on K, for α ∈ Φ, and proved that they satisfy the Yang-Baxter equation in the sense of Cherednik
[2]. The main application was to show that, given a λ-chain Γ = (β1, . . . , βn), we have

(6.5) Rβn
. . . Rβ1

(1) =
∑

J∈A(Γ)

eµ(J)w(J) .

Due to the Yang-Baxter property, the right-hand side of the above formula does not change when we
replace the λ-chain Γ by Γ′, as defined above. The Yang-Baxter moves described above implement the
passage from Γ to Γ′ at the level of the individual terms in (6.5); this justifies the terminology.

We now present the main result related to Yang-Baxter moves.

Theorem 6.5. [13] The root operators commute with the Yang-Baxter moves, that is, a root operator
Fp is defined on an admissible subset J if and only if it is defined on Y (J) and we have

Y (Fp(J)) = Fp(Y (J)) .

Theorem 6.5 asserts that the map Y above is an isomorphism between A(Γ) and A(Γ′) as directed
colored graphs. Given two arbitrary λ-chains Γ and Γ′, we know from Proposition 6.2 (2) that they
can be related by a sequence of λ-chains Γ = Γ0, Γ1, . . . , Γm = Γ′ to which correspond Yang-Baxter
moves Y1, . . . , Ym. Hence the composition Ym . . . Y1 is an isomorphism between A(Γ) and A(Γ′) as
directed colored graphs. Since every directed graph A(Γ) has a unique source (cf. [15, Proposition 6.9]),
its automorphism group as a directed colored graph consists only of the identity. Thus, we have the
following corollary of Theorem 6.5.

Corollary 6.6. [13] Given two arbitrary λ-chains Γ and Γ′, the directed colored graph structures on
A(Γ) and A(Γ′) are isomorphic. This isomorphism is unique and, therefore, is given by the composition
of Yang-Baxter moves corresponding to any sequence of λ-chains relating Γ and Γ′.

We have given a transparent combinatorial explanation for the independence of the directed colored
graph defined by our root operators from the chosen λ-chain. Similarly, it was proved in [17] that the
directed colored graph structure on Littelmann paths generated by the corresponding root operators is
independent of the initial path. However, this proof, which is based on continuous arguments, is less
transparent.

7. Schützenberger’s Involution

In this section, we present an explicit description of the involution ηλ in Subsection 2.4 in the spirit
of Schützenberger’s evacuation. We will show that the role of jeu de taquin in the definition of the
evacuation map is played by the Yang-Baxter moves.
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Throughout the remainder of this paper, we fix an index set I := {1 < . . . < q < 1 < . . . < n} and

a λ-chain Γ = {βi}i∈I such that l∅i = 0 if and only if i ∈ I := {1 < . . . < q}. In other words, the
second occurence of a root can never be before the first occurence of another root. We will also write
Γ := (β1, . . . , βq, β1, . . . , βn). Let us recall the notation ri := sβi

for i ∈ I.

Given a Weyl group element w, we denote by ⌊w⌋ and ⌈w⌉ the minimal and the maximal representa-
tives of the coset wWλ, respectively (where Wλ is the stabilizer of the weight λ). Let wλ

◦ be the longest
element of Wλ. Based on the discussion in Subsection 3.1, it is easy to see that we have the saturated
increasing chain in Bruhat order

1 ⋖ r1 ⋖ r1r2 ⋖ . . .⋖ r1 . . . rq

from 1 to ⌊w◦⌋ = w◦w
λ
◦ . Hence the set Jmin := I is an admissible subset.

Proposition 7.1. [13] The admissible subset Jmin is the minimum of the poset A(Γ).

Definition 7.2. Let J be an admissible subset. Let J ∩I = {j1 < . . . < ja} and J \I = {j1 < . . . < js}.
The initial key κ0(J) and the final key κ1(J) of J are the Weyl group elements defined by

κ0(J) := rj1
. . . rja

, κ1(J) := w(J) = κ0(J)rj1 . . . rjs
.

Remark 7.3. The keys κ0(J) and κ1(J) are the analogs of the left and right keys of a semistandard
Young tableau, respectively. They are also analogs of the final and the initial direction of an LS chain
(cf., e.g., [16]).

We will now present an appropriate way to “reverse” a λ-chain and an associated admissible subset.
We associate with our fixed λ-chain Γ another sequence Γrev := {β′

i}i∈I by

β′
i :=

{
βi if i ∈ I
wλ

◦ (βn+1−i) otherwise .

In other words, we have

(7.1) Γrev = (β1, . . . , βq, w
λ
◦ (βn), wλ

◦ (βn−1), . . . , w
λ
◦ (β1)) .

