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Abstract. The second author and Postnikov have recently constructed a simple combi-
natorial model for the characters of the irreducible representations of a complex semisim-
ple Lie group, that is referred to as the alcove path model. In this paper we relate the
alcove path model to the the semistandard Young tableaux in type A and the Kashiwara-
Nakashima tableaux in type C. More explicitly, we construct bijections between the
objects in the alcove path model (certain saturated chains in the Bruhat order on the
corresponding Weyl group) and the corresponding tableaux. We show that this bijection
preserves the corresponding crystal structures, and we give applications to Demazure
characters and basis constructions.

1. Introduction

The second author and Postnikov have recently constructed a simple combinatorial model
for the characters of the irreducible representations of a complex semisimple Lie group G
and, more generally, for the Demazure characters [9]. For reasons explained below, this
model is called the alcove path model. This was extended to complex symmetrizable
Kac-Moody algebras in [10] (that is, to infinite root systems), and its combinatorics was
investigated in more detail in [7].

There are other models in this area, such as: semistandard Young tableaux [2, 14, 16]
and Kashiwara-Nakashima tableaux [15], Littelmann paths [11, 12, 13, 4], LS-galleries
[3], the model in [1] based on Lusztig’s parametrization of canonical bases, some models
based on geometric constructions etc. The alcove path model has advantages related to
its generality, simplicity, combinatorial nature, and other applications, such as Demazure
modules (which form a filtration of the irreducible modules) and Schubert calculus. In
particular, it leads to a far-reaching generalization of the type A combinatorics of Young
tableaux. The second author has developed a Maple software package for manipulations
based on the alcove path model [8].

The alcove path model is based on enumerating certain saturated chains in the Bruhat
order on the corresponding Weyl group W . This enumeration is determined by an alcove
path, which is a sequence of adjacent alcoves for the affine Weyl group Waff of the Lang-
lands dual group G∨. Alcove paths correspond to decompositions of elements in the affine
Weyl group. Based on this model, one can extend to arbitrary root systems a considerable
part of the very rich combinatorics of semistandard Young tableaux, which are classical
combinatorial objects in the representation theory of SLn. More precisely, we have:
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(1) cancellation free character formulas, including Demazure character formulas;
(2) a Littlewood-Richardson rule for decomposing tensor products of irreducible rep-

resentations and a branching rule;
(3) a combinatorial description of the crystal graphs corresponding to the irreducible

representations;
(4) a combinatorial realization of certain fundamental involution on the canonical ba-

sis, which exhibits the crystals as self-dual posets, corresponds to the action of
the longest Weyl group element on an irreducible representation, and generalizes
Schützenberger’s involution on tableaux;

(5) a generalization to arbitrary root systems of Schützenberger’s sliding algorithm
(also known as jeu de taquin), which has many applications to the representation
theory of the Lie algebra of type A.

The goal of this paper is to relate the alcove path model to the semistandard Young
tableaux in type A and the Kashiwara-Nakashima tableaux in type C. In type A, we
construct an explicit bijection between the objects in the two models that is compatible
with the corresponding crystal structures. Applications will include an efficient construc-
tion of a basis for an irreducible representation. We also construct the bijection in type C
to Kashiwara-Nakashima tableaux, and describe an algorithm for constructing its inverse.
We are currently working on extending the crystal property and the basis construction
from type A to type C. Future applications will also include Demazure characters.

2. Background and Notation

2.1. Tableaux. In this section we recall the background on semistandard Young tableaux,
and we refer the reader to [2, 14, 16] for more details. We also recall the tableaux of
Kashiwara and Nakashima in type C [15].

A Young diagram is a sequence of left justified boxes in rows with the lengths of rows
weakly decreasing. A Young tableau is then a filling of a Young diagram where numbers
are placed in each box such that the entries are weakly increasing across rows and strictly
increasing down columns.

The shape λ of a tableau T is given by λ = (λ1, ..., λk) where λi is the length of the
ith row and k is the number of rows. The shape of the conjugate tableau is given by
λ′ = (λ′1, ..., λ

′
m) where λ′i is the length of the ith column and m is the number of columns,

[2].

In type Cn Kashiwara-Nakashima or KN tableaux will be one of our primary objects of
interest. We begin by defining columns:

A column is a Young diagram C of column shape filled with letters from [n] strictly
increasing from top to bottom.

Here the set [n] has the following order:

(2.1) 1 < 2 < · · · < n < n < · · · < 2 < 1
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Note that this is not the standard order.

The ith entry of a column C shall be denoted C(i).

For a column C let I = {z1 > ... > zr} be the set of unbarred letters z such that the pair
(z, z) occurs in C. The column C is said to split when there exists a set of r unbarred
letters J = {t1 > ... > tr} ⊂ [n] such that:

(1) t1 is the greatest letter of n satisfying: t1 < z1, t1 /∈ C and t1 /∈ C
(2) for i = 2, ..., r, ti is the greatest letter of n satisfying: ti < min(ti−1, zi), ti /∈

C and ti /∈ C.

In the case where the column C may be split we write:

rC for the column obtained by changing in C, zi into ti for each letter zi ∈ I and by
reordering if necessary,

lC for the column obtained by changing in C, zi into ti for each letter zi ∈ I and by
reordering if necessary.

A column is KN-admissible if and only if it can be split.

Example 2.2.

C =

2
3
5
5
2

Then I = {5, 2} and J = {4, 1} and

lC =

1
3
4
5
2

, rC =

2
3
5
4
1

.

We place a partial order on columns of length k by giving them the order given by pairwise
comparison of entries. For a pair of columns C and D of length k, C ≤ D provided that
C(i) ≤ D(i) for all i such that 1 ≤ i ≤ k.

Let σ be a permutation of length 2n in type Cn and let C be a column of a tableau of
this type of length l for some 1 ≤ l ≤ n such that σ[l] = C. Here we define σ[k] to be the
restriction of σ to it’s first k entries. Similarly define σ[i, j] to be the restriction of σ to
positions i through j.

Start with a partition λ = (λ1 ≥ λ2 ≥ ... ≥ λn > 0) and the conjugate partition λ′ =
(λ′1 ≥ λ′2 ≥ ... ≥ λ′m > 0). Then a KN tableau T of shape λ will be a tableau with n rows
where for 1 ≤ i ≤ n the length of row i is λi, or equivalently T is a tableau with columns
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such that for 1 ≤ j ≤ m the column j has length λ′j. In order for T to be a KN tableau
the column j which we shall denote Cj must be a KN-admissible column, i.e. the column
Cj must split.

It will be convenient for us to view T as having 2m columns rather than m columns. The
way this is done is by replacing each column Cj with the pair of columns lCj and rCj. We
shall refer to such a tableau as the doubled tableau T which we shall also refer to as T as
there is a clear correspondence between tableaux and doubled tableaux.

2.2. The Alcove Path Model. In this section, we recall the alcove path model in the
representation theory of semisimple Lie algebras, closely following [9, 10].

