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Abstract

This work in algebraic combinatorics is concerned with a new, combinatorial
approach to the study of certain structures in algebraic topology and formal group
theory. Our approach is based on several invariants of combinatorial structures
which are associated with a formal group law, and which generalise classical
invariants. There are three areas covered by our research, as explained below.
Our first objective is to use the theory of incidence Hopf algebras developed by
G.-C. Rota and his school in order to construct and study several Hopf algebras of
set systems equipped with a group of automorphisms. These algebras are mapped
onto certain algebras arising in algebraic topology and formal group theory, such
as binomial and divided power Hopf algebras, covariant bialgebras of formal group
laws, as well as the Hopf algebroid of cooperations in complex cobordism. We
identify the projection maps as certain invariants of set systems, such as the
umbral chromatic polynomial, which is studied in its own right. Computational
applications to formal group theory and algebraic topology are also given.
Secondly, we generalise the necklace algebra defined by N. Metropolis and G.-
C. Rota, by associating an algebra of this type with every formal group law over
a torsion free ring; this algebra is a combinatorial model for the group of Witt
vectors associated with the formal group law. The cyclotomic identity is also
generalised. We present combinatorial interpretations for certain generalisations
of the necklace polynomials, as well as for the actions of the Frobenius operator

and of the p-typification idempotent. For an important class of formal group



laws over the integers, we prove that the associated necklace algebras are also
defined over the integers; this implies the existence of special ring structures on
the corresponding groups of Witt vectors.

Thirdly, we study certain connections between formal group laws and symmet-
ric functions, such as those concerning an important map from the Hopf algebra
of symmetric functions over a torsion free ring to the covariant bialgebra of a for-
mal group law over the same ring. Applications in this area include: generating
function identities for symmetric functions which generalise classical ones, gener-
ators for the Lazard ring, and a simplified proof of a classical result concerning

Witt vectors.
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Introduction

The relevance of Hopf algebras and formal group theory to algebraic topology
(and in particular to K-theory and bordism theory) is well-known. The role of
the Roman-Rota umbral calculus, as an elegant and illuminating framework for
computations, became clear through the work of A. Baker, F. Clarke, N. Ray
et al. (see [3], [34], [35], [8]). In the last decade combinatorial methods have
also been brought to bear on some of the more subtle aspects of algebraic topol-
ogy. This has been made possible by the important advances in combinatorics
in recent years, especially through the establishment of algebraic combinatorics
as an independent area of research. One of the main ideas is to find a combina-
torial interpretation for the coefficients of various polynomials and formal power
series that we investigate (which are in general hard to express and manipulate);
thus, we are in a position to apply methods from algebraic combinatorics, which
could lead to new insights. Several of the resulting techniques have then been
fed back to enrich their combinatorial origins, finding application in areas such
as graph theory, modular representations of matrix groups, and symmetric func-
tions. Applications of combinatorial techniques to algebraic topology have been
given recently by N. Ray and W. Schmitt; these applications are based on the
theory of incidence Hopf algebras, developed by G.-C. Rota and his school (see
[19], [46], [47]), which plays a major role throughout our work as well.

The aim of this work is to investigate several aspects of the beautiful interplay

10
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between algebraic topology, formal group theory, umbral calculus, and combina-
torics, by building on the recent results of N. Ray and W. Schmitt. On the one
hand, formal group theory and algebraic topology suggest generalisations of cer-
tain invariants of combinatorial structures, such as the chromatic polynomial of
a graph, the characteristic polynomial of a poset of partitions, the necklace poly-
nomials, and certain symmetric functions. We associate invariants of the type
mentioned above with every formal group law, such that the classical invariants
all correspond to the multiplicative formal group law F(X,Y) =X +Y + XY.
Other formal group laws give rise to new invariants, which encode new informa-
tion about the combinatorial structures. On the other hand, the study of the
combinatorial invariants associated with a formal group law leads to a combina-
torial framework for investigating certain structures in formal group theory and
algebraic topology. Thus, certain Hopf algebras of set systems are combinatorial
models for binomial and divided power Hopf algebras, for covariant bialgebras
of formal group laws, as well as for the Hopf algebroid of cooperations in com-
plex cobordism. Necklace algebras provide a useful framework for investigating
Witt vectors associated with a formal group law, as well as for understanding
p-typification. Certain symmetric functions can also be associated with a formal
group law, and they prove to be useful new tools in the study of the Lazard ring
and Witt vectors, for instance.

In Chapter 1 we have collected a minimum amount of information about the
structures and concepts used in this work. The main aim is to establish a notation
which is consistent with traditional notation, and to define all the concepts which
are not so easily accessible in the literature. We also reformulate some background
material (such as that on binomial and divided power Hopf algebras — which have
recently come to provide a natural setting for the Roman-Rota umbral calculus,

and that on formal group laws) in a way which makes more effective use of the



12

coalgebraic viewpoint. Most of the concepts presented in this chapter also arise
in algebraic topology, as explained in §1.4; however, we have preferred to use the
classical topological notation only in Chapter 3, where concrete applications to
topology are discussed. There are some classical results quoted in this chapter,
but in general they are stated only when we need them, or they are just referred

to the appropriate source. The main references for this work are:

e Bourbaki [4] for the concepts and notation of graded algebra,

e Sweedler [53] and Nichols and Sweedler [32] for all information concerning

Hopft algebras and their applications to umbral calculus,

o Hazewinkel [18] for an encyclopaedic description of the theory of formal

groups,

e Adams [1] and Ravenel [33] for all information concerning generalised ho-

mology theories,
o Aigner [2] for general combinatorial terminology,

e Schmitt [47] for an up-to-date account on incidence Hopf algebras,

Macdonald [28] for the theory of symmetric functions.

In Chapter 2 we define and investigate the umbral chromatic polynomaial of set
systems of a fairly general type, which we call partition systems. This invariant
was first defined for graphs by N. Ray and C. Wright in [41], in which case it en-
codes the same information about the graph as R. Stanley’s symmetric function
generalisation of the chromatic polynomial [51]. We propose two definitions for a
colouring of a partition system, which coincide with the definition due to Wag-
ner [55], in the case of simplicial complexes. These new definitions of colouring
enable us to generalise the product formula for the classical chromatic polyno-

mial of a graph, as well as Whitney’s formula for expanding this polynomial as
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the characteristic polynomial of an associated poset. We also present related
formulae for our umbral chromatic polynomial of a partition system, such as a
deletion-contraction identity. In the last section, automorphism groups of parti-
tion systems are considered, and combinatorial interpretations and new formulae
are given for the normalised versions of the associated polynomials. One of these
formulae generalises the classical formula for expanding the divided conjugate
Bell polynomials in terms of divided powers of x. This is the reason for which the
results in this chapter are important ingredients for constructing combinatorial
models for divided power algebras and covariant bialgebras of formal group laws.

In Chapter 3 we show that incidence Hopf algebras of partition lattices pro-
vide an efficient combinatorial framework for formal group theory and algebraic
topology. We start by showing that the universal Hurwitz group law (respectively
universal formal group law) are generating functions for certain leaf-labelled trees
(repectively plane trees with coloured leaves). Two formal group law identities
are then proved using a combinatorial technique. With reference to p-typical for-
mal group laws, we discuss the way in which the formula for the corresponding
characteristic type polynomial of a partition system simplifies; we also discuss
the p-typical analogue of Lagrange inversion. As far as applications to algebraic
topology are concerned, we illustrate the way in which several computations can
be carried out efficiently by using the incidence Hopf algebra framework. Such
computations include: expressing certain coactions, computing the images of the
coefficients of the universal formal group law under the K-theory Hurewicz ho-
momorphism, proving certain congruences in the complex cobordism ring, and
constructing two combinatorial models for the dual of the polynomial part of the
modulo p Steenrod algebra, for a given prime p.

In Chapter 4 we construct several Hopf algebras of set systems, equipped or
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not with a group of automorphisms, by using the theory of incidence Hopf al-
gebras. We start by extending the constructions for graphs in [37] to certain
cocommutative Hopf algebras of set systems, whose structure is examined. The
previously mentioned polynomial invariants of set systems are realised as Hopf al-
gebra maps onto certain binomial and divided power Hopf algebras, as well as onto
the covariant bialgebra of a formal group law. An extended version of Stanley’s
symmetric function generalisation of the chromatic polynomial is also realised as
a Hopf algebra map. One of the main themes of this chapter is that passage from
a binomial to a divided power algebra corresponds, in the combinatorial setting,
to the association of a group of automorphisms with a given set system. Several
concepts and properties concerning binomial and divided power Hopf algebras
can be lifted to the combinatorial Hopf algebras in a compatible way with the
projection maps. Thus, we define delta operators, binomial and divided power
sequences, and prove two identities concerning the interaction of a delta opera-
tor with the product and the antipode. In the second half of this chapter, we
adopt a similar approach for constructing and investigating non-cocommutative
Hopf algebras and Hopf algebroids of set systems, equipped or not with a group
of automorphisms. These structures project onto such structures as the Faa di
Bruno Hopf algebra, the dual of the Landweber-Novikov algebra, and the Hopf
algebroid of cooperations in complex cobordism.

In [29] N. Metropolis and G.-C. Rota studied the necklace polynomials, and
were lead to define the necklace algebra as a combinatorial model for the classical
ring of Witt vectors (which corresponds to the multiplicative formal group law).
In Chapter 5 we define and study a generalised necklace algebra, which is associ-
ated with an arbitrary formal group law F(X,Y) over a torsion free ring A. The
map from the ring of Witt vectors associated with F(X,Y) to the necklace alge-

bra is constructed in terms of certain generalisations of the necklace polynomials.
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We present a combinatorial interpretation for these polynomials in terms of words
on a given alphabet. The actions of the Verschiebung and Frobenius operators,
as well as of the p-typification idempotent are described and interpreted combi-
natorially. A formal group-theoretic generalisation of the cyclotomic identity is
also presented. In general, the necklace algebra can only be defined over the ra-
tionalisation A® Q. Nevertheless, we show that for an important family of formal
group laws over Z, namely F (X, Y)=(X+Y - (1 4+ ¢)XY)/(1 —gXY),¢q€Z
(which contains the multiplicative formal group law), the corresponding necklace
algebra can be defined over Z; furthermore, the generalised necklace polynomials
turn out to be numerical polynomials in the variables x and ¢ (that is they take
integer values for integer x and ¢), and they can be interpreted combinatorially
when ¢ is a prime power. These results enable us to define ring structures com-
patible with the associated maps on the groups of Witt vectors and the groups
of curves associated with the formal group laws F,(X,Y'); there are few formal
group laws with this property, and these ones are not mentioned in Hazewinkel’s
book.

In Chapter 6 we investigate several connections between formal group laws
and symmetric functions, by using a combined approach, combinatorial and al-
gebraic. We start by studying a certain Hopf algebra map from the Hopf algebra
of symmetric functions over a torsion free graded ring to the covariant bialgebra
of a formal group law over the same ring. This map has a geometrical inter-
pretation in terms of a generalised homology theory and the determinant map,
defined on unitary matrices. The study of the adjoint map provides identities
for symmetric functions which generalise classical ones, as well as some Catalan
number identities. The images of various symmetric functions under the above
map are computed using P. Doubilet’s formulae for these functions in terms of

Mobius inversion on set partition lattices [11]. As an application of our results so
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far, we discuss a family of elements in the Lazard ring, with elements of degree
p* — 1 being polynomial generators, for every prime p. This family is implicit in
the construction of the universal p-typical formal group law, and is well-suited
for combinatorial manipulations. In the last section, we associate with every for-
mal group law certain symmetric functions similar to the symmetric functions ¢,
studied by C. Reutenauer in the recent paper [42]; the latter are associated with
the multiplicative formal group law. The symmetric functions which we define
are used to give a short proof of the fact that addition of Witt vectors associated
with a formal group law over a torsion free ring is determined by polynomials
with coefficients in that ring. Finally, we prove a Schur positivity result similar
to the one conjectured and partially proved by Reutenauer.

Throughout our research, we have used extensively the computer algebra sys-
tem Mathematica and, occasionally, the symmetric function package of J. Stem-
bridge (for Maple). We implemented several procedures for computing polynomial
invariants of set systems, and for certain computations in algebraic topology and
formal group theory. These procedures assisted us in formulating conjectures and
identifying counter-examples, and thus lead us to a better understanding of the

structures we were investigating.



Chapter 1

Background

In this chapter we give a brief description of the structures in formal group theory,
algebraic topology, and combinatorics which will be used in our work. The main
alm is to establish notation, while more detailed information on these structures

appears in the references.

1.1 Binomial and Divided Power Hopf Algebras

Throughout §1.1, §1.2, §1.7, and §1.10 we let A, be a non-negatively graded
commutative ring with identity, which we refer to as the ring of scalars. We
emphasise that A, is free of additive torsion when, and only when, it embeds
in its rationalisation AQ. := A, ® Q. All rings and algebras we consider are
assumed graded by complex dimension, so that products commute without signs.
We let C, be a graded coalgebra over A,, with comultiplication ¢ and counit
¢; thus ¢ invests C, with the structure of both left and right C.-comodule. We
usually assume that C is free, and of finite type, and write C* for the graded
dual Hom™(C\, A.), which is naturally an A.-algebra with identity.
We first recall how C* may be interpreted as a ring of operators on C,.

Let Lop(C.) be the A.-module consisting of those linear endomorphisms I of

17
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C. which are left C,-comodule maps, and so satisfy the condition
dol'=(I®I)od (1.1.1)

(where [ = I¢, denotes the identity on C.). We refer to these operators as
left-invariant, and consider Lop(C.) as an algebra under composition. Then C*
and Lop(C\) are isomorphic as A,-algebras under the map which assigns to each

f € C* the composition

o, *vcoec oo oA =, (1.1.2)

which we denote by ['y. The inverse map associates to each linear operator
I' satisfying (1.1.1) the linear functional fr defined by fr(z) = (I'z), for all
z € C.. We often use (1.1.2) to equate C* and various of its subalgebras with
their images in Lop(C.), identifying f with Iy and [ with fr. In consequence,

for any A € Lop(C,) we may write
(I'-Alz)y=(I"| Az), (1.1.3)

where we follow the standard convention of expressing the duality map as (f|z) :=
f(2), for any f € C* and z € C,. Indeed, 1.1.3 provides an alternative definition
for the action of C™* on C,.

For any A.-coalgebra map p: B, — C., we note that
Ff Op:pOFp*(f) (114)

in Hom"(B., C.), for all f € C*. We shall apply this formula in §1.2 and §4.1,
for example, where C, is a Hopf algebra, and p is either the product map or the
antipode.

We remark that the algebra of right-invariant operators is defined by the
obvious modification of (1.1.1), and that whenever C, is cocommutative, the two
concepts coincide. Otherwise, the map corresponding to (1.1.2) is actually an

anti-isomorphism.
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Given a countable basis ¢, for C., we denote the dual pseudobasis for C* by
¢“. We may then deduce directly from (1.1.2) that the comultiplication is given
in terms of the action of ¢¥ on C, by

d(z) = Zc‘”z@cw. (1.1.5)

Whenever f in C* is of degree —1 and f(Cy) contains the identity of A,
we refer to Iy as a delta operator. We may define the category of coalgebras
with delta operator by insisting that the morphisms are coalgebra maps which
commute with the delta operators given on source and target, respectively.

By way of example, consider the graded polynomial algebra A.[z], and the

comultiplication, counit, and antipode maps specified by
dz)=z@1+1@«a, 5(:1;2) =00, and y(z)=—=a,

respectively. These maps invest A.[z] with the structure of a commutative and
cocommutative Hopf algebra, which is known as the binomial Hopf algebra over
A, (in one variable). The standard basis consists of the powers z”, for n > 0.

Note that ¢ may be rewritten as
J: A*[x] — A*[l’,y],

in which guise it is given by §(x) = « +y, and is known as the shift (by y). Then
the notions of left and right-invariant coincide, and are traditionally referred to
as shift invariant. The most basic such operator is the derivative d/dx, which
we abbreviate to D. Under the isomorphism of (1.1.2), it corresponds to the
A,-linear functional which annihilates all 2" for n # 1, and satisfies (D | x) = 1
in Ag. Thus D is a delta operator on A.[z]. In fact, the functionals defined by
(Dgy|2™) := 6y form the pseudobasis dual to the standard basis (so D(;y = D);
by (1.1.2) they act on A.[z] such that Dg,yaz™ = (")a™ " for all non-negative

integers n and m. Whenever A, embeds in AQ,, we may rewrite D,y as D"/n!,
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and interpret (1.1.5) as the formal Taylor expansion

plr+y) =) (%}(@) y"

n

for any polynomial p(z).