Proposition 7.4. [13] Γrev is a λ-chain.

Let r′i := sβ′
i

for i ∈ I. Fix an admissible subset

(7.2) J = {j1 < . . . < ja < j1 < . . . < js}

in A(Γ), where {j1 < . . . < ja} ⊆ I and {j1 < . . . < js} ⊆ I \ I. Let u := κ0(J) and w := κ1(J). We
have the increasing saturated chain

(7.3) 1 ⋖ rj1
⋖ rj1

rj2
⋖ . . .⋖ rj1

. . . rja
= u⋖ urj1 ⋖ urj1rj2 ⋖ . . .⋖ urj1 . . . rjs

= w .

According to [4], there is a unique saturated increasing chain in Bruhat order of the form

1 ⋖ r′
k1

⋖ r′
k1
r′
k2

⋖ . . .⋖ r′
k1
. . . r′

kb
= ⌊w◦w⌋ = w◦ww

λ
◦ ,

where {k1 < k2 < . . . < kb} ⊆ I. Define

(7.4) J rev := {k1 < . . . < kb < k1 < . . . < ks} ,

where ki := n+ 1 − js+1−i for i = 1, . . . , s. Note that β′
ki

= wλ
◦ (βjs+1−i

) for i = 1, . . . , s.

Proposition 7.5. [13] J rev is an admissible subset in A(Γrev). We have

(7.5) κ0(J
rev) = ⌊w◦κ1(J)⌋ , κ1(J

rev) = ⌊w◦κ0(J)⌋ ,

as well as (J rev)rev = J .
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We now present a direct way to obtain the gallery γ(J rev) from γ(J). Let us write

γ(J) = (F0, A0, F1, . . . , Fq, A0, F1, A1, . . . , An, F∞) ;

the corresponding augmented index set is {0 < 1 < . . . < q = 0 < 1 < . . . < n < ∞}. Let µ := −µ(J),
that is, F∞ = {µ}. Now define another gallery in the following way:

γω := (F ′
0
, A′

0
, F ′

1
, . . . , F ′

q, A
′
0, F

′
1, A

′
1, . . . , A

′
n, F

′
∞) .

The notation is as follows:

• ω is the map on h∗
R

defined by x 7→ −w◦(x − µ);
• A′

i := ω(An−i) for i = 0, . . . , n, F ′
i := ω(Fn+1−i) for i = 1, . . . , n, and F ′

∞ = {w◦(µ)};
• (F ′

0
, A′

0
, F ′

1
, . . . , F ′

q) is the initial segment of the gallery γ(J rev).

In fact, it is not obvious that γω is a gallery, but the justification is not hard either.

Proposition 7.6. [13] The gallery γω coincides with γ(J rev). In particular, we have µ(J rev) = w◦(µ(J)).

We will now present the main result related to the map J 7→ J rev, which involves its commutation
with the root operators.

Theorem 7.7. [13] A root operator Fp is defined on the admissible subset J if and only if Ep∗ is defined
on J rev, and we have

(Fp(J))rev = Ep∗(J rev) .

We can summarize the construction in this section (based on Propositions 7.4 and 7.5) as follows:
given the λ-chain Γ (for a fixed dominant weight λ), we defined the λ-chain Γrev, and given J ∈ A(Γ), we
defined J rev ∈ A(Γrev). Hence we can map J rev to an admissible subset J∗ ∈ A(Γ) using Yang-Baxter
moves, as it is described in Section 6 and it is recalled below. To be more precise, let R : A(Γ) → A(Γrev)
denote the bijection J 7→ J rev. On the other hand, we know from Proposition 6.2 (2) that the λ-chains
Γrev and Γ can be related by a sequence of λ-chains Γrev = Γ0, Γ1, . . . , Γm = Γ to which correspond
Yang-Baxter moves Y1, . . . , Ym. By Corollary 6.6, the composition Y := Ym . . . Y1 does not depend
on the sequence of intermediate λ-chains, and it defines a bijection from A(Γrev) to A(Γ). We let
J∗ := Y R(J) and conclude that it is a bijection on A(Γ). The main result of this section now follows
directly from Theorems 6.5 and 7.7.

Theorem 7.8. [13] The bijection J 7→ J∗ constructed above coincides with the fundamental involution
ηλ on the canonical basis. In other words, a root operator Fp is defined on the admissible subset J if and
only if Ep∗ is defined on J∗, and we have

(7.6) (Jmin)∗ = Jmax , (Jmax)
∗ = Jmin , and (Fp(J))∗ = Ep∗(J∗) , for p = 1, . . . , r .

In particular, the map J 7→ J∗ expresses combinatorially the self-duality of the poset A(Γ).