Let G be a connected, simply connected, simple complex Lie group. Fix a Borel subgroup
B and a maximal torus T such thatG ⊃ B ⊃ T . As usual, we denote by B− be the opposite
Borel subgroup, while N and N− are the unipotent radicals of B and B−, respectively.
Let g, h, n, and n− be the complex Lie algebras of G, T , N , and N−, respectively. Let
r be the rank of the Cartan subalgebra h. Let Φ ⊂ h∗ be the corresponding irreducible
root system, and let h∗R ⊂ h∗ be the real span of the roots. Let Φ+ ⊂ Φ be the set of
positive roots corresponding to our choice of B. Then Φ is the disjoint union of Φ+ and
Φ− = −Φ+. We write α > 0 (respectively, α < 0) for α ∈ Φ+ (respectively, α ∈ Φ−), and
we define sgn(α) to be 1 (respectively, −1). We also use the notation |α| := sgn(α)α. Let
α1, . . . , αr ∈ Φ+ be the corresponding simple roots, which form a basis of h∗R. Let 〈 · , · 〉
denote the nondegenerate scalar product on h∗R induced by the Killing form. Given a root α,
the corresponding coroot is α∨ := 2α/〈α, α〉. The collection of coroots Φ∨ := {α∨ | α ∈ Φ}
forms the dual root system.

The Weyl group W ⊂ Aut(h∗R) of the Lie group G is generated by the reflections sα : h∗R →
h∗R, for α ∈ Φ, given by

sα : λ 7→ λ− 〈λ, α∨〉α.
In fact, the Weyl group W is generated by the simple reflections s1, . . . , sr corresponding
to the simple roots si := sαi , subject to the Coxeter relations:

(si)
2 = 1 and (sisj)

mij = 1 for any i, j ∈ {1, . . . , r},

where mij is half of the order of the dihedral subgroup generated by si and sj. An
expression of a Weyl group element w as a product of generators w = si1 · · · sil which has
minimal length is called a reduced decomposition for w; its length `(w) = l is called the
length of w. The Weyl group contains a unique longest element w◦ with maximal length
`(w◦) = #Φ+. For u,w ∈ W , we say that u covers w, and write u m w, if w = usβ, for
some β ∈ Φ+, and `(u) = `(w)+1. The transitive closure “>” of the relation “m” is called
the Bruhat order on W .

The weight lattice Λ is given by

(2.3) Λ := {λ ∈ h∗R | 〈λ, α∨〉 ∈ Z for any α ∈ Φ}.

The weight lattice Λ is generated by the fundamental weights ω1, . . . , ωr, which are defined
as the elements of the dual basis to the basis of simple coroots, i.e., 〈ωi, α∨j 〉 = δij. The
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set Λ+ of dominant weights is given by

Λ+ := {λ ∈ Λ | 〈λ, α∨〉 ≥ 0 for any α ∈ Φ+}.

Let ρ := ω1+· · ·+ωr = 1
2

∑
β∈Φ+ β. The height of a coroot α∨ ∈ Φ∨ is 〈ρ, α∨〉 = c1+· · ·+cr

if α∨ = c1α
∨
1 + · · ·+ crα

∨
r . Since we assumed that Φ is irreducible, there is a unique highest

coroot θ∨ ∈ Φ∨ that has maximal height. (In other words, θ∨ is the highest root of the
dual root system Φ∨. It should not be confused with the coroot of the highest root of Φ.)
We will also use the Coxeter number, that can be defined as h := 〈ρ, θ∨〉+ 1.

Let Waff be the affine Weyl group for the Langlands dual group G∨. The affine Weyl group
Waff is generated by the affine reflections sα,k : h∗R → h∗R, for α ∈ Φ and k ∈ Z, that reflect
the space h∗R with respect to the affine hyperplanes

(2.4) Hα,k := {λ ∈ h∗R | 〈λ, α∨〉 = k}.
Explicitly, the affine reflection sα,k is given by

sα,k : λ 7→ sα(λ) + k α = λ− (〈λ, α∨〉 − k)α.

The hyperplanes Hα,k divide the real vector space h∗R into open regions, called alcoves.
Each alcove A is given by inequalities of the form

A := {λ ∈ h∗R | mα < 〈λ, α∨〉 < mα + 1 for all α ∈ Φ+},
where mα = mα(A), α ∈ Φ+, are some integers.

Definition 2.5. A λ-chain of roots is a sequence of positive roots (β1, . . . , βn) which is
determined as indicated below by a reduced decomposition v−λ = si1 · · · sin of v−λ as a
product of generators of Waff :

β1 = αi1 , β2 = s̄i1(αi2), β3 = s̄i1 s̄i2(αi3), . . . , βn = s̄i1 · · · s̄in−1(αin) .

When the context allows, we will abbreviate “λ-chain of roots” to “λ-chain”. The λ-chain
of reflections associated with the above λ-chain of roots is the sequence (r̂1, . . . , r̂n) of affine
reflections in Waff given by

r̂1 = si1 , r̂2 = si1si2si1 , r̂3 = si1si2si3si2si1 , . . . , r̂n = si1 · · · sin · · · si1 .

We will present two equivalent definitions of a λ-chain of roots.

Definition 2.6. An alcove path is a sequence of alcoves (A0, A1, . . . , An) such that Ai−1

and Ai are adjacent, for i = 1, . . . , n. We say that an alcove path is reduced if it has
minimal length among all alcove paths from A0 to An.

Given a finite sequence of roots Γ = (β1, . . . , βn), we define the sequence of integers
(l∅1, . . . , l

∅
n) by l∅i := #{j < i | βj = βi}, for i = 1, . . . , n. We also need the following two

conditions on Γ.

(R1) The number of occurrences of any positive root α in Γ is 〈λ, α∨〉.
(R2) For each triple of positive roots (α, β, γ) with γ∨ = α∨ + β∨, the subsequence of

Γ consisting of α, β, γ is a concatenation of pairs (α, γ) and (β, γ) (in any order).
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Definition 2.7. An admissible subset is a subset of [n] := {1, . . . , n} (possibly empty),
that is, J = {j1 < j2 < . . . < js}, such that we have the following saturated chain in the
Bruhat order on W :

1 l rj1 l rj1rj2 l . . .l rj1rj2 . . . rjs .

We denote by A = A(Γ) the collection of all admissible subsets corresponding to our fixed
λ-chain Γ. Given an admissible subset J , we use the notation

µ(J) := −r̂j1 . . . r̂js(−λ) , w(J) := rj1 . . . rjs .

We call µ(J) the weight of the admissible subset J .

We have the following character formula in terms of admissible subsets:

ch(Vλ) =
∑
J∈A

eµ(J).

Let U(g) be the enveloping algebra of the Lie algebra g, which is generated by Ei, Fi, Hi,
for i = 1, . . . , r, subject to the Serre relations. Let B be the canonical basis of U(n−), and
let Bλ := B ∩ Vλ be the canonical basis of the irreducible representation Vλ with highest
weight λ. Let vλ and vlowλ be the highest and lowest weight vectors in Bλ, respectively.

Let Ẽi, F̃i, for i = 1, . . . , r, be Kashiwara’s operators; these are also known as raising and
lowering operators, respectively. The crystal graph of Vλ is the directed colored graph on

Bλ defined by arrows x→ y colored i for each F̃i(x) = y.

We now define partial operators known as root operators on the collection A(Γ) of admis-
sible subsets corresponding to our fixed λ-chain. They are associated with a fixed simple
root αp, and are traditionally denoted by Fp (also called a lowering operator) and Ep (also
called a raising operator).

Let J be a fixed admissible subset, and let

γ(J) = (F0, A0, F1, . . . , Fn, An, F∞) , Γ(J) = ((γ1, γ
′
1), . . . , (γn, γ

′
n), γ∞) .