We set A™" := Hom"(A., A,) and identify it with A, in a canonical way. The
graded dual of A.[x] (as a coalgebra) can now be viewed as the graded algebra
A*{{D}} of formal divided power series (or Hurwitz series; see [6]) over A.. For

each n, we shall express the elements of A"{{D}} in the form
a—n[ + al—nD + -+ ak—nD(k) + - 3

where a; € A;, I is the identity operator, and D)D) = (k:l>D(k+l) for all
k1> 0.

We now select a sequence (or umbra) a = (ap, o1, aa,. .. ), where o; € A; and

ag = 1. Then the Hurwitz series
Oz(D) ::D—I—Ole(g)—|—...—|—Ozi_1D(i)—|—... (1.1.6)

lies in A'{{D}}, and acts on A.[z] as a delta operator; in fact any delta operator
on A.x] is equal to ua(D) for some umbra a and some invertible element u in
Ap. Given a positive integer m and a polynomial p(z) in A.[z], we define the

umbral substitution by ma in p(x) as follows:

p(ma) = (I + a(D))" | p(2)) .

It is not difficult to show that p(ma) can be obtained from p(a; + ...+ x,,) by
setting 27 = o;_,.

The Hurwitz series (1.1.6) form a group under substitution, with identity D.
The umbra corresponding to the inverse of a(D) will be denoted by @, and @(D)
will be referred to as the conjugate delta operator of a(D).

Note that the divided powers (D), define a new pseudobasis for A{D}},

and that there is a dual basis of polynomials B2 (x) in A.[x]. By definition, these
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polynomials satisfy (a(D)" | B2 (x)) = nld,m; hence, by using (1.1.3), it follows

that B2 («) is monic of degree n (so that B{(x) = 1), and that
BI0)=0  and  a(D) Bi(x) = By (),

for all n > 0. The sequence of polynomials B* = (1, By (x), BS(x),...) is known

as the associated sequence of a( D). It is not difficult to show that
BX(ma)=m(m—1)...(m—n+1), (1.1.7)

for all n > 0. On the other hand, let us note that (1.1.5) immediately provides

the formula

n

st = (1) Brior o B2, (1.18)

=0
which defines B® to be a binomial sequence.
We recall some classic examples of delta operators and their associated se-

quences.

Examples 1.1.9
1. For any A., let 6 be the umbra (1,0,0,...); then (D) = D and B%(x) = z".

2. For scalars k, = Z[u], where u € ki, let £ be the umbra (1,u,u? ...);
then x(D) is the discrete derivative operator (e“P — 1)/u and Bf(z) =
z(r —u)...(x — (n — Du). It follows that ®#(D) = In(1 + uD)/u and
Bi(z) = Y. u"™'S(n,1)a', where the S(n,7) are Stirling numbers of the
second kind. Thus Bf(z) and B(z) are homogeneous versions of the falling

factorial and exponential polynomials, respectively.

3. For scalars @, = Z[¢y, ¢, ...], where ¢; € @, let ¢ be the umbra (¢po, ¢1,
b, ...) with ¢g = 1. Then B?(z) and Bf(:z;) are the conjugate Bell polyno-

mials and the Bell polynomials, respectively.
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4. Given a prime p, we consider the summand @2 of @, which is the image of

the idempotent specified by

_ ifn=p"'—1
b, P P (1.1.10)

0 otherwise.

We denote by A, the image of ¢, in @2, and by A the corresponding umbra.
It is not difficult to prove that A, = 0 unless n is divisible by p — 1. We
clearly have @2 = Z[A,_1,\p2_1,...] = Z[Ap—1,A\2_1,...]. The relevance of

this example will be discussed in §1.2 and §1.4.

For basic information concerning the Bell polynomials we refer to [9]. The fol-

lowing simple property is taken from [34].

Proposition 1.1.11 For any binomial Hopf algebra with delta operator (A.[z],
a(D)), there is a unique ring homomorphism ¢*: ®. — A, specified by ¢, — ay,
which induces a map g*: (P.[x],p(D)) — (Alx], (D)) of graded Hopf algebras
with delta operator. Thus (@.[x], p(D)) is the universal example, and B? is the

universal binomial sequence.

Proposition 1.1.11 justifies our first important notational convention, to which
we shall adhere throughout this work. Given an element P?(x) in @.[z], we denote
g*(P?(x)) in A.[z] by P%(x). If we substitute 1 for u in P%(x), then we obtain a
polynomial in Z[z], which we denote by P(x). Whenever P?(z) is homogeneous,
then P%(x) is a homogenised version of P(z). If f¢ is now a function from a set
X to @,, we denote the function g% o f¢: X — A, by f°.

In tandem with A,[z], and to cope with the situation when the scalars contain
torsion, we must also consider the divided power algebra R.{xz}, where R, is a
similar ring of scalars. This is the free graded R.-algebra with standard basis
the divided powers z(,) € R, {z} for n > 0, where reoy = 1, zq) = z, and

TRyT(y = (k:l>:1;(k+l). Whenever R, is torsion free, then z(,) becomes identified
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with 2™ /n! in RQ.{x}. We may specify comultiplication, counit, and antipode

maps by

3

5(:1;(n)) = L) @ Ty s 5(:1;(n)) = 0n0, and ’y(:z;(n)) = (—1)”:1;(n) ,

i=0

respectively. These maps invest R.{x} with the structure of Hopf algebra. The
R.-linear map j: R.[xr] — R.{z}, defined by 2" — nlz(, for all n > 0, is a
Hopf algebra map, and is monic whenever R, is torsion free. The graded dual
of R.{x} (as a coalgebra) is the graded algebra R*[[D]] of formal power series in
the variable D, and the duality is expressed by (D" | 2(,,)) = d5,m. The action of
D on R.{x} given by (1.1.2) is differentiation with respect to x, as before, whilst
the dual map j*: R*[[D]] = R*{{D}} is prescribed by D™ = n!D,).

For any sequence r = (1,71,7q,...) with r; € R;, the corresponding delta

operator on R.{x} is
r(D) =D +rmD*+r,D°+ ...,

which lies in R'[[D]]. As before, there is a conjugate delta operator 7(D).

We have now established our second important notational convention: a for-
mal power series associated with an umbra denoted by a Greek or upper case
Roman letter (or a lower case Roman letter) will be Hurwitz (or standard) re-
spectively.

In R.{x} there is a basis of polynomials 3/ (x) dual to the alternative pseu-
dobasis r(D)" of R*[[D]], where n > 0. These polynomials form a divided power

sequence, in the sense that

S(Bi(x)) =Y Bi(2) © B _i(e); (1.1.12)

we refer to this sequence as (3”.
In order to construct the universal example, and relate it to Proposition 1.1.11,

we take our inspiration from [1] and choose as scalars the polynomial algebra
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H, := Z[by,b,,...], where b, has grading n. The element b, will be denoted
by my,, as it is traditionally done in algebraic topology (see §1.4). Clearly, m;,
i > 1, are also polynomial generators for H,. Let b be the sequence (bg, by, b2, ... )
with by = 1, and observe that we may compatibly identify &, as a subalge-
bra of H. by means of ¢, — (n + 1)lb,. Thus there is a canonical inclusion
e: (P.fx],o(D)) — (HAx},b(D)) of Hopf algebras with delta operator, with re-
spect to which B?(z) = n!3%(x). The following analogue of Proposition 1.1.11
then holds.

Proposition 1.1.13 For any divided power Hopf algebra with delta operator
(RAx},r(D)), there is a unique ring homomorphism ¢ : H. — R., specified
by b, > 1., which induces a map ¢": (HAx},b(D)) = (RAx},r(D)) of graded
Hopf algebras with delta operator. Thus (H.{x},b(D)) is the universal example,

and 3° is the universal divided power sequence.

This proposition justifies a similar notational convention to the one following

Proposition 1.1.11.

1.2 Formal Group Laws

Definition 1.2.1 A (one-dimensional, commutative) formal group law over a
commutative ring R is a formal power series F(X,Y') in R[[X,Y]] with the fol-

lowing properties:
1. F(X,0)=F(0,X) =X,
2. F(X,Y)=F(Y,X);

3. F(X,F(Y,2)) = F(F(X,Y), 7).



CHAPTER 1. BACKGROUND 25

The formal power series [—1]p(X) in R[[X]] defined by F(X,[—1]#(X)) = 0 is

called the formal inverse. We will use the following standard notation:

X+4pY:=F(X,Y), X—pY:=FX[-1]pY)).
(1.2.2)

The third condition in the definition of a formal group law allows us to iterate
the above notation, e.g. X +rY +5 7 := F(F(X,Y), Z). It also makes sense to
denote by EF( ) the formal sum of the indicated elements. For integers n, we

define

F(X,[n—1]p(X ifn>
n]r(X) = (£ n =1 (X)) >9 (1.2.3)
[—1] & ([n]r(X)) otherwise .

If the ring R is torsion free, the formal group law F'(X,Y) has a log series
logr(X), that is a formal power series in RQ[[X]] satisfying log,(F(X,Y)) =
logr(X) +logp(Y). The substitutional inverse of log(X) is called the exp series
of F(X,Y), and is denoted by expp(X). Given a prime p and assuming R to be
torsion free, we call F'(X,Y) p-typical if the only powers of X in log,(X) are of
the form X**.

We now turn to the product structure on A,[z], and in particular to the
question of expressing each Bf(z)B§(x) as a linear combination of the By(x).
Inevitably, this is closely linked with the product structure on A.{x}, and the
expression of 37(xz)3%(z) in terms of the 3;(x). The problem displays remarkable
combinatorial complexity, and its investigation and interpretation are recurring
themes below.

Let us begin with A.[z]. The transpose of the product is a formal comultipli-

cation
§: A DY — A{DPOA{DY,

in which we use a suitably completed tensor product @. Equivalently, and more
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naturally, we may interpret § as the A*-algebra map
§: A{{X} - A{X, Y} (1.2.4)

specified by §(X) = X + Y. This is tantamount to writing X and Y for the
respective shift invariant operators d/dx and d/dy. Clearly § is coassociative,
cocommutative, and an algebra map, whilst X +— 0 defines a counit.

To address our problem we first consider its dual, which asks for a description

of §(a(X)) = a(X +Y) in terms of a(X) and a(Y).
Proposition 1.2.5 There are Hurwitz series
FAXY) e AN, YY  and  [—1].(X) € AH{X Y
such that
Fola(X),a(Y) =a(X +Y)  and  F*(X,[-1].(X)) =0.

PROOF. Choose F*(X,Y) = a(@(X)+a(Y)) and [—1],(X) := ao(—a(X)). O

It is important to observe that the transpose of the antipode v of A,[z] is
the algebra endomorphism induced by X +— —X, which may equally well be
described by a(X) — [—1].(a(X)).

For each positive integer [, we shall write
ZF“ XY, and  ([—1]a(X))gy = Y o' Xy

(omitting the superscript [ whenever it takes the value 1). We shall make regular

use of the abbreviations
X +,Y :=F(X,Y) and —a X = [—1]a(X);

these are extremely convenient, and suitably graphic. The first notation may be
iterated, whence it makes sense to write > "( ) for the formal sum of the indicated

elements.
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So long as A, is torsion free, we may reinterpret X +, Y as the formal group

law
> E ) XY (1.2.6)
]

over AQ,. This interpretation holds, more generally, over any extension A, C 74,
which contains the appropriately divided coefficients; the minimal such extension
was referred to in [34] as the Leibnitz extension of A, and was denoted by TA,.
We therefore refer to X 4, Y as a Hurwitz group law over A,.

A crucial example of such an extension for arbitrary A, occurs when there is
an embedding e: A, — #4, in some ring #4, which contains a sequence a such
that o, = (n + 1)la, for all n > 0. Then #4, does indeed contain elements
Ji; for which F?, = aljlff. as required, and we denote the formal group law
Do [ XY7 in #A*[[X,Y]] by f4(X,Y). By analogy with the universal case,
¢ extends to an embedding e: (A.[z],a(D)) — (¥A.{z},a(D)) of Hopf algebras
with delta operator, with respect to which B2 (x) = n! 5%(x).

Of course, the product on #4,{z} dualises to the formal comultiplication
(1.2.4) on #4*[[X]]. Then X +,Y is identified with the formal group law f*(X,Y),

which we also denote by X +, Y’; in addition, we may rewrite 1.2.5 as
fa(X),a(Y))=a(X +Y) and FUX,[-1].(X)) =0.

This is compatible with the definitions at the beginning of this section, up to
abbreviating X +« Y to X +, Y, and [—1]7«(X) to [—1]4(X). Thus the for-
mal group law X 4, Y has exp series a(X), log series a(X), and formal inverse
[—1].(X) =32, iX", where e provides the identification ¢y = k!if in #A,.

The covariant bialgebra U(f*). of the formal group law f*(X,Y") over A, (see

[18]) lies in the chain of Hopf algebra maps

Az] — U(f*). — A}, (1.2.7)
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and its underlying module is the free TA.-module spanned by the polynomials
B(x), where i > 0; we denote this module by TA.(3%(x)). The contravariant
bialgebra R(f*)* of f*(X,Y") is just TA*[[a(D)]].

With reference to our examples 1.1.9, both F/(X,Y) and f%(X,Y) are the
additive group law X + Y, whilst both F*(X,Y") and f*(X,Y) are the multi-
plicative group law X +Y +uXY. Moreover, F'*(X,Y) is the universal Hurwitz
group law, by virtue of Proposition 1.1.11. The minimal ring with an embedding
of the form e: @, — #&, is clearly H,, whilst '@, is the Lazard ring L,. Clearly,
L. is a subalgebra of H,, and LQ, = Q[b;,bs,...] = Q[my, ma,...]. Furthermore,
by Lazard’s theorem, L. is a polynomial algebra over Z. The formal group law
2(X,Y) over L. is also universal, and its covariant bialgebra U(f*). is the free
L.-algebra spanned by 3?(x), where 7 > 0. One of the main thrusts of our work
in Chapter 4 is to provide combinatorial models for the universal examples of
1.2.7, and for related Hopf algebras.

It can be shown that the idempotent of (®Q). specified by (1.1.10) restricts
to an idempotent of L,; its image is precisely the ring @, which we denote by
V.. The above idempotent maps the coefficients of f*(X,Y’) to the coefficients
of the formal group law over V, obtained by reinterpreting the Hurwitz group
law FA(X,Y) over @ as in (1.2.6). The exp series of this new formal group
law corresponds to an umbra in H,. which we denote by 0°; we clearly have X, =
(n+1)182 in H,. The formal group law f*"(X,Y) over V. is the universal p-typical
formal group law. It is isomorphic to f°(X,Y’), when both formal group laws are
considered over L, @ Z; here Z, denotes, as usual, the ring of integers localised
at a prime p, that is {{/n € Q : (n,p) = 1}. We have VQ, = Q[m), m(),...],
where m,) 1= mpn_;. Furthermore, by an analogue of Lazard’s theorem, the ring

V. 1s a polynomial algebra over Z with polynomial generators of degree p” — 1.

There are some nice choices for the generators, such as Hazewinkel’s generators



CHAPTER 1. BACKGROUND 29

vn, n > 1; we also have Araki’s generators w,, n > 0 for Vi @ Zg, (see [33]).

These generators are defined recursively in terms of my,) by

—i and pmn) = Z M) Wy s
' (1.2.8)

where wq = p.
As a final example, we refer to an important family of p-typical formal group
laws indexed by positive integers q. We consider the formal group law f**(X,Y)

with logarithm

pi-1 p?i-1

x4l

(X)) = X + XP 4 in kQY[[X]].

I 2

It is easy to check, by using the defining relations (1.2.8), that the ring homomor-
phism from V. to £Q, mapping the coefficients of the universal p-typical formal
group law to those of f*"(X,Y’) sends v, to u?"~!, and the rest of Hazewinkel’s
generators to 0. Hence f**(X,Y) is a p-typical formal group law over the sum-
mand of k, generated by w1, which we denote by k(q)..