Remark 7.9. The above construction is analogous to the definition of Schützenberger’s evacuation map
(see, for instance, [5]). Below, we recall from Subsection 2.4 the three-step procedure defining this map
and we discuss the analogy with our construction in the case of each step.

(1) REVERSE: We rotate a given semistandard Young tableau by 180◦. This corresponds to re-
versing its word, in the same way as we reversed the direction of our gallery, cf. Proposition
7.6.

(2) COMPLEMENT: We complement each entry via the map i 7→ w◦(i), where w◦ is the longest
element in the corresponding symmetric group. This corresponds to using w◦ for the arbitrary
Weyl group in the definition (7.4) of J rev.

(3) SLIDE: We apply jeu de taquin on the obtained skew tableau. This corresponds to the Yang-
Baxter moves Y1, . . . , Ym discussed above.
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Example 7.10. Consider the Lie algebra sl3 of type A2. We use the setup in Example 3.8.

Consider the dominant weight λ = 4ε1 + 2ε2 and the following λ-chain:

1 2 3 1 2 3 4 5
Γ = (α12, α13, α23, α13, α12, α13, α23, α13) .

Here we indicated the index corresponding to each root, using the notation at the beginning of this
section; more precisely, we have I = {1 < 2 < 3 < 1 < 2 < 3 < 4 < 5} and I = {1 < 2 < 3}. By the
defining relation (7.1), we have

1 2 3 1 2 3 4 5
Γrev = (α12, α13, α23, α13, α23, α13, α12, α13) .

Consider the admissible subset J = {2, 4}. This is indicated above by the underlined roots in Γ. In
order to define J rev, cf. (7.4), we need to compute

κ0(J
rev) = w◦w(J) = (sα12

sα23
sα12

)(sα12
sα23

) = sα12
.

Hence we have J rev = {1, 2, 4}. This is indicated above by the underlined positions in Γrev.

In order to transform the λ-chain Γrev into Γ, we need to perform a single Yang-Baxter move; this
consists of reversing the order of the bracketed roots below:

1 2 3 1 2 3 4 5
Γrev = ( α12, α13, α23, α13, (α23, α13, α12), α13) −→

1 2 3 1 2 3 4 5
Γ = ( α12, α13, α23, α13, (α12, α13, α23), α13) .

The underlined roots indicate the way in which the Yang-Baxter move J rev 7→ Y (J rev) = J∗ works. All
we need to know is that there are two saturated chains in Bruhat order between the permutations u and
w, cf. the notation in (6.2):

u = sα12
⋖ sα12

sα23
⋖ sα12

sα23
sα12

= w , u = sα12
⋖ sα12

sα13
⋖ sα12

sα13
sα23

= w .

The first chain is retrieved as a subchain of Γrev and corresponds to J rev, while the second one is retrieved
as a subchain of Γ and corresponds to J∗. Hence we have J∗ = {1, 3, 4}.

We can give an intrinsic explanation for the fact that the map J 7→ J∗ is an involution on A(Γ); this
explanation is only based on the results in Sections 6 and 7, so it does not rely on Proposition 2.3 (2).
Let us first recall the bijections R : A(Γ) → A(Γrev) and Y : A(Γrev) → A(Γ) defined above. We claim
that Y R = R−1Y −1, which would prove that the composition Y R is an involution. In the same way as
we proved Theorem 7.8 (that is, as a direct consequence of Theorems 6.5 and 7.7), we can verify that
the composition R−1Y −1 satisfies the conditions in (7.6). Since these conditions uniquely determine the
corresponding map from A(Γ) to itself, our claim follows.

Remark 7.11. According to the above discussion, we have a second way of realizing the fundamental
involution ηλ on the canonical basis, namely as R−1Y −1. In some sense, this is the analog of the
construction of the evacuation map based on the promotion operation, in which the sliding operations
precede the complementation (see, for instance, [5, p. 184]).

We have the following corollary of Propositions 7.5 and 7.6.

Corollary 7.12. [13] For any J ∈ A(Γ), we have

(7.7) µ(J∗) = w◦(µ(J)) , κ0(J
∗) = ⌊w◦κ1(J)⌋ , κ1(J

∗) = ⌊w◦κ0(J)⌋ .

Remark 7.13. It would be interesting to check whether the triple (µ(J), κ0(J), κ1(J)) uniquely deter-
mines J . This would be an analog of Dyer’s result [4] mentioned several times above. If this is true,
then the involution J 7→ J∗ is also determined by the conditions (7.7), as opposed to (7.6). We would
thus have a short proof of Theorem 7.8 that does not depend on Theorems 6.5 and 7.7, but only on
Corollary 7.12.
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