Let us also fix a simple root αp. We associate with J the sequence of integers L(J) =
(l1, . . . , ln) defined by Fi ⊂ H−|γi|,li for i = 1, . . . , n. We also define lp∞ := 〈µ(J), α∨p 〉,
which means that F∞ ⊂ H−αp,lp∞ . Finally, we let

(2.8) I(J, p) := {i | δi = −αp} , L(J, p) := ({li}i∈I(J,p), lp∞) , M(J, p) := max L(J, p) .

We first consider Fp on the admissible subset J . This is defined whenever M(J, p) > 0.
Let m = mF (J, p) be defined by

mF (J, p) :=

{
min {i ∈ I(J, p) | li = M(J, p)} if this set is nonempty
∞ otherwise .

Let k = kF (J, p) be the predecessor of m in I(J, p) ∪ {∞}, which always exists. It turns
out that m ∈ J if m 6=∞, but k 6∈ J . Finally, we set

(2.9) Fp(J) := (J \ {m}) ∪ {k} .
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Let us now define a partial inverse Ep to Fp. The operator Ep is defined on the admissible
subset J whenever M(J, p) > 〈µ(J), α∨p 〉. Let k = kE(J, p) be defined by

kE(J, p) := max {i ∈ I(J, p) | li = M(J, p)} ;

the above set turns out to be always nonempty. Let m = mE(J, p) be the successor of k
in I(J, p) ∪ {∞}. It turns out that k ∈ J but m 6∈ J . Finally, we set

(2.10) Ep(J) := (J \ {k}) ∪ ({m} \ {∞}) .

2.3. Root Systems and Weyl Groups in types An and Cn. In type An−1 the Weyl
group is Sn. Consider the n − 1 dimensional subspace of Rn orthogonal to the vector
e1 + ... + en where ei for i ∈ [n] are the basis vectors of Rn. Then the root system
Φ = {ei− ej, i 6= j, i and j ∈ [n]}. We shall also need the following notions for the Bruhat
order on Sn:

Let tab be the transposition sending (a, b) to (b, a). The covering relations in the Bruhat
order are v l w = v · tab, where `(w) = `(v) + 1. We denote this by

v
tab−−→ w .

A permutation v admits a cover vlv ·tab with a < b and v(a) < v(b) if and only if whenever
a < c < b, then either v(c) < v(a) or else v(b) < v(c). Call this the cover condition. We
will use the following order on pairs of positive integers to compare covers in a k-Bruhat
order: (a, b) ≺ (c, d) if and only if (a > c) or (a = c and b < d)

The fundamental weights in type An−1 are ωi = e1 + . . .+ ei, for i = 1, . . . , n− 1.

We order the letters in type Cn as follows: [n] := 1 < 2 < ... < n− 1 < n < n < n− 1 <
... < 2 < 1 (one should note that this is not the standard order). The group Cn is the

group of signed permutations. An element of Cn is such that σ(ı) = σ(i) for all i ∈ [n],

here we use the convention that i = i. It is therefore sufficient to write only the first n
entries of any permutation. We write an element σ ∈ Cn as σ = (σ(1)...σ(n)).

Consider the space Rn with basis vectors ei for i ∈ [n]. Then the root system for type Cn
is given by Φ = {±ei ± ej, i and j ∈ [n]}.
For i < j we shall make the following identifications:

• (i, j) with ei − ej and sei−ej = tijtı,
• (i, ) with ei + ej and sei+ej = titıj,
• (i, ı) with 2ei and s2ei = tiı.

Let σ ∈ Cn be a permutation.

Theorem 2.11. π covers σ in the strong Bruhat order on Cn if and only if there exist
i, j ∈ [1, 1] such that:

(1) σ(i) < σ(j)
(2) if j > n then either σ(j) ≤ n or σ(i) ≥ n
(3) π = σ(i, j) with i ≤ n, i < j ≤ 1
(4) There is no i < l < j such that σ(i) < σ(l) < σ(j).
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Let `(σ) be used to denote the length of the element σ ∈ Cn. This is then given by the
formula

(2.12) `(σ) = #{i < j ≤ n : σ(i) > σ(j)}+
∑

i≤n:v(i)≥n

(n+ 1− v(ı))

The Hasse diagram of the Bruhat order for Cn will be the graph whose vertices are the

elements of Cn and whose labels are given by σ
(i,j)→ ρ provided that ρ = σ(i, j) and

`(ρ) = `(σ) + 1, i.e. ρ covers σ.

3. Type A

3.1. Specializing the Alcove Path Model to An. We define a k-increasing chain(of
permutations) to be a saturated increasing chain in the k-Bruhat order which is increasing
according to the above ordering. We shall also denote such a chain by

π0
(a1b1)−−−−→ π1

(a2b2)−−−−→ ...
(apbp)−−−−→ πp

For λ′ = (λ′1, ..., λ
′
m) we define a λ-increasing chain(of permutations) γ to be a concatena-

tion of k-increasing chains γ = γ1...γm where each γi is a λ′i-increasing chain.

Similarly define Γ(k) as having the following form:

( (k, k + 1), (k, k + 2), . . . , (k, n),
(k − 1, k + 1), (k − 1, k + 2), . . . , (k − 1, n),
...

...
...

(1, k + 1), (1, k + 2), . . . , (1, n) ) .

A λ-increasing chain may then be represented by using the following construction:

Γ(λ) = (a1, b1)...(aN , bN) where ai < bi. Here N =
∑
i

λ′i(n− λ′i). The λ-increasing chain

γ is then viewed as a subset J := {j1 < ... < js} of [N ]. So γ = (aj1 , bj1)...(ajs , bjs).

We may then associate to a tableaux T of shape λ, Γ(λ) = Γ(λ′1)...Γ(λ′m). It is then im-
mediate that a λ-increasing chain, γ, is an increasing sequence of transpositions extracted
Γ(λ). We may then think of the transpositions contained in the λ-increasing chain as being
marked or underlined positions in Γ(λ), so γ = (a1, b1)...(aj1 , bj1)...(ajs , bjs)...(aN , bN).

Before continuing we shall also need some background with regard to the root systems
of Lie algebras of type An−1. The root system is given by Φ = {ei − ej, i 6= j} where
ei are the standard basis vectors in Rn. Here we note that Sn acts on Φ via per-
mutation of indices. We then let the hyperplane Hα be the hyperplane through the
origin orthogonal to the root α ∈ Φ(α not necessarily a simple root), that is the set
Hα = {v ∈ Rn | 〈v, α〉 = 0} where 〈v, w〉 is the standard inner product on Rn. Similarly
we define Hα,k = {v ∈ Rn | 〈v, α〉 = k}.
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Let (a, b) be the transposition given by sending the root ea − eb to its negative. Let (a, b; l)
be the corresponding affine transposition. Here we shall also think of (a, b; l) as a map
(a, b; l) : Zn → Zn given by (a, b; l)(λ) = (λ1, ..., λb + l, ..., λa − l, ..., λn) for λ ∈ Zn. We see
that we may write the chain γ as a product of transpositions γ = (aj1 , bj1)...(ajs , bjs). We at-
tach a notion of level to the chain, we define the level li of (ai, bi) to be
li =

∣∣{k < j | λ′k < bi}
∣∣. Note that li is merely the number of columns of length less than

bi, that is

li = |{j < i | (aj, bj) = (ai, bi)}| .
Letting αi be the root associated to (ai, bi), allows for viewing γ as a chain of roots αj1 ...αjs .