Let us now return to the Hurwitz group law F*(X,Y). Since F*(X,Y) and
[—1]a(X) respectively encode the action of § and the antipode in terms of the

pseudobasis a(X )y, we may immediately dualise to obtain
i+] k
Bi(2)Bi(x) =) FiBi(x) and  Bi(-x)=) i"Bj(z).
- - (1.2.9)

These formulae answer our original question in terms of the Hurwitz group law;

they may neatly be summarised as

B(X)B(Y)=B(X +,Y) and  4(B(X)) = B(-.X)

(1.2.10)
in AL2]{{X,Y}}, where B(X) = ¥, B#(2)X(). By iterating the former, we
conclude that ] B(X;) = B(3." X,) for any finite sequence of variables X;; we
_ for the coefficient of T]%_, (X)) in (27 Xi)) -

RPN )
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Applying (1.1.4) to the product map and the antipode of A.[x] respectively,

we further deduce that

oz(D)(l) (p(x)g(x)) = Z an]l (oz(D)(i) p(z)) (oz(D)(j) q(x)) and

§,7>0
(1.2.11)

a(D)y ¥(p(x) =D iy (D) () (1.2.12)

k>1

for arbitrary p(x) and ¢(«) in A.[x]. We refer to (1.2.11) as the Leibnitz rule for
a(D).

Returning to our examples 1.1.9, we note that, in the case of (D), the formu-
lae (1.2.9) are trivial, and the Leibnitz formula is the standard one for D. In the
case of (D), the product formula (1.2.9) becomes the Vandermonde convolution,
and the Leibnitz formula reduces to the well-known action of the discrete deriva-
tive on a product. The universal case ¢(D) is considerably more mysterious, and
is discussed in later sections.

Formulae (1.2.9), (1.2.10), (1.2.11), and (1.2.12) may easily be rewritten in

terms of a(D), in which context the first two are well-known. Note that

7l — 7l
NEe —nll...nk!le

T 4eee sk

(1.2.13)

in "A,, under the identification provided by e.

1.3 Hopf Algebroids

Definition 1.3.1 A Hopf algebroid over a commutative ring R is a pair (A, I)

of commutative R-algebras with structure maps

np,mr: A— 1T left and right units,
o: ' = T'@rl comultiplication,
e: '— A counit,

vy [T — T conjugation,
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satisfying the following conditions:
1.5077L:€O77R:[A;
2. ([F®€)O(S:(€®[F)O(S:[F;

3. (Ir@d)od=(0xIr)od;

B

. yonr =1y and yony = ngr;

S

.yoy=1Ip;

6. maps exist which make the following diagram commute

&I Ir®y

r I'orp I r
MR .F®AF. 1L
1)

A = r = A

where (v © Ir)(z1 @ 22) :=v(z1) 22 and (Ir © v)(21 @ 22) 1= 21 y(22).

Here I' is a left A-module via 5z, and a right A-module via ng; on the other
hand, I' @4 " is the usual tensor product of bimodules, and ¢ and ¢ are A-
bimodule maps. A graded Hopf algebroid (A, I.) is called connected if the right
and left sub-A,.-modules generated by [, are both isomorphic to A,.

We now define Hopf algebroid structures on the algebras ¢, @ @.., H, @ H,,

and L, ® H,, which will be identified with the following polynomial algebras:

D, 2D, =D [th1,1q,...] via ¢, @1+ ¢, and 1® ¢, — ¥, ,
H,® H. = H.c,ca,...] via b, @1+ b, and 1 ® b, — ¢,,

L.® H, = L.c,ca,.. ] via the restriction of the above isomorphism.
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Note that we may compatibly identify @, ® @, as a subalgebra of H, ® H, by
means of ¢, — (n + 1)l¢,. The structure maps of the Hopf algebroid (H.,
H. ® H.) are defined as follows:

e c: H.® H. — H., is specified by ¢(¢,) = 0;

n: He — H. ® H, is the standard inclusion;

o np: H. — H. ® H, is given by

S =Y (xn)

i>0 i>0 >0

where ¢g = 1;

0: He@ Ho — (H. ® H,) @pu, (H. ® H.) is specified by

Sen) = > (H cni_1> @ Cron ;

kzl ni+ng+...dnp=ntl =1
ni>1

~: H. ® H, - H, ® H, is determined by

A(b) = nalb)  and 3 A(e) (ch) 1.

i>0 >0

The Hopf algebroids (®.,®. ® @.) and (L., L. ® H,) are defined by restricting
the structure maps of (H., H. @ H.). We abbreviate nr(¢,) to ¢, and ngr(b,)
to bl'; we also denote by ¢%, bt, ¢) and ¢ the corresponding umbras. For a proof

of the fact that the above structures are indeed Hopf algebroids, we refer to [33]
Theorem A2.1.16.

1.4 Connections with Algebraic Topology

Interesting instances of the structures discussed in §1.1, §1.2, and §1.3 occur when

LA, is the coefficient ring E, := m.(E) of a complex oriented cohomology theory
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E*(+) (note that we always have ', = E.). All the examples considered in 1.1.9
are of this type.

All homology and cohomology theories referred to in this work are assumed
to be unreduced.

Let E*(-) be a multiplicative cohomology theory with complex orientation Z in
E*(CP*). The ring of coefficients F, is assumed to be torsion free. We have
E*(CP*) = E¥[[7]] and E.(CP*>) = E.((1,0s,...), that is the free F,-module
generated by (1, 32,... The standard map p: CP* x CP* — CP* classifying
the tensor product of the two line bundles over CP* x CP* determines the
multiplicative structure of F.(CP>). The diagonal map CP> — CP*> x CP*
induces the comultiplication §: E,(CP*) — FE.(CP> x CP*) = E.(CP*)®
E.(CP®) specified by §

6(3n) = Zﬁi ® Br—i,
i=0

which turns E.(CP*) into a Hopf algebra. The map p induces a map
(2 EX(CP™) — E*(CP* x CP™) = E*(CP*)QE*(CP™).

Letting u*(7) := F(Z @ 1,1 ® Z), it is easy to show that F'(X,Y) is a formal
group law, and that E*(CP>) is its contravariant bialgebra, while E.(CP>) is
its covariant bialgebra.

Let D € H*(CP*>) be the first Chern class of the Hopf bundle over CP*>,
and let © € Hy(CP*) be the standard spherical generator. In [35] it is shown

that the Boardman map
E*(CP*) — H(EQ)QH*(CP>) = EQ[[D]]

is a monomorphism, which maps Z to the exp series expp(D) of the formal group

law FI(X,Y); we let

expp(D) =a(D) =D +a;D* +a; D’ + ... in EQ*[[D]].
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It is also shown that the Hurewicz homomorphism
E.(CP*) = H.(FQ)® H.(CP™) = EQ,[]

is @ monomorphism, which maps 3, to 82(x).

Let us now consider the space 252 of loops on the 3-sphere. Let f; be the
suspension of the inclusion S? < 25% and j, the evaluation map X 25 — 57,
We define

x € 75 (£25%) and D € mi(925?)

as the classes represented by f; and j;, respectively. The unit S° — F induces
elements v € F»(£25%) and D € E*(£25%). In [36] it is shown that F,(£25%) =
E.[z], and that E*(£25°%) = E*{{D}} as Hopf algebras. Let h: £25% — CP*>
represent the integral cohomology class D € H?(§25%). The use of the notation
D for an element in EQ*(CP*>) and another one in £*({2.5%) is now justified, since
h* maps the first element to the second one; the same is true about the notation
x. Hence h, and h* can be interpreted (via the corresponding isomorphisms) as
the embeddings E.[z] — FE.(8(x)) and E*[[a(D)]] — E*{{D}}, respectively.
We now turn to the examples considered in 1.1.9, each of which corresponds
to a certain complex oriented cohomology theory. Recall that given a torsion free
ring A, and an umbra « in A,, we have defined a formal group law f*(X,Y)
over “A,. We summarise the examples in 1.1.9 in the following table, where H,
stands for the ring Z[b1, by, .. .] (as defined in §1.1), as well as for singular homol-
ogy, depending on the context. The orientations for the cohomology theories we

mention are the usual ones (see [1] or [33]).
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LA, fUX,Y) Corresponding cohomology theory

Z X+Y H*(-) (singular cohomology)

k. X +Y +uXY | £*(-) (connected K-theory)

L. X Y) MU~*(-) (complex cobordism)

. POGY) | (A MUY

Vi @ Ly (X Y) BP*(-) (Brown-Peterson cohomology)
k(q)e @ Zyy | (XY 9(q)*(+) (connected Morava-type K-theory)

The notation ¢g(¢)*(-) is non-standard; it is motivated by the fact that the case
g = 1 corresponds to the connective version of the Adams summand of K-theory,
which is usually denoted by ¢*(-). The fact that the complex cobordism ring MU.
is isomorphic to the Lazard ring L. is a remarkable result due to Quillen. It is
also known that H.(MU) is isomorphic to the ring H. = Z[by, by, ...]. Further-
more, the Hurewicz homomorphism MU, — H,.(MU), which is known to be a
monomorphism, can be interpreted (via the above isomorphisms) as the embed-
ding L, — H, discussed in §1.2. Based on these remarks, we shall henceforth
identify MU, with L, and H.(MU) with H..

Finally, we discuss Hopf algebroids. J. F. Adams showed that under certain
conditions on the cohomology theory E*(-), there is a Hopf algebroid structure
on E.(F), with structure maps defined by topological maps. He also determined
the Hopf algebroid structure of MU(MU) (see [1] or [33]). It is known that
MU.(MU) = MUYV MU ] as algebras, whence MU(MU) = L. ® H.,
via BMY s ¢,. This is actually an isomorphism of Hopf algebroids, since the
structure of L, ® H, defined in §1.3 is precisely the one described by Adams for
MU.(MU). The induced Hopf algebra structure on H. is known to topologists
as the dual of the Landweber-Novikov algebra; we will refer to it once again in
Example 1.7.4, from a combinatorial point of view. As far as the Hopf algebroid

H. ® H. is concerned, we note that it is isomorphic to (H A MU ).(MU).
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1.5 Set Systems

We shall always write |V for the cardinality of a given set V', and k + [n] for the
set of integers {k + 1,k +2,... ,k+n}.

Given any finite set V' of vertices (possibly empty), we refer to a collection
of subsets & C 2" as a set system if ) € S and V = Uwes W since S uniquely
determines the vertices, we denote V by V(S) whenever § is in doubt. Similarly,
given a partition 7 of the set V', we denote the latter by V(7). The set systems
S; and Sy are isomorphic if there is a bijection f: V(S1) — V/(S3) such that
{fU) : U €& }=35,.

Instead of considering arbitrary set systems, in this work we concentrate on
so-called partition systems, which we now define, since they provide the most
appropriate framework for our constructions. Throughout this work, we employ
the non-standard convention that the empty set has the unique partition {0}.
Given a partition 7 of the finite set V', we denote by Bool(7) the Boolean algebra
of subsets of V' consisting of arbitrary unions of blocks of m. A set system P
satisfying 7 € P C Bool(7) for an arbitrary partition 7 of V will be called a
partition system. The blocks of 7 are the atoms of the poset (P, C); we will refer
to them as the atoms of P. Since 7 is uniquely determined by P, it is often
convenient to denote 7 by At(P), and Bool(7) by Bool(P). The sets belonging
to Non(P) := P\ {0} \ At(P) will be called non-atoms.

Any set system which contains every vertex as a singleton is obviously a
partition system, with singletons as atoms. Amongst such examples, we shall
regularly consider simplicial complexes (or down closed set systems) such as the
independence complex Z(H) of a graph H, and

Ny i={{a} : 2 € V}U{0}, Ky :=2", IC”::UQB,
Ber

where 7 is a partition of V. If V = [n], we denote Ny by N, and Ky by K,,; if 7 is
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the partition of [ny +. ..+ ng| with blocks [ny], ny 4+ [n2], ..., ni+.. .+ ng_1 +[ng],
of those sets in K,, which are intervals (in Z).

Given a partition system P and U € Non(P), we define the deletion of U to
be the partition system P\ {U}, abbreviated to P\ U. We also define the strong

deletion as

P\ =P\ {WeP:UCW}.

Now let 7 C Bool(P) be a partition of a set U C V(P) (so that U necessarily

lies in Bool(P)). We define the partition system P|m to be
{WeP : WCB forsome Ber},

and call it the restriction of P to m. We also define the partition system P /7 to
be
{WeP:BCWo BNW=0, forall Ben}Umr,

and call it the contraction of P through 7. Note that even if all the atoms of
a partition system are singletons, not all the atoms of a contraction of it are
(except for the trivial case, when we are contracting through singletons). We
can transform an arbitrary partition system P into one which has only singleton

atoms by defining
Sing(P) := {At(P|U) : U € P}.

We may then define the strong contraction of P through 7 as P//m := Sing (P /).
We abbreviate P{U}, P/{U}, and P//{U} to P|U, P/U, and P//U, respectively.

For instance,

{0,417, 42, 37 41,25, {1, 2,333 //{2,3} = {0, {1}, {2}, {1, 2}},

where T := {1} and 2 := {2,3}.
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The restriction and the contraction of a partition o through a set /' € Bool (o)
is defined in a similar way to the restriction and the contraction of a partition

system, namely:
olU:={B€o: BCU}, o/U:={Bec: BNU=0}U{U}.

Given two partitions 7 and o of V satisfying 7 < o, where the order is refinement
(that is: every block of 7 is a subset of some block of o), we recall that the induced
partition o /7 on the blocks of 7 is the partition of m whose blocks are the sets
{Ber : BCC}for Cino.

Given two partition systems P and Q with the same vertices and atoms, we

define the complement of Q in P to be the partition system
Cro:.=P \ Non(Q).

The complement of P in Bool(P) will be denoted by P, and called, simply, the
complement of P. Given partition systems P; and Py, we shall write their disjoint

union as Py - Ps, and define their join by
731\/732 = {U1|_|U2 . U1 Eph U2 EPQ},

where U denotes disjoint union of sets. Note that the join of partition systems
corresponds to disjoint union of graphs, when we identify a graph with its inde-

pendence complex. It is useful to define the following operations, as well:
P1©Pyi=Pr-Pa, Pi@®Pyi=PiVPs.

We say that a partition system is connected if it differs from {(} and is not
isomorphic to a non-trivial disjoint union. Similarly, we call a partition system
join-connected if it differs from {{}} and is not isomorphic to a non-trivial join of
partition systems. We write P. for the partition system consisting of those sets

U € P for which P|U is join-connected. Given a graph H, it is not difficult to see



CHAPTER 1. BACKGROUND 39

that Z(H). consists of those sets of vertices U for which the restriction of H to U
is a connected graph. In general, finding an alternative description of P., which
is easier to grasp than the one given above, amounts to finding such a description
for join-connectivity; however, we have not been able to do this.

Given a partition system P, we refer to any partition o of its vertices which
satisfies o0 C P as a division by P, and denote the set of such divisions by I1(P).
This is partially ordered, as usual, by refinement, and the partition of V(P) into
the atoms of P is the minimum element 0 (or ﬁn(p) if the context is unclear).
In particular, I1(Ky) is the lattice of all partitions of V, and is usually denoted
by H(V), or II, when V = [n]. The poset I1(Z,), which will be denoted by 11,
is isomorphic to the Boolean algebra (K,_1,C). We write I, ; and ﬁnk for the
subsets of II,, and 11, consisting of partitions with & blocks. The set | II(P|U),
where U ranges over Bool(P), consists of all divisions of appropriate subsets of
the vertices by elements of P; this set will also be useful below, and we label it
a(p).

Recall that a preferential arrangement of a finite set V' is a pair (o,w), where
o is a partition of V., and w is a bijection from [|o|] to o, inducing a linear order
on o. Given a partition system P, we denote by A(P) the set of preferential
arrangements (o,w) of V(P) with o € [I(P). This set can be partially ordered
by setting (m,w’) < (o,w) if 7 < o, and only adjacent blocks are amalgamated in
order to obtain o from 7. Following Wagner [55], we define a colouring of P with
colours C' to be a map f: V(P) — C whose kernel is a division by P; we denote
the set of such colourings by Z¢(P). If C = N or C = [n], we simply call them
colourings and colourings with at most n colours, respectively.

For each partition o of a given set, we define its type 7%(o) to be the monomial
qblfl ]2“2 ... in @,, where k; is the number of blocks of ¢ with 7 + 1 elements. The

type of a colouring is the type of its kernel.
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We call two partition systems with singleton atoms &; and Sy weakly isomor-
phic if there are integers ki, ko > 0 and a set system S such that §; is isomorphic
to S+ N}, for i = 1,2. Throughout this work, we shall not attempt to distinguish
notationally between a set system and its isomorphism class, respectively weak
isomorphism class, since in those cases where it matters, we have taken care to
ensure that the context is clear. We denote by & the set of isomorphism classes
of partition systems with singleton atoms; we also denote by S the set of weak
isomorphism classes of partition systems S with singleton atoms for which I1(S)
has a unique maximal element. We write &, and éo for the subsets of & and
& consisting of isomorphism classes, respectively weak isomorphism classes, of
connected set systems. Complementation, as well as all the binary operations

discussed above can be defined on &, while disjoint union can even be defined on

é; thus, we obtain monoid structures on & and é, in each case the unit being

0}.

—

1.6 Set Systems with Automorphism Group

Given a group G acting on a set X, we follow convention by writing the set
of orbits under the action of G by X/, the orbit of # € X by G(x), and the
stabiliser of by G.

In this section, by set system we always mean a partition system with singleton
atoms. We refer to a pair (S, () consisting of a set system & and a group G of
automorphisms of S as a set system with automorphism group. Obvious examples
are (Ky,Xy) and (K., X,), where Xy and X, denote the symmetric groups on
the sets V' and [n], respectively.

Given a set system with automorphism group (S, ), the group G acts in an
obvious way on ﬁ(S), and on the set of colourings =4(S) via the map (g, f) —

fog ', where g € GG and f is a colouring. It also acts on the following posets by
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preserving the corresponding order: (Ky(s), C), II(S) and A(S); hence, there are
induced poset structures on the sets of orbits: Ky (s)/G, I(S)/G and A(S)/G.
It is not difficult to see, and we will use the fact that the poset A(K,)/Y, is
isomorphic to 1,.

Consider a pair (S, ) as before, and a partition 7 of a subset of V(S). We
let G| denote the image of the group (.. Gp under the projection Xy () x
Xy s)\v(r) = Xv(r). Since G| is an automorphism group of S|, it makes sense
to define the restriction of (S, G) to m by (S, G)|r := (S|m, G|7). Restriction to
{U} is abbreviated as before. Now assume that 7 is a partition of V(S). The
stabiliser G/ of the partition 7 (under the action of G on Ily(sy) permutes the
blocks of 7, whence we have a group homomorphism from G, to Y. The image
of this homomorphism is an automorphism group of S//7, which we denote by
G//m. Hence it makes sense to define (S,G)/m = (§//m,G /), and call it the
contraction of (S, ) through 7. Let us note that the kernel of the above homo-
morphism is precisely G|m, whence G /(G|m) is isomorphic to (/m; in particular,

we have
|G| = |G|7||G/x|. (1.6.1)

We define complement and disjoint union of set systems with automorphism

group by

(S,G):=(S5,G)  and  (S,G1) (S, Gy) = (Sy -85, Gy x Gy),
(1.6.2)

respectively. Join and & are defined analogously.

We decree that two set systems with automorphism group (51, Gy) and (Sa,
(43) are isomorphic if there is an isomorphism f: V(S1) = V(S3) of §; and S
such that G is isomorphic to G5 via the map g — fogo f~!. We call (S;,G,) and

(82, G2) weakly isomorphic if there are integers k1, ko > 0 and a set system with
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automorphism group (S, &) such that (S;, G;) is isomorphic to (S, G) - (N, {1})
for = 1,2. Throughout this work, we shall not attempt to distinguish notation-
ally between a set system with automorphism group and its isomorphism class,
respectively weak isomorphism class, since in those cases where it matters, we
have taken care to ensure that the context is clear.

We now consider the following sets of isomorphism classes, respectively weak

isomorphism classes, of set systems with automorphism group:

1. the set A of isomorphism classes of all set systems with automorphism

group;

2. the set 2 of weak isomorphism classes of set systems with automorphism
group (S, ) for which I1(S) has a unique maximal element, and the follow-
ing condition is satisfied: (S, ) and (S, ) /o are disjoint unions of (S', ')

with S’ connected, for every o in II(S);

3. the set € of isomorphism classes of set systems with automorphism group
(S, G) for which G has the property that every cycle of an element of G is

also in G

4. the set P of isomorphism classes of set systems with automorphism group
(S, G) for which there is a partition 7 € [1(S) such that K™ C S C K™ U
Bool(w), and G is the direct product of symmetric groups acting on the

blocks of a partition o < m;

5. the set ‘ﬁ of weak isomorphism classes of set systems with automorphism
group (S, () satisfying the condition in (4) plus the condition that [1(S)

has a unique maximal element.

Every set system may be considered as a set system with automorphism group,

with respect to the trivial automorphism group {1}; hence we have the inclusions

ScPcecA and GCcPcA.
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Let us also note that the operations disjoint union, join, and & define monoid
structures on B, €, and A. Disjoint union also defines a monoid structure on ‘ﬁ
and 2.

Peter Cameron has determined all permutation groups G with the property
that every cycle of an element of (¢ is also in G. He called such permutation

groups cycle-closed.

Theorem 1.6.3 ([5]) A permutation group is cycle-closed if and only if it is the
direct product of its transitive constituents, each of which is a symmetric group

or a cyclic group of prime order.

1.7 Incidence Hopf Algebras

In [47], W. Schmitt associated a Hopf algebra, called the incidence Hopf algebra,
with a family of posets satisfying certain conditions. We review these conditions
here, and present some classical examples from this point of view; these examples
will be used throughout this work. Other constructions based on the general
method in [47] appear in Chapter 4.

Let P be a non-empty family of posets which are intervals (this means that
they have a unique minimal and a unique maximal element). We assume that
this family has the property that for all posets P in P and elements x < y in
P, the interval [z,y] :={2 € P : @ <z <y} is also in P; such a family is called

interval closed. We consider an equivalence relation ~ on PP such that, whenever

o~ o~

P ~ @ in P, there exists a bijection £: P — @ such that [0p, z] ~ [0g, {(2)] and
[x,/l\p] ~ [f(:z;),/l\Q], for all z in P; such a relation is called order compatible, and
the map £ is called an order compatible bijection. Given the above setup and a

commutative ring with identity R, there is a natural coalgebra structure on the

free R-module H(IP) generated by the quotient set P:= P/ ~ (which is called the
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set of types). The comultiplication ¢ and the counit ¢ are defined by

~ ~ 1 if |[Pl=1
6[P] = Z[OPM‘] @ [z, 1p] and e[P] := 11

zEP (0 otherwise.

Now let us assume that the interval closed family P is also closed under for-
mation of direct products; such a family is called hereditary. It follows that Pis a
semigroup under direct product, generated by the set of indecomposables, which
is denoted by P,. Let us assume that the order compatible relation ~ considered
above is also a reduced semigroup congruence, that is a semigroup congruence
satisfying P x Q@ ~ Q) X P ~ P for every P,() € P with |Q| = 1; such an equiv-
alence is called a Hopf relation. Poset isomorphism is an obvious example of a
Hopf relation. Under the above conditions, the set of types Pisa monoid, with
identity element equal to the type of any one point interval. Furthermore, the
coalgebra structure of H(P) can be enriched to that of a Hopf algebra, by linearly
extending the multiplication in the monoid of types; this is called the incidence
Hopf algebra of P. The antipode of this Hopf algebra is given by the Schmitt
formula:

P => Y (=0 ] Jlwin . (1.7.1)

k>0 z0<...<xp =1
zo=0p,zx=1p

The dual H* of H := H(P) is called the incidence algebra of P (reduced
modulo ~). This algebra can be identified with the set of all maps from P to R.
The multiplication in H*, which is dual to the comultiplication in H, is called
convolution and is given explicitly by

(Frg|IP) = (fI[0p,a]) (g ] 2, Tp]),
reP
for all [P] in P. The subset Alg(H, R) of H* consisting of all algebra maps from H
to R can be identified with the set of all maps from P, to R. This subset is a group

under convolution, called the group of multiplicative functions on H. The inverse



CHAPTER 1. BACKGROUND 45

of any f in Alg(H, R) is given by the composition f o+, where v is the antipode
of H. Given f and ¢ in Alg(H, R), the map (f @ g)o § in Alg(H, R ® R) will
be denoted by f ® g. The correspondence R +— Alg(H, R) is a covariant functor
from the category of rings to the category of groups. There are situations, such
as those mentioned in §3.3, when a ring homomorphism ¢: R — T is uniquely
determined by the image of Alg(£) on some function in Alg(H, R).

We now present three important examples. Recall the graded commutative
rings with identity A. and R. considered in §1.1, and the corresponding umbras

o and r.

Example 1.7.2 The Faa di Bruno Hopf algebra. Consider the family of
posets which are isomorphic to a finite product of lattices II,,. The incidence
Hopf algebra (over the integers) of this family modulo isomorphism of posets
is a polynomial algebra in infinitely many variables. Hence it can be realised
on the set @, by identifying the isomorphism class of the lattice I1,,1; with ¢,.
Note that the isomorphism class of an interval |7, o] in I, 41 becomes identified
with the type 7%(o/m) (as defined in §1.5) of the induced partition o/7. The

comultiplication and counit are specified by

1 fn=0
5(¢n) = Z 7—¢(0-) & ¢|U|—1 5 5(¢n) —
€M ppy 0 otherwise,

(1.7.3)

for all n > 0. This Hopf algebra is known as the Faa di Bruno Hopf algebra.
Now consider the group Alg™(®., A.) of graded multiplicative functions under
convolution. We denote by (* the multiplicative function specified by ¢; — «;,
and by p its convolution inverse. In this context, (¢ is the identity map, and p?

is the antipode of the Hopf algebra @.,.

Example 1.7.4 The dual of the Landweber-Novikov algebra. Now con-

sider the family of posets which are isomorphic to a finite product of Boolean
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algebras II,,. The incidence Hopf algebra (over the integers) of this family mod-
ulo isomorphism of posets is a polynomial algebra in infinitely many variables.
Hence it can be realised on the set H, by identifying the isomorphism class of the
Boolean algebra ﬁn-l—l with b,. Note that the isomorphism class of an interval
[7,0] in II,4; becomes identified with 7%(o/m). The comultiplication and counit

are specified by

5(bn) = Z Tb(U) @ b|g|_1 = Z Z (H bnl‘—1> @ by_1,

ﬁ kzl ni4no+.. . dng=ntl =1
o&ling1 n;>1 (175)
1 ifn=0

e(b,) =

0 otherwise,
for all n > 0. This Hopf algebra is precisely the dual of the Landweber-Novikov
algebra, which was mentioned in §1.4. It is not difficult to check that @, can be
identified with a sub-Hopf algebra of H. via the monomorphism ¢, +— (n 4+ 1)!b,;
we will actually present a purely combinatorial way of understanding this fact
in §4.4. Now consider the group Alg™(H., R.) of graded multiplicative functions
under convolution. We denote by (" the multiplicative function specified by
b; — r;, and by p” its convolution inverse. In this context, ¢® is the identity map,

and p® is the antipode of the Hopf algebra H,.

The notation (%, pu®, (", and p” conforms with our conventions. We now
present a well-known result (see [12], Theorem 5.1 and [47], Examples 14.1 and
14.2), which has a fundamental rdle in translating problems related to substitution

of formal power series into the combinatorial language of incidence Hopf algebras.

Theorem 1.7.6

1. The group Alg™(®., A.) is anti-isomorphic to the group under substitution
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of Hurwitz series in A*{{X}} of the form

a(X) = Z ai—1X()

where o is an umbra in A, (if A. has no torsion, then we can identify X

with X*/i!); the anti-isomorphism is specified by (* — a(X).

2. The group Alg™(H., R.) is anti-isomorphic to the group under substitution
of formal power series in R*[[X]] of the form
r(X):= Z rio X°,
i>1

where r is an umbra in R.; the anti-isomorphism is specified by (" — r(X).

According to the theorem, we have
po(on) =a,  and  p(by) =T (1.7.7)

Let us now recall the binomial Hopf algebra @.[z], and the divided power
Hopf algebra H.{x}. It is well-known that conjugate Bell polynomials and the

Bell polynomials in @,[z] can be expressed combinatorially as follows:

Bi(x) = x (% + (%) (du-1) and  BI(x) =2 ((?* () (pney) forn >1,
(1.7.8)

where ¢ is the umbra (1,z,2%,...) in @,[z]. Let us write

n

BY(z) = ZS¢(n,k)xk and Bi(z) = z”: S?(n, k)z" .

k=1
The coefficients s%(n, k) and S?(n,k) in @,_; are known as @,-Stirling numbers
of the first and second kind, respectively; S?(n, k) are also known as partial Bell
polynomials. The standard notation s(n, k) and S(n, k) for the classical Stirling

numbers of the first and second kind is consistent with our conventions.
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Let us now recall the divided conjugate Bell polynomials 8°(z) in H.{z},

which we write as
n k
b — b L.
ﬁn(x) — Zﬁn,ka7
k=1
clearly, we have n’ﬁzk = k!s?(n,k) in H,. Considering the umbra = = (1, 2/2,
z?/3!,...) in (@Q).[z], it is now easy to show that the divided conjugate Bell

polynomials and the divided Bell polynomials can be expressed combinatorially

as follows:

Bh(w) =@ (1 * (") (baor) and  Bl(z) = @ ("% (") (bar) forn > 1.
(1.7.9)

Indeed, we know that &, is a sub-Hopf algebra of H. via the inclusion ¢, +—
(n + 1)!b,,, which we denote by i. Hence the transpose i*: Alg™(H., (PQ).[z])
— Alg™ (., (PQ).[x]) of i is a group homomorphism specified by f +— foi. More
explicitly, we have that *(¢%) = ¢? and ¢*((%) = (¢, whence 1*(u®) = u? by taking
inverses. Finally, we have the relation ¢*(u” * (%) = p® * (¢, which implies (1.7.9)
when applied to ¢,-1 and combined with (1.7.8). The second formula in (1.7.9)
follows in a similar way. Passing from (1.7.8) to (1.7.9) turns out to be a special
case of a more general phenomenon, which is investigated in §2.5 in terms of set

systems and their automorphism groups.

Example 1.7.10 The incidence algebra of a poset. Let R be a commutative
ring with identity, and P a locally finite poset, that is a poset whose intervals are
all finite. We denote by Int(P) the set of intervals of P. The incidence algebra
R(P) of P is the free R-module generated by all functions from Int(P) to R, with

pointwise addition, scalar multiplication, and product (or convolution) of f and

g in R(P) defined by

(fxg)@y) = > fla,2)g(zy).

r<z<y
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for all + < y in P. Note that we have followed convention in abbreviating
f([z,y]) to f(x,y), and continue to do so. The identity of R(P) is the function
e which is defined, using the Kronecker delta, by e(x,y) := d,,. We now explain
the connection with incidence Hopf algebras. Let P be the hereditary family
consisting of arbitrary products of posets in Int(P), and let ~ be the smallest
(with respect to inclusion) Hopf relation on P for which the monoid P/ ~ is
commutative. We consider the incidence Hopf algebra (over R) of the family
P modulo ~, and denote it by H. As discussed above, the algebra Alg(H, R) is
isomorphic to the subalgebra of R(P) consisting of all functions f taking the value
1 on every one-point interval in P. According to the Schmitt formula (1.7.1), the
convolution inverse of such a function exists, and can be expressed as follows:
o)=Y D (=D fleoen) . flae, @),

k>0 o=x9<...<zp=Yy

(1.7.11)

We can also express f~! recursively, as follows:
F Uy == ) @, 2) f(zy). (1.7.12)
r<z<y
In fact, the convolution inverse of a function ¢ in R(P) exists if and only if
g(x,x) is an invertible element of R for every x in P. The general formula for

the convolution inverse can be deduced from (1.7.11).

We now present some important special cases of the concepts related to the in-
cidence algebra of a poset; these examples will play an important role throughout
our work, while other examples will appear in §2.5 and §5.1. The first example is
the Mobius function of P, which is just the convolution inverse of the zeta function
(, taking the value 1 on all intervals of P. The Mobius function is traditionally
denoted by p, or pp if the context is unclear.