We define βi to be the root given by βi = (aj1 , bj1)...(ajk , bjk)(αi) where k is the largest
such that jk < i. The root βi will be the root sent to it’s negative by (ci, di). Let
si = (ci, di;mi). We define sji = (aj1 , bj1 ; lj1)...(aji , bji ; lji)...(aj1 , bj1 ; lj1). We wish to define
an analog to li for tableaux which shall be called mi as above. The object to be considered
is the hyperplane (aj1 , bj1 ; lj1)...(ajk , bjk ; ljk)(Hαi,li) = sjk ...sj1(Hαi,li) = Hβi,mi . We shall
wish to observe the effect of each sji on the previous hyperplane. In a later lemma we shall
find that mi may be found easily by a straightforward counting at the tableaux level.

Let us also define Ti to be the tableaux corresponding (via the bijection above) to the
first i terms of the chain associated to T having been applied, so T0 would be the tableau
with the entries in each row being the number of that row and (ai, bi)(Ti) is the result of
replacing the entries ai with the entry bi in tableau Ti−1 from column q onward, where
(ai, bi) is in the column or block q of the λ-increasing chain γ associated to tableau T .

The weight of a chain γ, µ(γ), is defined to be µ(γ) = (a1, b1)...(as, bs)(λ).

3.2. The bijection between chains and tableaux. Given a partition λ, we define a
map from λ-increasing chains γ in Sn to semi-standard Young tableaux of shape λ and
entries 1, . . . , n as follows. If γ = γ1 ∗ . . . ∗ γm, then the i-th column of the associated
tableau is given by the first λ′i entries of the permutation (written in one-line notation)
with which the subchain γi ends.

Theorem 3.1. The above map is a bijection between semi-standard Young tableaux of
shape λ with entries in [n] and λ-increasing chains in Sn.

We shall first need the following lemma.

Lemma 3.2. For i ≤ k < j ≤ n, π(j) = b and π(l) > b for i < l ≤ k, there exists a unique
sequence k < j1 < ... < jp = j such that

(3.3) `(π(i, j1)...(i, jr)) = `(π(i, j1)...(i, jr−1)) + 1 for 0 < r ≤ p

Proof. We shall prove this by giving an algorithm that produces the unique sequence of
transpositions of the given form. We begin by showing existence.Define j0 = i. Let j1 > i
be the first position such that π(j0) < π(j1) ≤ b. We see that `(πti,j1) = `(π) + 1 since
by construction either π(l) < π(j0) or π(l) > b for i < l < j1. We then repeat this process
with π(i, j1) finding j2 using j1 instead of j0 and then repeat as necessary, and since j − k
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is finite this process will terminate. It is not hard to see that the sequence of jl’s will be
increasing. To show uniqueness, we need to show that if k < l1 < ... < lq = j is another
such sequence then j1 = l1(here we shall let l0 = i as well). Once this has been shown
the same argument may be iterated so that we obtain p = q and jm = lm for 1 ≤ m ≤ p.
Thus we examine the situation for j1 and assume that l1 6= j1. We first note that l1 ≥ j1,
otherwise length would decrease. There exists a position m such that π(lm−1) < π(j1) and
π(lm) > π(j1). We then observe that `(π(i, j1)...(i, jm)) > `(π(i, j1)...(i, jm−1)) + 1. But
this violates the condition that the length increase by exactly one.

The algorithm used here is as follows:

Algorithm 3.4. set ρ = π;
set i = k;
while i ≥ 1 do

set j = k + 1;
while j < n do
if (ρ(j) > ρ(i) and ρ(j) ≤ C ′(i))
return ρ = ρ(i, j);

end if
set j = j + 1;

end while
set i = i− 1;

end while

�

Proof. (of Theorem3.1) We now find a unique chain associated to a tableaux T by giving
an explicit algorithm, resulting in an explicit inverse to the above defined map from chains
to tableaux. Here we assume T has entries in the set [n]. We shall begin by observing the

shape of the conjugate tableaux T̃ , that is by noting the length of each column given by
(λ′1, ..., λ

′
m). Begin with the first column of length λ1 and with the sequence s = (1, 2, ..., n)

and using the above lemma find the unique chain that replaces the λst1 entry of s with the
associated value of that box in the tableaux T . We then repeat this for the λ1 − 1 entry.
It suffices to check that this does not effect the entries further down the column, which
is clear since transpositions of the type would violate the above lemma, in particular the
length condition would not be preserved. Then repeat this throughout the column until
the appropriate entry is in each box of the column, giving a chain γ1. Then repeat this
procedure on the remaining columns, resulting in a chain γ = γ1...γm(we note that it is
possible for γi to be the empty chain). Due to the uniqueness in each step we have that
this in fact a well define inverse, thus establishing the claim that the map from chains to
tableaux is in fact a bijection. �

Example 3.5. Consider λ = (4, 3, 1)
Γ(λ) = (34)(24)(14)|(23)(24)(13)(14)|(23)(24)(13)(14)|(12)(13)(14).

Now consider the λ-increasing chain γ = (34)|(24)|(14)|(12)(13) which may be viewed as
(34)(24)(14)|(23)(24)(13)(14)|(23)(24)(13)(14)|(12)(13)(14)
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1 1 1 1
2 2 2
3 (34)→

1 1 1 1
2 2 2
4 (24)→

1 1 1 1
2 3 3
4 (14)→

1 1 2 2
2 3 3
4 (12)→

1 1 2 3
2 3 3
4 (13)→

1 1 2 4
2 3 3
4

1234
(34)→ 1243

(24)→ 1342
(14)→ 2341

(12)→ 3241
(13)→ 4231

The tableau to which γ maps would then be the rightmost tableau above. It can also be
easily seen in this example how the map from tableaux to chains is constructed.

3.3. The Crystal Graph Structure and root operators. We shall require the follow-
ing well known formula for reflections of hyperplanes which we shall reference in the proof
of the lemma below:

(3.6) tα,k(Hβ,l) = Htαβ,l−k〈α,β〉; 〈(a, b), (c, d)〉 = 〈ea − eb, ec − ed〉, 〈ei, ej〉 = δij.

Recall the λ-chain Γ and let us write Γ = (β1, . . . , βm). As such, we recall the hyperplanes
Hβk,lk and the corresponding affine reflections r̂k = sβk,lk . If βk = (a, b) falls in the segment
Γp of Γ (upon the factorization Γ = Γ1 . . .Γλ1 of the latter), then it is not hard to see that

lk = |{i : 1 ≤ i < p, λ′i ≥ a}| .
An affine reflection s(a,b),l acts on our vector space V by

(3.7) s(a,b),l(µ1, . . . , µa, . . . , µb, . . . , µn) := (µ1, . . . , µb + l, . . . , µa − l, . . . , µn) .

Now fix a permutation w in Sn and a subset J = {j1 < . . . < js} of [m] (not necessarily
w-admissible). Let Π be the alcove path corresponding to Γ, and define the alcove walk Ω
by

Ω := φj1 . . . φjs(w(Π)) .

Given k in [m], let i = i(k) be the largest index in [s] for which ji < k. Let γk :=
wrj1 . . . rji(βk), and let Hγk,mk be the hyperplane containing the face Fk of Ω. In other
words

Hγk,mk = wr̂j1 . . . r̂ji(Hβk,lk) .

Our first goal is to describe mk purely in terms of the filling associated to (w, J).

Let t̂k be the affine reflection in the hyperplane Hγk,mk . Note that

t̂k = wr̂j1 . . . r̂ji r̂kr̂ji . . . r̂j1w
−1 .

Thus, we can see that

wr̂j1 . . . r̂ji = t̂ji . . . t̂j1w .