Now let A, be the ring considered in §1.1, « the corresponding umbra, V'

a finite set, and P a subposet of II(V), ordered by refinement. Consider the
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function (* in A.(P) defined by (*(m, o) := 7%(o/m), which we call the zeta type
function. Its convolution inverse clearly exists, and is denoted by p% (or just
p® if the context is clear, a common situation of this kind being P = [I(V)).
In order to express the convolution inverse, we define the type 7%(v) of a chain

y=Ho1 <oy <...<oi}of length [(y):=k —1 by

() = (_1)Z(W)_1§a(01702) oo CM(okm1,08)

if k> 1, and by 7%(y) := 1, otherwise. According to (1.7.11), we have
pp(mo)=— Y 7(y); (1.7.13)
vyeC(m,o)
here, and throughout this work, C'(Q) denotes the set of chains between a minimal
and a maximal element of the poset (). The function /,L?; in @.(P) is called the
Mbébius type function of P. Observe that both (*(7, o) and p¢ (7, o) liein A7 —s).

It makes no difference if we replace the ring A, and umbra a with the ring
R. and umbra r in the above paragraph. Let us also note that the functions
(o, u® € ALIl,) and (", u" € R*(ﬁn) are essentially the same as certain re-
strictions of the functions in Alg™(®., A.) and Alg™(H., R.) for which we have
used the same notation. The only difference is that the latter are defined on
isomorphism classes of intervals rather than intervals; more precisely, we have
p(r(o/m)) = /,L%(V)(W, o) for m <o in [I(V), and similar relations for the other
functions. The context will always determine which kind of functions we are us-
ing; in fact, functions in Alg™(®., A.) and Alg"(H., R.) are only used in Chapter
3.

The notation (¢ and p% conforms with our convention. In particular, the
classical M6bius function up(m, o) is obtained from /,L?;(Tf', o) by setting each ¢; to
1. This suggests that we might generalise certain standard properties of up(m, o)
to p%(m, o). Thus we may establish the following two results by straightforward

adaptation of the proofs in [50].



CHAPTER 1. BACKGROUND 51

Proposition 1.7.14 Given the subposets P and @ of II(V) and II(W), where

W NV =10, we identify the pair (o,0") € P X @ with o U o'; then we have
IM%XQ(W unr’,oU U/) = M%(Wv U) M%(le U/) in Ay

Proposition 1.7.15 If Q) is a subposet of the interval [w, o] in P C II(V') which

contains both m and o, then

M%(an) = Z (—1)k/,L%(7T,7T1) o (T, 0)

where the summation ranges over all chains {m < m <...<m, <o} in C(m,0)

for which m; & Q.

1.8 Invariants of Partition Systems

We now associate several polynomials and symmetric functions with a partition
system P and a set system with automorphism group (S, () (recall that & must
be a partition system with singleton atoms). We denote by SymZ(z) the graded

Z-algebra of symmetric polynomials over the infinite set of indeterminates = =

{x1,22,...} (cf. §1.10). Assuming that V(P) = V(S) =V, we define

pP(Pia) =3, ey 70 (0) 2V in pylz],
(Pia) = ZUEH(P) M%(P)(av 7) zl7! i @paypy el
X (Pix) = EUEH(P)T¢(0—) Bﬁq(“’) in @],
X(Pyx):= EfeEN(P) xf in Sym%v|(x), (1.8.1)
X(S,G5a) = ZfeTxf in Sym%v|(x),
where z/ := [l.cv ¢y, and T is an arbitrary transversal of the orbits of G

on Zxn(S). We call p?(P;x) the partition type polynomial of P, and ¢*(P;zx)
the characteristic type polynomial of P. Of course, the first three polynomial

invariants in @.[z] are mapped to polynomial invariants in A.[z] by the map ¢°
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in Proposition 1.1.11, for every ring A, of the type considered in §1.1 and every
umbra « in A..

Special cases of these invariants are well-known. For instance, the partition
polynomial of P investigated in [55] can be retrieved by substituting ¢; with
1 in p?(S;z). The characteristic type polynomial of a poset of partitions of a
finite set appears in [40]; note that we have associated this polynomial with the
partition system P rather than the poset II(P). If P is a simplicial complex
and all the maximal partitions of II(P) have cardinality m, then the substitution
é; ~ 1 maps c?(P;z) to the characteristic polynomial of II(P), up to a factor
z™. The polynomial Y?(P;x) was referred to in [40] as the umbral chromatic
polynomial of P, since after umbral substitution by m¢, it enumerates by type
the colourings of P with at most m colours. Whenever P is the independence
complex of a graph H, the polynomial Y?(P; ) reduces to the umbral chromatic
polynomial x?(H; ) introduced in [41]. Note that our conventions dictate that
we write xY(H;x) for the classical chromatic polynomial of H, and x"*(H;z) for
its homogenised version. Considering the latter is natural from the point of
view of graded algebras; the combinatorial significance is the following: after
umbral substitution by ms (which is a special case of umbral substitution by
mao), \*(H; x) enumerates colourings of H with at most m colours by the number
of colours. In Chapter 2 we associate with P a new polynomial x?(P;x), and it
is this one that we label the umbral chromatic polynomial of P. It turns out that
whenever P is a simplicial complex (in particular, the independence complex of
a graph), we have x?(P;z) = Y?(P;x). There are essentially two reasons for
concentrating on the more complex polynomial x?(P;x), rather than Y*(P;z),
whose definition and combinatorial interpretation are straightforward. The first
reason is that we are able to generalise Whitney’s original formula (in Proposition

2.4.1) for expanding the chromatic polynomial as the characteristic polynomial
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of an associated poset:
Y(H;z) = 2" o(Ly; x); (1.8.2)

here n(H) denotes the number of connected components, and Ly the lattice of
contractions (or bond lattice) of H, that is the set of all connected partitions of
H, partially ordered by refinement. The second reason is that we are able to
derive two product formulae for x?(P;z) (in Propositions 2.4.9 and 2.4.15) which

generalise the classic
X(Hy U Hyy o) = x(Hyyo) x(Has ). (1.8.3)

The second formula depends on the context of partition systems for its very
existence; in terms of application to formal group laws, this formula may best be
interpreted in the context of Hopf algebras, as in Chapter 4.

Finally, the symmetric functions X(P;a) and X(S,G;x) are natural exten-
sions of Stanley’s recently introduced symmetric function generalisation Xy of
the chromatic polynomial of a graph H (see [51]); indeed X(Z(H);x) = Xp. As
Stanley points out and we discuss in detail in §2.2; the symmetric function Xp
encodes the same information as the umbral chromatic polynomial of H.

By way of simple examples, of which the last two are just restating (1.7.8),

we remark that

p(b(Nn;x) = c(b(Nn;x) =", ,O(b(/Cn;x) = Bf(x)v c(b(lCn;:z;) = B(b(x)'
(1.8.4)

If we combine the standard isomorphism I1(S;-S2) = I1(Sy) x II(S2) with Propo-

sition 1.7.14, we may immediately deduce the following result.

Proposition 1.8.5 For any set systems Sy and Sy, we have

pP(S1- Saya) = p?(Sis ) p?(Sai ), (81 Sp;x) = (i) ¢(Sa; ) -
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We also record a simple property of X(S,G;x), directly from the definition.

Proposition 1.8.6 Given set systems with automorphism group (Si1,G1) and
(827G2); then

X(Sl\/SQ,Gl X Gz,l') :X(Sl,Gl,l’)X(SQ,GQ,l'),

in particular, X(S1V Sz;x) = X(S1;2) X(Sz52) .

1.9 The Classical Necklace Algebra and Ring of

Witt Vectors

In [29], Metropolis and Rota studied the properties of the so-called necklace poly-
nomials, which are defined for every n in N by
M(z,n):= 1 ZM <E> z in Q[z];

n ™ d
here p denotes the number-theoretic Mobius function, which is related to the
Mébius function of the lattice D(n) of divisors of n by p(n/d) := u(d,n) =
w(1,n/d). For every m in N, M (m,n) represents the number of primitive necklaces
(that is asymmetric under rotation) with n coloured beads, where the colours are
chosen from a set of size m. Hence, M(x,n) are numerical polynomials (that is
they take integer values for integer ). Metropolis and Rota were lead to define for
every torsion free commutative ring A with identity the necklace algebra Nr(A)
(over A). This algebra is the set A* of infinite sequences of elements of A with
componentwise addition, and multiplication defined by

(@ B)ui= Y (i,5) i
[i,4]=n

here [¢,7] and (¢,7) denote, as usual, the least common multiple and greatest

common divisor of ¢ and j, respectively. Note the convention of writing « for an
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element (aq, ag,...) in A%; similarly, if h is a map from a set X to A*, we write
h(x) = (hi(x), ha(x),...). Following [29], we define a map M: AQ — AQ*> by
M, (b) := M(b,n).

The algebra Nr(A) has two remarkable operators for every r in N, namely the

Verschiebung operator V,, and the Frobenius operator f,.; the former is defined by

a; fn=mr
Vinle) := (1.9.1)
0 otherwise.
The algebra Nr(A) is closely related to the ring of Witt vectors W(A) (see e.g. [21]
pages 233-234), and the ring of unital formal power series 1 + t A[[t]] under cyclic
sum and cyelic product (see [29]). To explain these relationships, we introduce

the ghost ring Gh(A), which is just A with addition and multiplication defined

componentwise. We also define the following maps:

W(AQ) — Nr(AQ), T(a) =35 VaM(ay),
W(AQ) = Gh(AQ), wa(a) = Y, dag!’,
g: Nr(AQ) — Gh(AQ), gn(a) := 32, doy,
¢ Nr(AQ) — 1+ tAQI[t]], c(a) =TT (Z7)™"
E: Gh(AQ) — 1 + tAQ[[]], E(a) = exp (3,5, 22t") .

Theorem 1.9.2 (c¢f. [29], [14], [54])

1. All the above maps are ring isomorphisms, and the following diagram is

commutative.

W(AQ) d Nr(AQ)

1+ tAQ[1]]

Ch(AQ) (1.9.3)

2. The image of W(A) in 1 4+ tAQJ[t]] is precisely 1 4+ tA[[t]]. We also have
that T(W(A)) = Nr(A) for A =7, but not in general.
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3. We have that
1

1 —au,tn’

(coT)() =]

n>1

The following generalisation of the cyclotomic identity (due to V. Strehl
[52]) holds:

1 M(m,n) 1 M (k,n) .
H(l—ktﬂ) :H<1—mtn> in 1+ tZ[[t]],
n>1

n>1
- (1.9.4)

where k,m € Z.

We conclude this section by recalling that Dress and Siebeneicher interpreted
the necklace algebra Nr(Z) as the Burnside-Grothendieck ring of almost finite
cyclic sets [14]. They also interpreted the map 7' in this context, and were lead
to a combinatorial interpretation of the ring structure of W(Z). This enabled
them to give a surprising generalisation of the ring of Witt vectors W(A) in [13],

namely the Witt-Burnside ring We(A) associated with a profinite group G.

1.10 Symmetric Functions

Let A, be the ring considered in §1.1. In this section we give a brief description
of the graded A.-algebra Sym2 := SymA(X) of symmetric polynomials over an
infinite set of indeterminates X = {X;, X5,...}. Its graded dual is the A*-algebra
Sym’y := Sym’ 3 (X) of symmetric formal series over the same alphabet X.
There are several remarkable bases for Sym?, which are indexed by partitions
of positive integers. A partition of n is a sequence I = (iy,... 1) with i; > iy >
o>y >0and iy + ... 44 =n. If koccurs rp, times in [ for 1 < k < n, we

write [ = (1",... ,n""). We use the notations

I()y:=1, =i+ ...+4, Il=0ul...0 || :=r!...rt0;
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[(1) is known as the length of I, and |I| as the weight of . Given a partition o
of a set V, we denote by I(o) the partition of |V| whose parts are the sizes of
the blocks of 0. We define a partial order < on the set of partitions of |V| by
identifying this set (in the obvious way) with the poset II,,/Y, of orbits of the
symmetric group X, on [l,. This partial order will be used in §3.2.

We use the notation of Lascoux and Schiitzenberger [22] for symmetric func-
tions, which has the advantage of being compatible with the modern interpre-
tation of symmetric functions as operators on A-rings and polynomial functors.
Thus, we denote the complete symmetric function corresponding to the partition
I by ST:= SI(X), the Schur function by St := S;(X), the elementary symmetric
function by Al := AI(X), the power sum symmetric function by Wl := wl(X),
and the monomial symmetric functions by ¥ := ¥ (X). We will also use the
augmented monomial symmetric functions, which are defined by Uy = ||| ¥r. Tt
is well-known that S,,, n > 1, on the one hand, and A,,, n > 1, on the other hand,
are polynomial generators for Sym?# (over A.), while ¥,, n > 1, are polynomial
generators for SymA? (over AQ,). The Schur functions and the monomial sym-
metric functions form additive bases of SymZ. It is also known that the basis
of Schur functions is self-dual, and that the bases of complete and monomial
symmetric functions are dual bases (with respect to the Hall inner product). Let
us also recall the forgotten symmetric functions (see [28]), which form the dual
basis to the basis of elementary symmetric functions (with respect to the Hall
inner product); alternatively, the forgotten symmetric functions can be defined
as images of the monomial symmetric functions under the standard involution on
Sym# (see [28]). Using the A-ring formalism, the forgotten symmetric function
corresponding to the partition I can be written as (—1)W7(—X).

We can define a comultiplication on Sym? by

§(P)=EHPXY)),
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where ¢ is the canonical isomorphism between SymA(X) @ SymA(X) and the
algebra SymA(X;Y) of symmetric polynomials over the disjoint union of the
alphabets X and Y. The adjoint of this comultiplication is just the ordinary
product in Sym%*. This comultiplication defines a Hopf algebra structure on
Sym?, which was first investigated in [15]. It was shown there that S,, n > 1,

and A,, n > 1, are divided power sequences, while ¥,,, n > 1, are primitive; this

means that

= = (1.10.1)

As far as the antipode v is concerned, we have v(S,) = (—=1)"A,.



Chapter 2

Chromatic Polynomials of

Partition Systems

In this chapter we define the umbral chromatic polynomial of a partition system
and study some of its properties, such as the relation to the characteristic type
polynomial defined in (1.8.1). Our results generalise some classical results for the
chromatic polynomial of a graph. Apart from the purely combinatorial signifi-
cance, some of these results will play an important role in Chapters 3 and 4, in
the construction of combinatorial models for certain Hopf algebras in algebraic
topology. Throughout this chapter, we let P be a fixed partition system, and we
make extensive use of the concepts and notation related to partition systems, as

presented in §1.5, §1.6, and §1.8.

2.1 Colourings of Partition Systems

In this section we define the concepts of colouring needed for the definition of the

umbral chromatic polynomial of a partition system.

Definition 2.1.1

59
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1. A factorised colouring of P with at most m colours is a pair (v, f) consisting
of a chain v = {6]7(73) =01 <03 < ...< oy} of partitions of V(P) and a
colouring f of P with at most m colours, such that the following conditions

are satisfied:

(a) o, € II(P), for 1 <i<k;

(b) the kernel of f is oy.

2. A colouring forest of P with at most m colours is a pair (3, f) consisting
of a set & with At(P) C 6 C Bool(P)\ {0} and a colouring f of P with at

most m colours, such that in the poset (§, C) we have:

(a) the set of elements covered by U is a division by P|U for all non-atoms
Ue€yi;

(b) the set max(d) of maximal elements of § is a partition of V(P), and
the kernel of f is max(d).

The name of the first concept comes from viewing the pair (v, f) as a factorised
function

f1 f2 fx fret1

0g — 0] — Oy ... —> 0 — [m],

where oq is the partition of V(P) into singletons, every function f; with 1 <
1 < k sends a block of o,_; to the block of o; containing it, and the composite
fr+1 0 fr o ... 0 fi coincides with the colouring f (the last condition assumes
that we identify the partition of V(P) into singletons with V(P)). The name of
the second concept is motivated by the fact that the Hasse diagram of the poset
(6,C) is a forest, since every element which is not maximal has a unique cover.
Moreover, a colouring forest of P can be viewed as a forest of rooted trees with
coloured roots and leaves labelled with symbols corresponding to the atoms of

P. The ordinary colouring f with kernel ker(f) can be viewed as the factorised
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colouring ({ﬁn(p) < ker(f)}, f), and as the colouring forest (At(P) U ker(f), f).
It is easy to see that all the factorised colourings and all the colouring forests
of a simplicial complex are, in fact, ordinary colourings. We denote by A(P)
the collection of sets § with At(P) € & C Bool(P) \ {0} satisfying the first
condition in the definition of a colouring forest of P and max(§) € II(P). Given
a chain v as in the definition of a factorised colouring of P, we associate with
it the union of all partitions in ~; this collection of sets lies in A(P), and will
be denoted by A(y). We also associate with every factorised colouring (7, f) the
colouring forest (A(7), f). These correspondences are surjective but not injective,
as Example 2.1.3 shows.