Let T = ((a1, b1), . . . , (as, bs)) be the subsequence of Γ indexed by the positions in J .
Let T i be the initial segment of T with length i, let wi := wT i, and σi := f(w, T i). In
particular, σ0 is the filling with all entries in row i equal to w(i), and σ := σs = f(w, T ).
The columns of a filling of λ are numbered, as usual, from left to right by λ1 to 1. Note
that, if βji+1

= (ai+1, bi+1) falls in the segment Γp of Γ, then σi+1 is obtained from σi by
replacing the entry wi(ai+1) with wi(bi+1) in the columns p, . . . , λ1 (and the row ai+1) of
σi.
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Given a fixed k, let βk = (a, b), c := wi(a), and d := wi(b), where i = i(k) is defined as
above. Then γ := γk = (c, d), where we might have c > d. Let Γq be the segment of Γ
where βk falls. Given a filling φ, we denote by φ(p) and φ[p, q) the parts of φ consisting of
the columns 1, 2, . . . , p− 1 and p, p+ 1, . . . , q− 1, respectively. We use the notation Ne(φ)
to denote the number of entries e in the filling φ.

Proposition 3.8. With the above notation, we have

mk = 〈ct(σ(q)), γ∨〉 = Nc(σ(q))−Nd(σ(q)) .

Proof. We apply induction on i, which starts at i = 0. We will now proceed from j1 <
. . . < ji < k, where i = s or k ≤ ji+1, to j1 < . . . < ji+1 < k, and we will freely use the
notation above. Let

βji+1
= (a′, b′) , c′ := wi(a

′) , d′ := wi(b
′) .

Let Γp be the segment of Γ where βji+1
falls, where p ≥ q.

We need to compute

wr̂j1 . . . r̂ji+1
(Hβk,lk) = t̂ji+1

. . . t̂j1w(Hβk,lk) = t̂ji+1
(Hγ,m) ,

where m = 〈ct(σi(q)), γ
∨〉, by induction. Note that γ′ := γji+1

= (c′, d′), and t̂ji+1
= sγ′,m′ ,

where m′ = 〈ct(σi(p)), (γ
′)∨〉, by induction. We will use the following formula:

sγ′,m′(Hγ,m) = Hsγ′ (γ),m−m′〈γ′,γ∨〉 .

Thus, the proof is reduced to showing that

m−m′〈γ′, γ∨〉 = 〈ct(σi+1(q)), sγ′(γ
∨)〉 .

An easy calculation, based on the above information, shows that the latter equality is
non-trivial only if p > q, in which case it is equivalent to

(3.9) 〈ct(σi+1[p, q))− ct(σi[p, q)), γ
∨〉 = 〈γ′, γ∨〉 〈ct(σi+1[p, q)), (γ′)∨〉 .

This equality is a consequence of the fact that

ct(σi+1[p, q)) = sγ′(ct(σi[p, q))) ,

which follows from the construction of σi+1 from σi explained above. �

Define Γ(λ)i to be the portion of Γ(λ) consisting of only the transpositions which exchange
the values i and i+ 1, that is of the form (i, i+ 1) or (i, i+ 1) or (i+ 1, i).

An immediate observation from the above lemma is that the level m is constant on a given
column, thus we have the following corollary to the lemma.

Corollary 3.10. Γ(λ)i in any given column is of one of the following forms:

(1) (i, i+ 1)
(2) (i+ 1, i)
(3) (i, i+ 1) . . . (i, i+ 1)

(4) (i, i+ 1) . . . (i, i+ 1)(i, i+ 1)

(5) (i+ 1, i)(i, i+ 1) . . . (i, i+ 1)

(6) (i+ 1, i)(i, i+ 1) . . . (i, i+ 1)(i, i+ 1)



THE ALCOVE PATH MODEL AND TABLEAUX 13

Recall the function gJ,p defined in the initial background. We specialize this to the type
A case where we shall refer to the graph as g(i). Start at (0,−1/2) as previously. Then
(i, i+ 1), (i+ 1, i), and (i, i+ 1) are represented as follows:

• (i, i+ 1) by a linear segment going up by one and to the right by one
• (i+ 1, i) by a linear segment going down by one and to the right by one
• (i, i+ 1) by a linear segment going up a half, right a half, followed by a linear

segment going down a half, to the right by a half.

This yields the following picture in type A

Proof. We prove this be merely observing what roots may occur in succession, or more
accurately which cannot occur in succession. The proof follows from the following basic
observations:

• An (i, i+ 1) cannot be followed by an (i+ 1, i).
• For (i, i+ 1)(i, i+ 1) the the second will have level one higher than the previous.
• For (i+ 1, i)(i+ 1, i) the second will have level one lower than the first.
• For (i, i+ 1)(i, i+ 1) the level increases by one.

• For (i, i+ 1)(i+ 1) the level decreases by one.

• For (i, i+ 1) . . . (i, i+ 1) all have the same level.

• For (i+ 1, i)(i, i+ 1) the level is the same.

• For (i, i+ 1)(i, i+ 1) the level is the same for both.

This gives us that an (i, i+1) cannot be followed by anything, an (i+1, i) only by (i, i+ 1),

and (i, i+ 1) may be followed either by (i, i+ 1) or by (i, i + 1) in which case the chain
terminates. Leaving use with the forms above.

A more intuitive way to see this using the graph mentioned above is that the midpoints of
each segment all lie on the same horizontal line, which is easily seen for the forms above,
it is also easily seen that other forms will violate this condition. �
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We shall extract some information about the structure of a column based on what Γ(λ)i

looks like. We can say at the very least that:

• If Γ(λ)i is of forms (1), (4) or (6) then there is a single i entry in the given column.
• If Γ(λ)i is of forms (2), (5) or (6) then the previous column has an i+ 1 entry.
• If Γ(λ)i is of form (2) and the next column has the same level, then either there is

both an i and an i+ 1 entry, or there are neither.
• If Γ(λ)i is of form (2) and the next column has lower level then there is an i + 1

entry in the given column.
• If Γ(λ)i is of forms (3) or (5) and if the next column has lower level then there is

a single i+ 1 entry.
• If Γ(λ)i is of forms (3) or (5) and if the next column has the same level then the

column has either both an i and an i+ 1 entry or neither.

Another observation to be made from the above lemma is that the first highest level occurs
either in the first column, in a column after one with only an i entry (no i + 1), or as an
exceptional case in the last column provided that the last column has only an i entry no
i + 1 (in reality this level may be the same as a previous highest level, but the highest
level would actually occur in a column immediately following the last, were there one).
We concern ourselves with the first highest level as this plays a role in the definition of Fi.

Lemma 3.11. Let j be the column in which the highest level occurs (assuming j > 1),
then the graph g(i) restricted to column j is one of the following forms:

• empty
• (i, i+ 1) . . . (i, i+ 1)

• (i, i+ 1) . . . (i, i+ 1)(i, i+ 1)

Proof. Merely observe that Γ(λ)i in column j−1 terminates with a (i, i+1). This together
with the fact that an (i+ 1, i) cannot follow an (i, i+ 1) establishes the claim. �

Write Γ(λ)i = (a1, b1)...(am, bm) and let K ⊆ [m] be the subset of marked indices K =
{i1 < ... < ik}. So then Γ(λ)i = (a1, b1)...(ai1 , bi1)...(aik , bik)...(am, bm).

Let p be the final position in [m]\K in column j − 1, that is the last unmarked position
in column j − 1.

Define Fi(Γ(λ)i) = (a1, b1)...(ai1 , bi1)...(ap, bp)(ap+1, bp+1)...(aik , bik)...(am, bm), i.e. the po-

sition before the highest level becomes marked. In the case where the highest level occurs
in the first column define Fi(Γ(λ)i) = (a1, b1)...(ai1 , bi1)...(aik , bik)...(am, bm).

We define Ei similarly, however for our purposes we shall need only Fi.

Our goal at this point will be to show that the root operators Ei and Fi commute with
the bijection between chains and tableaux.

Now consider the portion of the column word of T the results from extracting the subse-
quence of i’s and i+ 1’s, then look at the result after r-pairing. This may be of one of the
following forms:
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(1) i...i
(2) i...i i+ 1...i+ 1
(3) i+ 1...i+ 1

Note that if this is of the third form then this corresponds to having the highest level in
the first column in which case the root operator Fi is undefined, so we need not consider
this case further.

Theorem 3.12. The bijection between semi-standard Young tableaux of shape λ with en-
tries in [n] and λ-increasing chains in Sn commutes with the root operators Ei and Fi.

Proof. It suffices to check that the bijection commutes with Fi. Note that in the column
prior to the one with highest level,i.e. the column j − 1 as in the above, the chain ends
with (i, i+ 1), thus on the level of chains Fi makes this marked. This is precisely the same
as replacing the i in that column with an i+ 1, consequently this is the same as the effect
at the level of column words. Note that if we are in the case where highest level occurs
’past’ the last column that this amounts to marking the last (i, i + 1), this occurs in the
case where the column word is of the form i...i and the last i is changed to a i+ 1. These
are also easily seen to be equivalent. Thus the definition on the level of chains is the same
as the definition in terms of column words, thereby showing that Fi commutes with the
bijection which is sufficient.

�

We thus have the following immediate corollary to the above theorem:

Corollary 3.13. The bijection between semi-standard Young tableaux of shape λ with
entries in [n] and λ-increasing chains in Sn preserves the crystal graph structure for Young
tableaux of shape λ with entries in [n].

As an immediate corollary to this we have the following:

Corollary 3.14. The bijection between semi-standard Young tableaux of shape λ with
entries in [n] and λ-increasing chains in Sn preserves weight for Young tableaux of shape
λ with entries in [n].

Example 3.15. Consider the case where λ = (4, 3, 1) with tableau as below:

1 1 2 5
3 4 4
4 5

In this case the chain after foldings is

(3 4)(4 5)(2 4)(2 5)(1 2)(1 5)‖(4 2)(4 5)(3 2)(3 4)(1 2)(1 4)‖
(4 5)(4 2)(4 3)(1 5)(1 2)(2 3)‖(2 4)(4 5)(5 1)(5 3)

Γ(λ)4 in this case is (4 5)‖(4 5)‖(4 5)‖(4 5)

The column word in this case is 45445, when restricted to 4 and 5, which becomes 445 after
pairing.
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The levels m4 are then easily read of of the graph of g(4) above to be, 0 in the first column,
1 in the second column, 1 in the third, and 2 in the fourth.

4. Type C

4.1. Specializing the Alcove Path Model to Cn. We shall fix n from this point onward.

Define an Γli(k) for i ≤ k chain to have the following form:

( (i, k + 1), (i, k + 2), . . . , (i, n),
(i, i),
(i, n), (i, n− 1), . . . , (i, k + 1),
(i, i− 1), (i, i− 2), . . . , (i, 1) ) .

Γl(k) is then defined as

Γl(k) = Γlk(k)Γlk−1(k)...Γl1(k)

Define an Γr(k) chain to have the following form:

( (k, k − 1), (k, k − 2), . . . , (k, 1),
...

...
(3, 2) (3, 1),
(2, 1) ) .

The chain Γ(k) is then defined as:

(4.1) Γ(k) = Γl(k)Γr(k).

The chain Γ(λ) is then defined as:

(4.2) Γ(λ) = Γ1(λ′1)Γ2(λ′2)...Γm(λ′m),
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and breaks down as

(4.3) Γ(λ) = Γl1(λ′1)Γr1(λ′1)Γl2(λ′2)Γr2(λ′2)...Γlm(λ′m)Γrm(λ′m).

Lemma 4.4. Γ(k) is an ωk-chain.

Proof. We use the criterion for λ-chains in [10][Definition 4.1, Proposition 4.4], cf. [10][Proposition
10.2]. This criterion says that a chain of roots Γ is a λ-chain if and only if it satisfies the
following conditions:

(R1) The number of occurrences of any positive root α in Γ is 〈λ, α∨〉.
(R2) For each triple of positive roots (α, β, γ) with γ∨ = α∨ + β∨, the subsequence of

Γ consisting of α, β, γ is a concatenation of pairs (γ, α) and (γ, β) (in any order).

Letting λ = ωk = ε1 + . . .+ εk, condition (R1) is easily checked; for instance, a root (a, b)
appears twice in Γ(k) if a < b ≤ k, once if a ≤ k < b, and zero times otherwise. For
condition (R2), we use a case by case analysis, as follows, where a < b < c:

(1) α = (a, b), β = (b, c), γ = (a, c);
(2) α = (a, b), β = (b, c), γ = (a, c);
(3) α = (a, c), β = (b, c), γ = (a, b);
(4) α = (b, c), β = (a, c), γ = (a, b);
(5) α = (a, b), β = (b, b), γ = (a, a);
(6) α = (a, a), β = (b, b), γ = (a, b).

Case (1) is the same as in type A. Each of the cases (2)-(4) has the following three sub
cases: k ≥ c, b ≤ k < c, and a ≤ k < b, while each of the cases (5)-(6) has the following
two sub cases: k ≥ b, and a ≤ k < b. For instance, if b ≤ k < c in Case (3), then the
subsequence of Γ(k) consisting of α, β, γ is ((a, b), (a, c), (a, b), (b, c)). �

Definition 4.5. We then define a σ-right admissible subsequence γr to be a subsequence
of Γr(k) such that it is the labels of the covers of a saturated chain in the Bruhat order
of Cn starting at σ. We denote the mentioned saturated chain in the Bruhat order by

σ
γr−→ σ′, where σ′ is the permutation where the chain ends. We shall identify admissible

subsequences with corresponding chains called admissible chains. Similarly define a σ-left
admissible subsequence γl to be a subsequence of Γl(k) such that it is the labels of the covers
of a saturated chain in the Bruhat order of Cn starting at σ.

Definition 4.6. Define a σ-admissible subsequence γ to be a subsequence of Γ(λ) such
that it is the labels of the covers of a saturated chain in the Bruhat order of Cn starting at
σ. In the particular case where σ is the identity permutation we shall just say admissible
subsequence.

(4.7) σ
γl−→ σl

γr−→ σ′.
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Our primary goal at this point shall be to create a bijection from admissible sequences to
KN tableaux. We begin by examining the left portion of the chain.

Suppose we have an admissible subsequence which is a subsequence of

(4.8) Γ(λ) = Γl1(λ′1)Γr1(λ′1)Γl2(λ′2)Γr2(λ′2)...Γlm(λ′m)Γrm(λ′m).

Then we may view this as having the following splitting on the corresponding Bruhat
chain:

(4.9) id
γl0−→ σl1

γr1−→ σr1
γl1−→ σl2

γr2−→ ...
γrm−→ σrm.