In [31], Mullin and Rota defined a reluctant function from S to X to be a
function from S to the disjoint union S U X, such that only a finite number of
terms of the sequence s, f(s), f(f(s)),... are defined. Given a factorised colouring
(v, f) as in Definition 2.1.1 (1), we can identify it with the reluctant function ]/C\
from the disjoint union |_|f:1 o; to [m], specified by insisting that the restriction
of ]/C\to o; coincide with the function f;1; discussed above. On the other hand, a
colouring forest (4, f) can be identified with the reluctant function f from § to
[m] sending a set B to its cover in (4, C) if B is not maximal, and to f(x) for
some x in B otherwise (this is a good definition because of the second condition
in Definition 2.1.1 (2)).

There are several reasons for which we concentrate on the enumeration of
factorised colourings and colouring forests of partition systems, rather than just
ordinary colourings. To justify our choice, let us observe first that the defini-
tion of an ordinary colouring of a partition system requires that the maximal
monochromatic blocks lie in the partition system. For simplicial complexes C,
this is equivalent to all monochromatic blocks lying in C. However, for non-

simplicial complexes P, there might be monochromatic blocks which do not lie
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in P; it is precisely these blocks that are taken into account by the two concepts
of colouring defined above. Apart from this intuitive reason, we must emphasise,
as we have done in §1.8, that certain properties of the classical chromatic polyno-
mial of a graph (such as Whitney’s formula and the product formula) could only
be generalised using the new concepts of colouring; indeed, Whitney’s formula
cannot be generalised even in the classical case (corresponding to the umbra &) if
we use ordinary colourings of partition systems (in other words, the polynomial
X*(P;x)), as Corollary 2.4.2 shows.

We now define the type of the objects considered above. For every § in A(P),
we define its type 79(8) 1= (—=1)*P Mgk . where 5(6) is |6 \ At(P) \ max(d)],
and k; is the number of elements of (4, C) which cover precisely 7 + 1 elements.

Let us note that
T¢(A(’y)) = :|:T¢(’)/). (2.1.2)

We define the type of a factorised colouring and of a colouring forest by 7%(v, f) :=
7%(y) and 7(4, f) := 7%(§). Both of these definitions are compatible with the

definition of the type of an ordinary colouring.

Example 2.1.3 Let us consider vertices [4], and the partition systems

Q= {0,{1},{2}, {3}, {4}, {1,2},{3,4},{1,2,3} } and P:=Q.

There are six treesin A(P). They are listed below, and their types are ¢s, —p1¢2,
— 1y, Bt —P1y, and ¢, respectively. All these trees have only one chain of
partitions associated with them, except for the fourth one, which has the following

three such chains with types &7, @7, and —¢7 , respectively:

)

< {{L25 {31 {4} < {{1,2},{3,4}} < {{1,2,3,4}},
< {525 {3,4} < {{1,2},{3,4}} < {{1,2,3,4}},
0 < {{1,2},{3,4}} < {{1,2,3,4}}.

)
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AN AN

{1} {2} {3} {4} {1} {2} {3} {4} {1} {2} {3} {4}

L A A

{1} {2} {3} {4} {1} {2} {3} {4} {1} {2} {3} {4}

Clearly, the trees and chains discussed above can only be paired with monochro-
matic colourings of P in order to obtain colouring forests and factorised colour-

ings.

Proposition 2.1.4 Given a forest § in A(P), the sum of types of all chains

with A(y) = § coincides with the type of 6.

The proposition follows from (2.1.2) and slightly modified versions of two
lemmas in [17]. For the sake of completeness, we state these lemmas here, and
define the concepts involved. For any finite poset P, a filtration I' of P is a chain
{0 =1, chh C...C I = P} of lower order ideals such that I; \ /;_; is an
antichain for all 1 < 5 < k. The number k is the length of the filtration, and is
denoted by [(F'). We now assume that the forest § is such that max(d) # ﬁn(p),

and denote by C the set of chains v associated with 4.
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Lemma 2.1.5 There is a length-preserving bijection between C' and the set of
filtrations of the poset (6 \ At(P) \ max(d)) U{V(P)}, ordered by inclusion.

Lemma 2.1.6 For any finite poset P, we have that
S (1 = (P
F

where the summation is over all filtrations F' of P.

2.2 The Umbral Chromatic Polynomial

In this section we define the umbral chromatic polynomial of the partition system
P as a polynomial enumerating factorised colourings and colouring forests by
type.

Let @ be another partition system with V(Q) = V(P) and At(Q) = At(P).
Given a partition o € ﬁ(P), we define its Mobius type I/g(O') with respect to Q
by

Z M%(QIU)(E)\? ™) (4(m,0),

where the summation ranges over I1(Q|o). We remark that whenever o € Q,

¢

then I/g(O') = —/,L%( )U{U}(ﬁ, 0); otherwise, v5(0) is 1 if o is contained in At(Q),

Qlo
and 0 if it is not.

In fact, the Mobius type can be viewed as a map from ﬁ(P) to the ring @,.
We shall refer to any such map w into a commutative ring as a weight, and say
that w is multiplicative if w(oy U 03) = w(oy) w(oz) for any oy,09 € ﬁ(P) with

disjoint vertex sets.

We may now define the umbral chromatic polynomial.

Proposition 2.2.1 There exists a polynomial in @ z¢py[x] with the property that

after umbral substitution by mao, it enumerates by type the factorised colourings
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and the colouring forests of P with at most m colours. This polynomial can be

expressed in interpolated form as follows:
X(Pia) =) vi(o) B (@),

where the summation ranges over the poset II(P) of divisions by P.

PROOF. Let f be a colouring of P whose kernel ker(f) has n blocks. According
to (1.7.13),

> (7, f) = vi(ker(f))

~

where the summation ranges over all chains 4 for which (v, f) is a factorised
colouring. Since there are m(m —1)...(m —n + 1) colourings of P with at most
m colours having the same kernel as f, the proposition follows by using (1.1.7).
The fact that the polynomial x?(P; ) also enumerates colouring forests of P by
type follows from Proposition 2.1.4. O

We call x?(P;z) the umbral chromatic polynomial of P. Clearly, if C is a
simplicial complex then V?(O‘) = 7%(0), so x*(C; ) coincides with the polynomial
X?(C; x) defined in (1.8.1). On the other hand, we can obtain various types of
chromatic polynomials of the partition system P from x?(P;z) by replacing the
umbra ¢ with another umbra. In particular, we obtain x(P;x) and y*(P;x),
which we will call the classical chromatic polynomial of P, and its homogenised
version. After appropriate evaluation, the latter enumerates factorised colourings
and colouring forests of P by the type 7".

We now present a computational result on Mobius types. Further information

on Mobius types will be given in Theorem 2.3.5 below.

Proposition 2.2.2

1. The weight I/g is multiplicative.
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2. If o € ﬁ(P), and I1(Q|o) has a unique mazximal element 1 and is non-

trivial, then v§(o) = 0.

3. If o e ﬁ(P), then vi(o) = vp (o).

PrROOF. (1) Let 01,04 € ﬁ(P) such that V(o1) NV (o2) = 0, and denote o1 U oy
by o. Write Dy for I1(Q|o1), and D, for [1(Qloz). Clearly, the poset [I(Q|o) is
isomorphic to Dy x Dy. Using Proposition 1.7.14, we deduce

I/g(O') = Z /,L%lxD2 (GDI U6D2,7T1 U ) Cb(m U g, 01 U 03)
(m1,m2)ED1 XDy

= ( Z M%l(b\Dlel) C(b(ﬁlvo-l)) ( Z M%2(6D277T2) C(b(ﬂ'baz))

m €D T €Do

= 1/3(01) 1/3(02) )

(2) We may assume that o ¢ ﬁ(Q), since otherwise I/g(O') = 0. We can pair
each chain {0 < oy < ... < 0, < o} in [I(Q|o) U{c} for which o, # 1 with the
chain {0 < 0y < ... < 0, <1 < &}. The contribution to v§(o) of each pair is 0,
whence v§(o) = 0.

(3) We need the concept of coclosure operator on a poset P (see e.g. [38]),
which is a function  — T from P into itself such that: (1) T < z, (2) T = 7,
and (3) x < y implies T < 7, for all x,y € P. An element « of P is closed if
7 = x. Consider the poset P := II(P|o)U{c}, and define the coclosure operator
7 — T by @ = o, and by letting the partition T be obtained from 7 by splitting
every block B into the sets of vertices of the join-connected components of P|B
whenever m # 0. Obviously, the subposet of closed elementsis Q = I[I(P.|o)U{c}.
According to [44], we have that pu (6, o) = > wh(m, o), where the summation is
over all 7 such that 7 = 0 (we have used the fact that p5(7, o) = u™=17l up(7, 0)).
But whenever ¥ = 0 and U € 7, we have U € P and P|U = Bool(At(P|U)).
Thus U € P, which is possible if and only if U € At(P); hence 7 = 0, which

means that s (6, o) = /,L;;(ﬁ, o). O
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According to Proposition 2.2.2 (3), we can define the classical chromatic poly-
nomial of P and its homogenised version in terms of P, only. This is useful because
P may be much larger than P., whence a summation ranging over [I(P) may
contain many more terms than one ranging over II(P.). Moreover, we shall see
in §2.4 that it is possible to state the analogue of Whitney’s result (1.8.2) for
*(P;x) in terms of P., although we were only able to state it in terms of P for
X (P ).

Let C be a simplicial complex. We conclude this section with a reference
to the symmetric function X (C;x) defined in (1.8.1), which reduces to Stanley’s
symmetric function generalisation of the chromatic polynomial of a graph H when
C =ZI(H) (see [51]). Following Stanley, we observe that

X(Ca)= > Up. (2.2.3)
sell(C)

Let us consider the Q-linear map from the space SymY(x) of symmetric functions

with rational coefficients to (@Q).[z] specified by
Uy - 70(0) Bl (7), (2.2.4)

where o is a partition of [n]. Clearly, this map preserves the gradings, is injective,
but it is neither surjective, nor an algebra map. Comparing (2.2.3) with the
formula for the umbral chromatic polynomial in Proposition 2.2.1, we easily see

that the above map sends X (C;z) to x?(C; z).

2.3 The Characteristic Type Polynomial

In §2.4 we shall study the properties of the umbral chromatic polynomial by
relating it to the characteristic type polynomial defined in (1.8.1); so in this

section we study the latter.
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We start by presenting a deletion/contraction identity which enables us to
compute ¢?(P;x) recursively. We use it as our main tool in proofs by induction,

such as those of Theorem 2.3.5 and Theorem 2.3.6.

Theorem 2.3.1 [fU € Non(P) is arbitrary, then
P 2) = AP\ Us ) + iy oy (0, LU} (T 2);
moreover, the identity still holds if we replace contraction by strong contraction.

PROOF. For simplicity, we write P, @, R, and S for II(P), II(P\U), I(P/U),
and I1(P|U) respectively.

Consider an arbitrary partition o € P, for which three possible cases arise.
Firstly, if no block of o contains U, then /,L?; (ﬁp, o) = /,Lg (ﬁp, o). Secondly, if one
block of o is U itself, then

1 (0p,0) = 15005, Ts) pp(0n, ) = 15 (0p, 0r) 15 (O, o),
(2.3.2)

as follows from the poset isomorphisms [0p, 0] = [0s, 1s] x [0r, 0] = [0p,08] x

o~

[Og, o] by using Proposition 1.7.14. Thirdly, if one block of o strictly contains U,

then by Proposition 1.7.15

Mg(aPaU) = Z (—1)kﬂ?;(6p,01) /“L?;(Ukva)v (2'3'3)

where 01 < 03 < ... < 0y all have U as a block, and o, < 0. Using (2.3.2), we
deduce that the terms of the form /,L?;(ap, o1) /,L?;(O'l, o) with o1 # 0p cancel with

terms /,L?;(ap,b\R) /,L?;(GR, o1) /,L?;(O'l, o), and so on. Hence, (2.3.3) becomes
5 (0p,0) = pp(0p,0) — 1505, Ts) pp(0 2.3.4
MQ( p,O‘) /“LP( P,O') /“LS( S S)/“LP( R,O')- ( e )

The required formula follows by considering each of these cases in turn.

The last statement of the theorem follows by noting that

?(P;x) = ?(Sing(P); ).
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O
We may now give another method for computing 1/%(0), where o € [I(P),
which may also be regarded as a complementation formula for the Mobius type
¢

function. It expresses 1/5(0) = —/,LH(ﬂU)U{U}(O,O') in terms of the Mobius type

function of the poset II(P|c), and so is valuable when this poset is smaller than

H(Plo) U {a}.

Theorem 2.3.5 Let P be an arbitrary partition system; then for every partition
o € II(P), we have that

PrROOF. Write V for V(P). According to Proposition 1.7.14 and Proposition
2.2.2 (1), we may assume that o = {V}, which means that V € P. We use
induction with respect to [Non(P)|, which starts at 1 (we assume that |At(P)| >
1). If [Non(P)| > 1, we choose U/ € Non(P)\ {V}, set Q := P U {U,V}, and
observe that P\ U = PU{U}, that P|U = P|U, and that P/U = (PU{U})/U.
We then employ the inductive hypothesis, applying (2.3.4) twice in the process;

for clarity, it helps to set w%(a) = M%(P)(ﬁ, o) for any o € II(P), thereby yielding

WV} = wh o ({V) + whp({UH wh (V)
= ve (V) + va({U}) v (V)
= —wi({V}) + b ({U wh,y ({V])

=l ({VH) = 2({V]),

as sought. O

We now apply Theorem 2.3.1 to prove a complementation formula for the char-
acteristic type polynomial, remarking that similar such formulae were obtained in
a very general context for the matching polynomial in [56]. Our formula expresses
the characteristic type polynomial of a partition systems Q in terms of divisions

by the complement of Q in a partition system containing it.
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Theorem 2.3.6 If P and Q are partition systems such that V(P) = V(Q),
At(P) = At(Q), and Q C P, then

Zl/ ) c?(Plo; ),

where the summation is taken over the poset of divisions by 0pQ.

PRrOOF. Let us denote 0»Q by R. We will prove our theorem by induction
on [Non(R)|, noting that the induction starts at 0 because then Q = P, whilst
II(R) = {At(P)}, va(At(P)) = 1, and P/AL(P) = P.

If Non(R) # 0, we choose W € Non(R) to be minimal with respect to inclu-

sion, and let W := V(P)\ W. Then the inductive hypothesis yields
Z vh(o) P (P\W)/o;2), (2.3.7)
where the summation is taken over I[I(R \ W). Given o € II(R \ W), we have

(P/o)\ W if o< {W W}

Plo otherwise.

(P\W)/o = {

Consider a partition o € II(R \ W) satisfying ¢ < {W,W}. The choice of W
implies that o|W = At(P)|W; hence (P/o)|W = P|W. Combining this fact with
Theorem 2.3.1, we deduce

c((Plo)y\ Wiz) = c*(Plo;x) — /,L;@(le)(ﬁ, {WhH e?(P)a)/W;z).
(2.3.8)

Now o/W € II(R) and (P/o)/W = P/(o/W). Recalling the choice of W again,

we observe that 1/3(0|W) =1 and M?g(mw)(ﬁ,{W}) = /,L%((QW)U{W})(@,{W}) =

—l/g({W}) Using these facts, and applying Proposition 2.2.2 (1) twice, we obtain

Va(0) 1y iy 0 WD) =~ W) v (a[T) v ({IW}) = —va(o/1T).
(2.3.9)
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According to (2.3.8) and (2.3.9), we may replace each term in the right-hand side

of (2.3.7) corresponding to a partition o < {W, W} with
vo(o) (Plasa) + vy(o /W) e (P/(a/W)ia).

It remains only to define a bijection between the sets {o € II(R\ W) : 0 <
{W,W}} and {o € II(R) : W € c}; we take 0 — o/W, with inverse m
(At(P)|W) U (x|W), thereby concluding the induction. O

2.4 Properties of the Umbral Chromatic Poly-
nomial

In this section, we begin by establishing our promised relation between the umbral
chromatic polynomial and the characteristic type polynomial, generalising the
main result of [40] in passing, and enabling us to investigate further properties
of the former. All the results in this section follow directly from those in the

previous one, and mainly from Theorem 2.3.6.

Proposition 2.4.1 For any partition system P, we have
X?(Piz) = *(Pix).

Proor. This follows from Theorem 2.3.6 by considering the partition systems
P C Kv(p), and noting that ¢*(Ky(p)/o;2) = ¢*(Kppp52) = B&(:p), according to
(1.8.4). The right-hand side of the identity in Theorem 2.3.6 is precisely y?(P; x).
O

Proposition 2.4.1 reduces to Whitney’s formula (1.8.2) after replacing the
umbra ¢ with x, as implied by the proof of Corollary 2.4.2. In fact, it reduces to
a generalisation of (1.8.2) to a formula for the classical chromatic polynomial of

a partition system (or its homogenised version).
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Corollary 2.4.2 For any partition system P, we have
X (P;a) = (P ).

PROOF. Let us define the coclosure operator (cf. the proof of Proposition 2.2.2
(3)) 0 = @ on II(P), where the partition 7 is obtained from & by splitting every
block B into the sets of vertices of the join-connected components of P|B. Using

a similar argument to the one in the proof of Proposition 2.2.2 (3), we obtain

N /,L%(Pc)(a,a) if o€P.

0 otherwise .

Hence ¢*(P; x) = ¢"(P.; x), so we may now apply Proposition 2.4.1. O

We cannot use the map specified by (2.2.4) to transform the formula in Propo-
sition 2.4.1 into a formula for the symmetric function X (C; ) associated with the
simplicial complex C, because this map is not surjective. However, there is an
analogue of Proposition 2.4.1 for X(C;x), which generalises Theorem 2.6 in [51],
and which provides a different generalisation of Whitney’s formula. We present

these results below.

Proposition 2.4.3 Given a simplicial complex C, we have

= > ey (0,0) ')

oell(C.)
Proor. We only have to adapt Stanley’s proof to the context of simplicial
complexes. Given o in [I(C,), we define
=> at, (2.4.4)
!
where the summation ranges over all functions f from V(C) to N satisfying
F(f) < o < ker(f); here we have used the same coclosure operator as in the

proof of Corollary 2.4.2. Given any f: V(C) — N, there is a unique o in I1(C.),



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 73

namely ker(f), such that f is one of the maps appearing in the sum (2.4.4). It
follows that for any 7 in [1(C,), we have

v = 3y,

w<o€ell(C.)
By Mobius inversion,
Xr = Z 1) ey (m, o).

w<oc€ll(C.)

But X5 = X(C; x) (note that it is essential for C to be a simplicial complex), and

the proof follows. O

Proposition 2.4.5 We have

where

P;S(U)(l') = Z (o, T) 2l (o, ) = Z §¢(6, ) /,L%(V)(,O, ),

>0 o<p<m

and V = V(C). In particular, the umbral chromatic polynomial of a graph can

be expressed in terms of the lattice of contractions of that graph.

PrROOF. We apply the map specified by (2.2.4) to the formula in Proposition
2.4.3. To this end, we compute the images of the power sum symmetric functions
under this map. According to Theorem 1 in [12], we have

vl =N "Wy

>0

Combining this result with (1.8.4), we find that the map specified by (2.2.4) sends

w0 o
> () Bly(x) = > (*(0.p) (Z vy (ps ) x'”')
p2o p2o TZp

=> al ( > (0. p) ,,L;@(V)(,o,w)) = Py ().

>0 o<p<m
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Let us note that 7%(c,0) = 7%(0) and 7%(0,7) = 0 unless o = 7, because we
can pair the chains from o to 7 contributing to 7%(o, ) such that the contribution
of each pair is 0. Hence, after replacing ¢ by &, Proposition 2.4.5 reduces to a
special case of Corollary 2.4.2, and to Whitney’s formula if C is the independence
complex of a graph.

We can immediately deduce from Theorem 2.3.5 another formula relating the
umbral chromatic polynomial to the characteristic type polynomial of a partition
system. To state our formula in a nice way, we recall from [31] the umbral
notation, according to which we write p(B?(z)) for the image of the polynomial

p(z) under the @.-linear operator on @,[r] mapping =" to B?(z).
Proposition 2.4.6 For any partition system P, we have
W(Pir) = (P B (x).

A deletion/contraction procedure for the umbral chromatic polynomial follows
easily from Proposition 2.4.1.
Proposition 2.4.7 Given any set U € Non(P), we have

X(Pix) = x?(P\ Usz) + va({UD) X*(P/Us )

moreover, the identity still holds if we replace contraction by strong contraction.

Proor. Apply Proposition 2.4.1, Theorem 2.3.1, and the fact that m =
PuU{U}and P/U = (PU{U})/U. O

Proposition 2.4.7 provides an analogue of the well-known addition-contrac-
tion procedure for graphs (see [37]). There is no known deletion-contraction
formula for the umbral chromatic polynomial of a graph H, which we could use to
obtain a similar formula for Stanley’s symmetric function Xg. Not even X(C;x)

with C a simplicial complex has an obvious deletion-contraction formula which
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would only involve simplicial complexes (deducible from Proposition 2.4.7, for
instance). One way around this problem is to allow arbitrary partition systems,
in which case (2.2.3) still holds, with summation now ranging over II(P). Since
I1('P) is the disjoint union of II(P \\U) and [I(P/U) for arbitrary U in Non(P),

we have
X(P;z)=X(P\U;2)+ X(P/U;x). (2.4.8)

As was observed in [41], formula (1.8.3) does not extend in a straightforward
way to the umbral chromatic polynomial of a graph, although such a generalisa-
tion was attempted in [37]. We offer here a superior version, as a special case of
formula (2.4.10) for the umbral chromatic polynomial of a join of two partition
systems (which corresponds to the disjoint union of graphs, after identification
via the independence complex). Simultaneously, we replace ¢ by «, and show
that (1.8.3) does generalise to the classical chromatic polynomial for partition

systems (in homogeneous form).

Proposition 2.4.9 For arbitrary partition systems Py and Py, we have
P(PrV Pyya) = X (Pr;2)x*(P = *((PLV Py)/osa),
XU 2; X s e 2; P1 P2 1 2
(2.4.10)

where the summation is taken over non-0 divisions by the complement of the
disjoint union Py - Py in P; & Py. After replacing ¢ by &, formula (2.4.10)
reduces to

X (P1V Pyya) = X (Pryx) \ (P2 a). (2.4.11)
PROOF. According to Proposition 2.4.1 and (1.8.5), we have

X (PLV Pasa) = c?(Py b Pay ) and (2.4.12)

X?(Pi;2) X?(Py; ) = ¢*(Prs ) ¢ (Py;a) = ¢ (Py - Pas ).
(2.4.13)
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Substituting P, - P, for Q and P; @ P, for P in Theorem 2.3.6, we get

°(Py- Py ) ZV—— (PL&Po)]o; ),

P1 P2

where the summation is taken over divisions by the complement of P; - P,
in P, @ P,. Identity (2.4.10) follows from the above relations by noting that
m = (Py V Pz)/o, and then applying Proposition 2.4.1 once more.

We now deduce (2.4.11) from (2.4.10). Given a non-0 division o by the com-
plement of P; - P, in P; @ P, we will show that v P—P—(O') = 0. According to
Proposition 2.2.2 (1), we have

= [[ i)

U€o

Clearly, every block U of ¢ is either an atom of Py-P, or intersects both V(Py) and
V(P,). Since o # 0, we may find a block U = U U Uy, where U; € Bool(P;)\ {0}
for i = 1,2. We cannot have U; € P; and U, € P, because U € Non(P; V Ps);
hence, we may assume that U/; € Non(P,;), for instance. We now consider all

chains contributing to 1% ~({U}), and pair every chain
0<m<...<m<{U}}
for which U; & 7, with the chain
0<m <...<m <{U}U(m|Us) < {U}}.

The contribution of each pair is 0, whence 1/7*”;—1.7)—2({(]}) = 0.

O

We may apply Proposition 2.4.9 to recover a more systematic version of a
result of [37]. Consider graphs H; and H,, and denote their disjoint union by
H, U Hy and I(H) by A(H;). For every non-0 division o by the complement of
A(Hy)- A(Hz) in A(Hy U Hy), construct the graph M, (Hy, Hy) with vertices the
blocks of o, and with edges joining either a non-singleton block to another block,

or two singleton blocks if the corresponding vertices of Hy Ll H; are adjacent.
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Corollary 2.4.14 The umbral chromatic polynomial of Hy U Hy is given by
XO(Hy U Hys ) = x*(Hyy o) X (Has @) ZVA H)-AG) (0) X (Mo (Hy, Hy ) @)

where the summation is taken over all divisions o specified in the construction.

PROOF. The stated formula follows from (2.4.10) by replacing P; with Z(H,),

and observing that

I(H,UH,)=1I(H,)VI(Hy), A(H U Hy) = A(Hy) @ A(H,) ,

and  Sing (Z(H, U H,)/o) = I(M,(H,, H5))

for any division o of the stated form. O

We recall that in [37] the divisions by A(H) were called the admissible parti-
tions of V/(H), and those by the appropriate o were labelled as mized partitions
of V(Hy U Hy).

We have seen that the umbral chromatic polynomial does not behave well
with respect to the join of partition systems. However, according to the following
result, the umbral chromatic polynomial is multiplicative with respect to the
operation (multiplication) © defined in §1.5. Note that neither the family of
graphs (identified with their independence complexes), nor the family of simplicial

complexes are closed with respect to this operation. Let us also note that P; V

Py CPL O Py
Proposition 2.4.15 We have that
XP(Pr© Pasa) = x?(Pry ) X (Pa; ) .

PROOF. This result is an immediate consequence of Proposition 2.4.1 and (1.8.5).

O
This product formula for the the umbral chromatic polynomial of partition

systems clearly reduces to (2.4.11), after replacing the umbra ¢ with .
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2.5 Polynomial Invariants of Set Systems with
Automorphism Group

Throughout this section, we let (S, () be a fixed set system with automorphism
group (recall that & must be a partition system with singleton atoms). We intend
to give a combinatorial interpretation for the normalised polynomial y*(S; z)/|G]|
in (@Q).[z]. It will turn out that all such polynomials (of which the divided
conjugate Bell polynomials 3} (x) are a special case) lie in H}y(s){z}. Therefore,
these polynomials will be used in Chapter 4 for constructing combinatorial models
for divided power Hopf algebras and covariant bialgebras of formal group laws.
It is important to understand that whenever the universal ring H, is replaced
by a ring with torsion, we can no longer embed the corresponding divided power
algebra in its rationalisation. Thus we must replace the polynomials B?(z)/n! by
purely formal quotients, and the polynomials x?(S; x)/|G| by linear combinations
of the formal quotients; it is these formal quotients and linear combinations of
them that we realise combinatorially by considering set systems equipped with
an automorphism group.

For our promised combinatorial interpretation, we need the additional concept
of ordered colouring; we note that the corresponding concept for graphs differs
from the one already appearing in the literature. For us, an ordered colouring
of S is a pair (f,w), where f is a colouring of S, w is a bijection from [|V(S)|]
to V(S), and f ow is non-decreasing. We can interpret an ordered colouring
as proceeding step-by-step, so that the colours are used in increasing order. An
ordered factorised colouring of S is a triple (v, f,w), where (f,w) is an ordered
colouring, and (v, f) is a factorised colouring for which w™(U) is an interval (in
N) for any block U of a partition in the chain v. The type of such a colouring
is defined by 7°(v, f,w) := 7%(v, f) € H,.. All the ordered factorised colourings
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of a simplicial complex are, of course, ordered colourings. We can define ordered
colouring forests in a similar way, and we can view them as colourings based on
forests of plane trees.

For any factorised colouring (v, f) with 7%(v, f) = +¢¢5 ..., there are
(2h)k(31)k2 ... ways of choosing w such that (v, f,w) is ordered. The types of
all these colourings are equal, and their sum is 7%(7, f). Hence, when we regard
X?(S;m¢) as an element of H,, it enumerates by type the ordered factorised
colourings of § with at most m colours. The group G acts on these colourings

! gow), and each orbit has precisely |G| elements.

by (g, (v, f;w)) = (97, f o g™
Therefore, x*(S ;m@)/|G| € H,. enumerates by type 7° the orbits of G on the set
of ordered factorised colourings of & with at most m colours. It also enumerates
orbits on the set of ordered colouring forests.

We may give an alternative statement of these facts in terms of the orbits of

G simply on the set of factorised colourings. Given such a colouring (v, f) with

(v, f) = iqﬁ’fl 52 ..., there are

P BY" GO, HI/IGH = 2" 6D .. /1Ge.p]

orbits of G on the set of ordered factorised colourings which map to G(v, f) via
the map G(v, f,w) = G(v, f). Hence, x*(S ;m¢)/|G| enumerates the orbits of &
on the set of factorised colourings of S with at most m colours, each orbit G(~, f)
giving a contribution of 7¢(v, f)/|G.pl. I v = {0 < o}, then G5 = Glo; if,
in addition, G/|o is the direct product of symmetric groups acting on the blocks
of o, then the contribution of the orbit G(v, f) to x*(S;me) /|G| is (v, f). We
remark that since x?(S;m¢)/|G| lies in I, for all m, the polynomial y*(S;z)/|G]|

must lie in Hjy(s)(8(x)), which is the same as Hjy (s {z}.

Example 2.5.1 Let

So=A{0, {13 {25, {31, {43, {1, 23, {2, 3}, {1, 3}, {1,4},{2,4}, {3,4}, {1, 2,3}},
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and G = ((1,2),(2,3)) = X5, We have x*(8;2)/|G| = (B () +6¢1 B3 () + (d2+
36%)BY(x))/6. Hence, x?(S;26)/|G| = (265 + 6¢2)/6 = 2b, + 4b%. A transversal
of the orbits of G on the set of ordered colourings of § with at most 2 colours is

represented by
{(1112,1234), (2221,4123), (1122, 1234), (1122, 2143), (2211, 3412), (2211, 4321)},

where we expressed the map w by the word w(1)w(2)w(3)w(4), and f by f(1)f(2)
f3)f(4).

Our next goal is to give a combinatorial interpretation for the coefficients
of the polynomial x?(S;x)/|G| with respect to the bases {#Y(x) : 7 > 0} and
{z'/i! : 1 >0} of H.{x}. Our interpretation uses preferential arrangements of

V(S).

Lemma 2.5.2 Given a sequence of polynomials p,(x) in (PQ).[x], a map w:
I(S) — (PQ)., which is constant on the orbits of G on II(S), and an arbitrary
transversal T of A(S)/G, we have that

Proor. It suffices to observe that

Now consider an arbitrary poset P of partitions of V', assume that P contains
the partition into singletons, and let G be a permutation group on V' which also

permutes P (via the obvious action on [I(V)). Consider the poset A(P) of all
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preferential arrangements (o,w) of V with o € P. Let A(P) := A(P) U {0}.
Clearly, A(I1(S)) = A(S), and we denote A(S)L{0} by A(S). By insisting that
((0) = {0}, we obtain a poset action of (¢ on A(P), and hence an induced poset
structure on the set of orbits A(P)/G.

Consider the incidence algebra over H, of the poset A(P)/G, and the element
¢ in this algebra which is defined by ¢*(G(m, '), G(o,w)) := Cb(m, o), ¢*(0,0) :=
1, and

—1 ifU:6p

§b(6, G(o,w)) =

0 otherwise .

It is easy to see that the convolution inverse of (° exists; it will be denoted by

b

Fapya OF simply p* when the context is clear.

Theorem 2.5.3 For any (o,w) € A(P), we have that

/,L?;(O,U) b

Glo] — Hawe

(0,G(0,w)),

so the former lies in H..