Then for 1 ≤ i ≤ m the column lCi = σli[λ
′
i] and rCi = σri [λ

′
i]. This provides the desired

mapping from admissible sequences to doubled KN tableaux which is more than sufficient.

Our goal is to now create an inverse to the above map, i.e. a map from KN tableaux to
admissible sequences.

Theorem 4.10. Given the pair (σ,C ′), where C = σ[n] ≤ C ′ are columns in Cn, there
exists a unique σ-left admissible subsequence γl from σ to a unique σ′ such that σ′[k] = C ′.

This is done via an algorithm which explicitly constructs said σ-left admissible subse-
quence.

Algorithm 4.11. set π = σ;
set i = k;
while i ≥ 1 do
exchange(k + 1, n);

if (π(i) > π(i) and π(i) ≤ C ′(i))
return π = π(i, i);

end if

exchange(n, k + 1);

exchange(i− 1, 1);

set i = i− 1;
end while

exchange(a, b)
set j = a;
while j < b do
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if (π(j) > π(i) and π(j) ≤ C ′(i))
return π = π(i, j);

end if
set j = j + 1;

end while

In order to prove that the above algorithm produces the desired bijection we shall first
need a few lemmas similar to those used in the case of type A.

Lemma 4.12. For i ≤ k < j ≤ n, π(i) = a, π(j) = b and π(l) /∈ [a, b] for i < l ≤ k, there
exists a unique sequence k < j1 < ... < jp = j such that

(4.13) `(π(i, j1)...(i, jr)) = `(π(i, j1)...(i, jr−1)) + 1 for 1 ≤ r ≤ p

Proof. This particular lemma is nearly identical to that in type A and the proof is the
same. �

Lemma 4.14. For i ≤ k < j ≤ n, π(i) = a, π(j) = b and π(l) /∈ [a, b] for i < l ≤ n, there
exists a unique sequence n < j1 < ... < jp = j such that

(4.15) `(π(i, j1)...(i, jr)) = `(π(i, j1)...(i, jr−1)) + 1 for 1 ≤ r ≤ p

Lemma 4.16. For i ≤ k ≤ n,j < k, π(i) = a, π(j) = b and π(l) /∈ [a, b] for i < l ≤ i, there
exists a unique sequence i > j1 > ... > jp = j such that

(4.17) `(π(i, j1)...(i, jr)) = `(π(i, j1)...(i, jr−1)) + 1 for 1 ≤ r ≤ p

Theorem 4.18. Given the pair (σ,C ′), where C = σ[n] ≤ C ′ are columns in Cn, there
exists a unique σ-left admissible subsequence γl from σ to a unique σ′ such that σ′[k] = C ′.

Proof. We shall show in particular that the above algorithm produces the desired result.
Consider Γli(k) for a particular i ≤ k We begin exactly as in type A using the first lemma
for the first call of the exchange function from the algorithm. The permutation returned
at the end of the first call of the exchange function shall be called σ′. If σ′(i) < C ′(i) then
positions i and i will need to be swapped. We need to ensure that for no j in the interval
[i, i] is the relation σ′(i) < σ′(j) < σ′(i) satisfied. We know that σ′(j) >/∈ [σ′(i), C ′(i)]
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for j ∈ [k + 1, n] consequently σ′(j) >/∈ [σ′(i), C ′(i)] for j ∈ [n, k + 1] by symmetry.
Thus the cover condition is satisfied in this case. We now check that the condition of the
second lemma are satisfied prior to the second call of the exchange function, however we
already know this as σ′(i) > σ′(j) and σ′(i) > σ′(j) for j ∈ [k+ 1, n]. We shall the call the
permutation returned at the end of the second call of the exchange function σ′′. It will then
suffice to check that σ′′ satisfies the condition of the third lemma prior to the call of the
third instance of the exchange function. This follows immediately as σ′′(j) /∈ [σ′′(i), C ′(i)]
for j ∈ [i, i]. This holds for all i, thus the algorithm does in fact produce the desired
subsequence.

�

The right chain shall next be examined. The goals here are firstly, to construct the chain
from a left column to a right column and secondly, to show that this chains existence is
equivalent to a column being admissible (i.e. splitting).

Let D ≤ E be KN-columns such that `(D) = `(E) = k, k ≤ n, D(i) 6= D(j) for i, j ∈ [n],

and likewise for E. We shall refer to a column D where the condition D(i) 6= D(j) for
i, j ∈ [n] is satisfied as not having repetition of entries.

Theorem 4.19. Assume that columns D ≤ E are KN-columns without repetition of en-
tries. Then the following statements are equivalent:

(1) ∃! σD-right admissible subsequence ending at E, where σD is the permutation cor-
responding to the column D.

(2) D = lC and E = rC for some KN-column C.

Proof. (2) → (1): We first give an algorithm that produces the desired chain from D to
E.

Algorithm 4.20. set π = σI ;
set i = k;
while i ≥ 2 do

set j = i− 1;
while j ≥ 1 do
if (π() > π(i) and π() ≤ C ′(i))
π = π(i, );

end if
set j = j − 1;

end while
set i = i− 1;

end while

We are then required to check that the cover condition is not violated as the algorithm is
executed. We first check that σ(i) /∈ [zj, tj] for 1 ≤ j ≤ r and i ∈ [k+1, k + 1] as otherwise
the cover condition would be violated. However this is immediate by the construction of
tj as defined in the splitting, as tj is the largest possible entry such that tj and tj are not
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already in C[1, k]. Also note that σ(i)〈zj for i〉pzj〈k where pzj is the position of zj. These
together along with the symmetry of the permutation show the algorithm used above does
not violate the cover condition.

(1) → (2): Here we take the columns D and E and explicitly construct C. Define pD to
be the position of the first barred entry in column D, note that pD = pC . Then C is the
column such that C[1, pD − 1] = D[1, pD − 1] and C[pD, n] = E[pD, n]. It is then easily
seen that lC = D and rC = E by the splitting construction given in the introduction.

�

(Insert Example Here)

4.2. The Crystal Graph Structure and root operators. The arguments in this sec-
tion will be analogous to those in the case of Type A.

Recall the λ-chain Γ. Let us write Γ = (β1, . . . , βm). As such, we recall the hyperplanes
Hβk,lk and the corresponding affine reflections r̂k = sβk,lk = sβk + lkβk.

Now fix a signed permutation w in Cn and a subset J = {j1 < . . . < js} of [m] (not
necessarily w-admissible). Let Π be the alcove path corresponding to Γ, and define the
alcove walk Ω by

Ω := φj1 . . . φjs(w(Π)) .

Given k in [m], let i = i(k) be the largest index in [s] for which ji < k, and let γk :=
wrj1 . . . rji(βk). Then the hyperplane containing the face Fk of Ω is of the form Hγk,mk ; in
other words

Hγk,mk = wr̂j1 . . . r̂ji(Hβk,lk) .

Our first goal is to describe mk purely in terms of the filling associated to (w, J).

Let t̂k be the affine reflection in the hyperplane Hγk,mk . Note that

t̂k = wr̂j1 . . . r̂ji r̂kr̂ji . . . r̂j1w
−1 .

Thus, we can see that

wr̂j1 . . . r̂ji = t̂ji . . . t̂j1w .

Let T = ((a1, b1), . . . , (as, bs)) be the subsequence of Γ indexed by the positions in J ,
cf. Section ??. Let T i be the initial segment of T with length i, let wi := wT i, and
σi := f(w, T i), see (4.22). In particular, σ0 is the filling with all entries in row i equal to

w(i), and σ := σs = f(w, T ). The columns of a filling of 2λ are numbered left to right by
1 to 2λ1. If βji+1

= (ai+1, bi+1) = (a, b) falls in the segment of Γ corresponding to column p
of 2λ, then σi+1 is obtained from σi by replacing the entry wi(a) with wi(b) in the columns
1, . . . , p− 1 of σi, as well as, possibly, the entry wi(b) with wi(a) in the same columns.

Now fix a position k, and consider i = i(k) and the roots βk, γ := γk, as above, where
γk might be negative. Assume that βk falls in the segment of Γ corresponding to column
q of 2λ. Given a filling φ, we denote by φ(p) and φ[p, q) the parts of φ consisting of the
columns 1, . . . , 2p− 1 and p, . . . , q − 1, respectively.
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Proposition 4.21. With the above notation, we have

mk = 〈ct(σ[q]), γ∨〉 .

Let us first define the content of a filling. For this purpose, we first associate with a filling
σ a “compressed” version of it, namely the filling σ of the partition 2λ. This is defined as
follows:

(4.22) σ = Cλ1
. . . C1

, where Ci := C ′i2Ci1 ,

. Now define ct(σ) = (c1, . . . , cn), where ci is half the difference between the number of
occurrences of the entries i and ı in σ. Sometimes, this vector is written in terms of the
coordinate vectors εi, as

(4.23) ct(σ) = c1ε1 + . . .+ cnεn =
1

2

∑
b∈σ

εσ(b) ;

here the last sum is over all boxes b of σ, and we set εı := −εi.

Proof. We apply induction on i, which starts at i = 0, when the verification is straight-
forward. We will now proceed from j1 < . . . < ji < k, where i = s or k ≤ ji+1, to
j1 < . . . < ji+1 < k, and we will freely use the notation above. Assume that βji+1

falls in
the segment of Γ corresponding to column p of 2λ, where p ≥ q.

We need to compute

wr̂j1 . . . r̂ji+1
(Hβk,lk) = t̂ji+1

. . . t̂j1w(Hβk,lk) = t̂ji+1
(Hγ,m) ,

where m = 〈ct(σi[q]), γ
∨〉, by induction. Let γ′ := γji+1

, and t̂ji+1
= sγ′,m′ , where m′ =

〈ct(σi[p]), (γ
′)∨〉, by induction. We will use the following formula:

sγ′,m′(Hγ,m) = Hsγ′ (γ),m−m′〈γ′,γ∨〉 .

Thus, the proof is reduced to showing that

m−m′〈γ′, γ∨〉 = 〈ct(σi+1[q]), sγ′(γ
∨)〉 .

An easy calculation, based on the above information, shows that the latter equality is
non-trivial only if p > q, in which case it is equivalent to

〈ct(σi+1(p, q])− ct(σi(p, q]), γ
∨〉 = 〈γ′, γ∨〉 〈ct(σi+1(p, q]), (γ′)∨〉 .

This equality is a consequence of the fact that

ct(σi+1(p, q]) = sγ′(ct(σi(p, q])) ,

which follows from the construction of σi+1 from σi explained above. �

From this proposition we see that we do not get as clean of a result as in Type A, where
the level did not change in a given column. We do however have that the level mk does
not change in a left column or a right column if we view the doubled tableaux.

Let (i+ 1, i) be represented by (i, i+ 1) to simplify notation.

Then a left hand column is of one of the following forms as it was in Type A by the exact
same argument, in particular the realization that the level mi does not change in a left
hand column, we have a similar result for right hand columns.
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Corollary 4.24. Γ(λ)i in any left or right hand column is of one of the following forms:

(1) (i, i+ 1)
(2) (i+ 1, i)
(3) (i, i+ 1) . . . (i, i+ 1)

(4) (i, i+ 1) . . . (i, i+ 1)(i, i+ 1)

(5) (i+ 1, i)(i, i+ 1) . . . (i, i+ 1)

(6) (i+ 1, i)(i, i+ 1) . . . (i, i+ 1)(i, i+ 1)

From here we can take most all of the results from type A, with minor exception. The note
to be made is that the highest level may occur in either a left or a right column. Where
this highest level occurs will follow the same restrictions as in Type A, particularly:

Lemma 4.25. Let j be the left or right column in which the highest level occurs (assuming
j > 1), then the graph g(i) restricted to column j is one of the following forms:

• empty
• (i, i+ 1) . . . (i, i+ 1)

• (i, i+ 1) . . . (i, i+ 1)(i, i+ 1)

Proof. The proof here is identical to Type A. �

Recall the construction of column words from type A, in particular the word is read
starting at the bottom of the column working toward the top of the column, starting with
the leftmost column. In type C the same process is used. Call this word w. Then consider
the subword of w consisting of the entries of the form, i, i+ 1, i or i+ 1 and call this word
wi. Denote i+ 1 or i by a + and denote i or i + 1 by a −. Factors of the form +− may
be ignored. This may be repeated until a subword of the form ρ(w) = −r+s is reached.

If r > 0 ei(w) is obtained by changing the rightmost − to a + (i.e. changing i + 1 into i
and i into i+ 1) and all other letters remain unchanged. If r = 0 then ei(w) = 0. Then
fi(w) is defined as the inverse.

If s > 0 fi(w) is obtained by changing the rightmost + to a − (i.e. changing i into i + 1
and i+ 1 into i) and all other letters remain unchanged. If s = 0 then fi(w) = 0. Then
ei(w) is defined as the inverse.

Alternately as in type A:

fi(Γ(λ)i) = (a1, b1)...(ai1 , bi1)...(ap, bp)(ap+1, bp+1)...(aik , bik)...(am, bm), i.e. the position be-

fore the highest level becomes marked. In the case where the highest level occurs in the
first column fi(Γ(λ)i) = (a1, b1)...(ai1 , bi1)...(aik , bik)...(am, bm).

Now consider the portion of the column word of T the results from extracting the sub-
sequence of +’s and −’s, then look at ρ(w) as defined above. This may be of one of the
following forms:

(1) +...+
(2) +...+ −...−
(3) −...−
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Note that if this is of the third form then this corresponds to having the highest level in
the first column in which case the root operator fi is undefined, so we need not consider
this case further.

Theorem 4.26. The bijection between KN-tableaux of shape λ with entries in [n] and
λ-increasing chains in Cn commutes with the root operators ei and fi.

Proof. It suffices to check that the bijection commutes with fi. Note that in the column
prior to the one with highest level,i.e. the column j−1 as in the above, the chain ends with
(i, i+1) or (i+ 1, i), thus on the level of chains fi makes this marked. This is precisely the
same as replacing the i in that column with an i + 1(or an i+ 1 with a i), consequently
this is the same as the effect at the level of column words. Note that if we are in the case
where highest level occurs ’past’ the last column that this amounts to marking the last
(i, i+1) or (i+ 1, i). Thus the definition on the level of chains is the same as the definition
in terms of column words, thereby showing that fi commutes with the bijection, which is
sufficient.

�

We thus have the following immediate corollary to the above theorem:

Corollary 4.27. The bijection between KN-tableaux of shape λ with entries in [n] and
λ-increasing chains in Cn preserves the crystal graph structure for KN-tableaux of shape λ
with entries in [n].

As an immediate corollary to this we have the following:

Corollary 4.28. The bijection between KN-tableaux of shape λ with entries in [n] and
λ-increasing chains in Cn preserves weight for KN-tableaux of shape λ with entries in [n].
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