ProOOF. We proceed by induction on the maximum length of chains in 0(6, o),

the case 0 being clear. For o # 0, we have

N
wp(0,0 1 ~
Tc(:|a|):_|a|a| > up(0,7) ¢ (m,0)
6§W<U
1 ~
=t 2 [l 0,Gir ) (o)
6§W<U
1 1 ~ / ! ! /
= G060 ) G ), o)
(7' w")<(ow)
_ Z /,Lb(a, G(Tf‘”,w”)) fb(G(ﬂ'”,w”), G(O‘,w)) - Mb(a, G(O‘,w)),
@ﬂﬂwH)€7ﬂ

where w, gives an ordering of the blocks of 7 such that (7, w;) < (o,w), and T

is a transversal of the set of orbits {O € A(P)/G : O < G(o,w)}. The first and
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the last equality follow from the definition of x® and u® as convolution inverses.
The second follows by induction, and the third is a consequence of the fact that

(o) = Z (o).

ws (! w!)<(ow)
For each (n',w’) < (o,w) we have |(G|o)(n',w")| = |G|o|/|G|r’|; therefore, the

fourth equality follows from showing that the map from the set of orbits of G|o
on {(7', &) : (7,w') < (0,w)} to the set {O € A(P)/G : O < G(o,w)}, given
by (Glo) (', w') — G(n',w'"), is a bijection. Injectivity follows from the fact that
(m1,wi)s (m3,w3) < (0,w) and g(m},wy) = (m3,wy) imply g € Glo. Surjectivity
follows from the chain of implications: G(7",w") < G(o,w) = g(z",w") < (0,w)
for some g € G = (Glo)(g(n",w")) = G(x",w"). O

Given o € [1(S), we define an analogue of the Mobius type by

b _ b 2y
56(7) = 1 iEuaeu a0 6@ @),

where w gives an arbitrary ordering of the blocks of o. Lemma 2.5.2 and Theorem

2.5.3 immediately imply the following result.

Corollary 2.5.4 If T is an arbitrary transversal of A(S)/G, then

S
%: S ko) Ay(x)  and (2.5.5)
(ow)eT
?(S;2) zl!
= Y Wyeyel0.Gloww) (2.5.6)
S T |o]!

We can now combine (2.5.6) with Proposition 2.4.1 in order to express the poly-
nomial y?(S;z)/|G| in terms of divided powers of z. On the other hand, formula
(2.5.6) provides the promised generalisation of (1.7.9). Indeed, the latter can be
recovered simply by taking § = K,,, G = Y, and using the fact that the poset
A(K,)/ X, is isomorphic to [I(Z,). Hence, we have reproved (1.7.9), which we

now state in the following more explicit form.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 83

Corollary 2.5.7 We have

lo]
~
)= Y i, 0,0) o
o€Il(Tn) '
Since the Boolean algebra Z,, which is isomorphic to (K,—;, <), is much

smaller than the lattice IT, = I1(K,) for large n, the above corollary provides an

expression for the conjugate Bell polynomials with less terms than (1.8.4).



Chapter 3

Some Applications of Incidence
Hopf Algebras to Formal Group
Theory and Algebraic Topology

In this chapter we present applications of the combinatorial framework in §1.7
and of our results in Chapter 2 to formal group theory and algebraic topology. It
turns out that certain objects in these areas have a rich combinatorial structure,
which can be expressed in terms of incidence Hopf algebras of partition lattices.
The importance of this new point of view is illustrated with various computational
examples. More applications to algebraic topology, which also involve symmetric
functions, appear in Chapter 6. Since most of this chapter is devoted to topo-
logical applications, we prefer to use here the classical topological notation for
those topological structures which have already been introduced in Chapter 1 in

another guise; the relevant isomorphisms are explained in §1.4.

84
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3.1 Applications to the Universal Formal Group
Law

Let us recall from §1.2 the universal Hurwitz group law (over @..) and the universal

formal group law (over L)

FOX,Y) e ' {X, Y} and f(X,Y)e€ LY[X,Y]].

geee L

of l

k : k

X 1
¢ ; - Y.

11 nl (Z XZ) '
Here, and throughout this section, n; are positive integers, n := ny + ... 4+ ng,
and 7 is the partition of [n] with blocks [n1], ny + [n2], ..., n — ng + [ng].

F??{{...,nk = Z V}(énl , (0-) 2 (312)

where the summation ranges over those divisions by the complement of Ky, . .,

which have cardinality [. In particular,

Fyy=vi, ({ln+0}) (3.1.3)
and
Fome = Y, 19(0,0)¢%(0,1). (3.1.4)
Tro€ll,

PrROOF. Using the iterated version of (1.2.9), (1.8.4), Proposition 1.8.5, and

Proposition 2.4.1 successively, we have
k k
ESL o = (D) 1] TT B (@) = (@(D)' /1| T] (K 2))
=1 =1

= (D) /1] & (Kny g5 ) = (D) 1 X (Ko ) -
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This establishes 3.1.2, directly from the definition of X(b(/Cnthk; z). O
We are going to present a similar expression (3.1.9) for fgl - Several cancel-
lations occur in (3.1.4) and (3.1.9). However, we are able to give a combinatorial

and f° in

interpretation for the coefficients of the monomials in Ffl O

1k
terms of trees, by using the Haiman-Schmitt form of Lagrange inversion [17]. To
do this, we need to choose other polynomial generators for @, and H., namely
b1y bgy ..., and my,my, ..., respectively. We consider two kinds of rooted trees
with n leaves, namely rooted trees with leaves labelled 1,2,...,n, and rooted
plane trees with a k-colouring of the leaves of type (nq,... ,ng) (that is a colour-
ing with colours 1,...,k such that exactly n; leaves are coloured 7). We also
assume that no vertex has only one descendant. The number of vertices of a tree
T is denoted by |T'|. A vertex of a tree is called peripheral if all its descendants
are leaves; the set of descendants of a peripheral vertex will be called a peripheral
class. The type Tg(T/) of a tree T" of the first kind is defined as 52115222 ..., Where
i; is the number of vertices of 7" with j + 1 descendants. The type 77(T") of a

tree T" of the second kind is defined similarly, as a monomial in my,ms,.... We

can now state the combinatorial interpretation mentioned earlier.

Theorem 3.1.5 We have that
B e = Z DTy, (3.1.6)
nl, w3 - Z |T”|_n Tm(T”)7 (317)

T//
the first sum ranges over those trees T' of the first kind for which none of the
sets of labels corresponding to a peripheral class are contained in a block of the
partition m; the second sum ranges over those trees of the second kind for which

no peripheral class is monochromatic. Furthermore, we have that

Fﬁblnk = Z(_l)k §n+k—1,k ; (3.1.8)
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here Ezk = 7'5(0), with summation ranging over those partitions o € 1l;
with no singleton blocks, for which none of the blocks are contained in a block of

the partition .

Proor. We denote by L; the set of rooted trees with i leaves labelled
1,2,...,1; for T € L;, we denote by p(T') the partition of [;] whose blocks are
either peripheral classes or singletons. We write ||o|| for the number of non-
singleton blocks of the partition o. We also define a new partial order < on [I,
by insisting that m < ¢ if and only if ¢ is obtained from 7 by amalgamating only
singleton blocks. With these notations, and using the expression for Lagrange

inversion in terms of rooted leaf-labelled trees (see [17] Corollary 1), we have:

F?ébl,...,nk = Z C¢(67 0-) /’L(b(o-? i\)

n>o€lly,
= Y GO | > (e
WZCTEHn TE,C|O.|

-y S (el )

720€lly T'€Ln:o=<p(T")
— Z (=1)l71=n T%(T/) Z (=)l

T'ELn o<, o=p(T")
To compute the last sum, assume that there are [ (possibly [ = 0) non-singleton
blocks of p(T") which are contained in some block of 7; then the only partitions
o satisfying o < 7 and o = p(7") are those obtained from p(7”) by splitting
all blocks into singletons, except some of the [ blocks mentioned above. Hence
the last sum is E[g[l](_l)m = 410, which proves (3.1.6). Formula (3.1.8) now
follows by using the bijection between leaf-labelled rooted trees and partitions
established in [17], Theorem 5.

To prove (3.1.7), we must first find an analogue of (3.1.4). We do this by

using Theorem 2.5.3, which provides an expression for the Mobius type function

/,L?; of a subposet P of II,, when there is a permutation group G on [n] which also
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permutes P (via the obvious action on II,,). We choose P to be [0,7] U {11,},
and ' to be the direct product of symmetric groups on the blocks of 7. In §2.5
we have considered the poset A(P) of preferential arrangements (o,w) of [n] with
o € P, and by A\(P) the poset obtained by adjoining a least element 0 to A(P).
We also let A(P) := A(P)\ {1}. By insisting that G/(0) = {0}, we obtain a
poset action of GG on A\(P), and hence an induced poset structure on the set of
orbits A\(P)/G Let us also recall from §2.5 the function ¢(® and its convolution

inverse i’ in the incidence algebra over H, of the poset A\(P)/G According

A(P)/G

to Theorem 2.5.3, we have

I _ B ip(O1) (3.1.9)
Pl b ong! |G| o

=ty 0.1) = Z o(0.Gl0.2)) ("(0. 7).
w)eT

where T is an arbitrary transversal of A(P)/G. We can view A(P)/G as the
subposet of A(Il,) consisting of “shuffles” of preferential arrangements of the
sets [n1], n1 + [n2], ..., n — ng + [ng], whose blocks are intervals (in N) ordered in
the natural way. If we do this, we can establish a bijection between A(P)/G and
the set of pairs (p, ¢), where ¢ is a k-colouring of [n] of type (n1,... ,ng), and pis
a partition of [n] with monochromatic blocks which are intervals (in N). Indeed,

if (o,w) is the shuffle (B;,;,, B;

22]‘27...

) of (Bi1, B12,...), .., (Br1, Bz, ...), then
the associated partition p is {[|Bi, 1], |Biyji| + [| Bisia |l - - - }» and all the elements
in the r-th block of p are coloured i,. Finally, we denote by P; the set of rooted
plane trees with ¢ leaves. If we label the leaves of T' € P; with 1,... 7, we can

define p(T') as before. Using (3.1.9) and the expression for Lagrange inversion in
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terms of rooted plane trees (the analogue of Corollary 1 in [17]), we finally have:

= Y @) | 3 =y

- Z Z (—1)|T”|—n—||/)|| Tm(T”)

(pic) T"€Pn:p=p(T")
_ Z (_1)|T//|_n Tm(T") Z (_1)||p||
(T"c) (pse): p=p(T")
The last sum is computed as before, and (3.1.7) follows. O
Note that for ny = ... = ny = 1, the theorem is just the Haiman-Schmitt

form of Lagrange inversion.

Example 3.1.10 In order to express ff?), f;z, and ffm, we consider all the
plane trees with 4 leaves, as shown below. The trees on the first line have type
m?; those on the second line have type m ma, except for the last one, whose type
is mg. The three numbers corresponding to a tree represent the number of 2-
colourings of type (1,3), of 2-colourings of type (2,2), and of 3-colourings of type
(1,1,2) for the leaves, which satisfy the condition in Theorem 3.1.5. According

to the theorem, we have

fls=—=8mi + 12mimy —4ms, f5, = —20m] + 24mymy — 6ms,

f{),m = —4877”6? + 54mimg — 12ms .

We now present applications of Proposition 3.1.1 to combinatorial proofs of
formal group law identities. We prove two such identities in Propositions 3.1.11
and 3.1.13. The first identity is a familiar one, and is usually proved by formal

power series manipulations (see e.g. [33]).
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/IN AN R AN AN

2,4,10 2,4,10 2,4,10 2,4,10
3,6,12 3,6,12 2,4,10 2,4,10 2,4,10 4,6,12

Proposition 3.1.11 In &*{X}}, we have that

oF*® -
"X X
0= (G o)

where ¢'(X) and %45()(7 Y) denote the formal derivatives of the corresponding

<

power series, and (-)' denotes the multiplicative inverse.

ProOOF. The given formula may easily be seen to be equivalent to the set of
identities
n—1 n
P, = (,)@Fffn_i, n>0. (3.1.12)
=0 t
Fix n > 0. By (1.7.7) and (1.7.13), we have
—En = Z T¢(7) )
YEC(ITpg1)
so it suffices to establish that the right-hand side of (3.1.12) also enumerates by
type the chains in C(Il,41).

We first partition these chains into classes C(A), with {1} € A & [n + 1], by
assigning the chain {6 <o < ...<o0, < /1\} to C(A) if and only if A € 0,. As
1 < ]A| < n, and there are (k:) ways of choosing A of cardinality &k, we see that
it is enough to prove that if [A] =k then 37 o4y 7 T(y) = b, FY _ky1 - We do
this as follows, by using (1.7.13), Proposition 1.7.14 twice, (1.7.7), and (3.1.3);
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for clarity, it helps to set A := [n 4+ 1]\ A, A := AU {1}, and w := {{1}, 4},

thereby yielding

PECIEEEY Yo ()| ¢leu{AlT)

Y€EC(A) o€ll(Kg) \ ~neCc(I(kouial))

= Y w00 U{A}) o U{ALT)

= ¢k_1 Z /“L(b(avﬂ-) Cb(ﬂ-vi\)

w>mell(A)

= 5k—1 Vﬁl.)cx({A}) = gk—l Ffb,nﬂ—k )
as sought. O

Proposition 3.1.13 We have that

nim = _ l(I)_1M )
o T

PROOF. According to (3.1.4), we have

> rfptD)= (S wnceD) e

melly, w€ll, \o<m
- ¥ wncind) (Sun)
o€lln >0

= M¢(67 /1\) = gn—l )

according to our conventions, p denotes here the classical Mobius function of

II,,. Tt is well-known that u(m,1) = (=1)"=1(|z| — 1)!, and that the number of

partitions o of [n] with I(o) = I is n!/(I!||I||). Hence

Ppy 1 (-1 n!
hoy = —2=L = —1)ith-t F?() —1)!

which implies the identity to be proved. O
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Let us note that the number n(I(I) — 1)!/||/]| is an integer. Indeed, if [ =

(1", ... k™), we have that

(ri42re4 ...+ krg)(ri+ ...+ rp—1)! B (rl—l—...—l—rk—1>

rlorg! ri—1,ry, ...y

. —1 . —1
19 A T ok e T '
ri, o — 1, ..o T1, T2y ool — 1
Hence, Proposition 3.1.13 provides another expression of nm,_; as an integer

linear combination of elements in the Lazard ring.

3.2 Combinatorial Models for p-typical Formal
Group Laws

Our results so far, as well as those in Chapter 4, are concerned mainly with alge-
braic structures and combinatorial invariants associated with the universal formal
group law. This section is intended to be a starting point for understanding the
combinatorics of p-typical formal group laws, by constructing more appropriate
combinatorial models in this case. We concentrate once again on the universal
case, by considering the umbra A in the ring 2, where p is a fixed prime.

We start by discussing the way in which the formula defining the characteristic
type polynomial ¢?(S; ) of a partition system with singleton atoms S simplifies
when we consider the image ¢*(S;z) of this polynomial under the projection

®.[r] — PL[x]. Let us associate with S the following partition system:
SPi=8S\{UcS :|U|l#pk, k>1, and S|U =Kp}.
Proposition 3.2.1 We have that
ANS;x) = N(SP; ).

In particular, /,LE\Y(S)(G,O') = /,Lj\j(sp)(a,d) for every partition o in II(S?).
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PROOF. We use the deletion/contraction identity in Theorem 2.3.1. Since
/,L]AY(,CU)(E)\,T) = X|U|_1 = 0 for |U| # p*, the characteristic type polynomial is
not affected by successively removing from S all the sets U satisfying |U] # p*
and S|U = K. The only thing we have to ensure is that these sets are removed
in decreasing order of their cardinalities. The statement about p* follows by
considering the set system S|o. O

According to the above result, we can express the polynomial B (z) in terms
of the poset I1(K?), which is much smaller than [1(K,) for large n; in other
words, we can restrict ourselves to partitions for which the block sizes are powers

of p. For instance, for p = 2, we have the simpler expression
By(x) =« — 6A2° + 3032 + (=3A7 4 6M1 0 — A3)z,
instead of the usual formula provided by (1.7.8):
By(x) = a* — 62127 4+ (1507 — 4)g)a? + (=157 + 10M\ Ay — A3)z.

But we know that the ring ®? is polynomial in A,_1,A,2_y,..., so the coefficients
of the polynomials B)(z) are expressible only in terms of these generators. For
p = 2 we have Ay = 3\? (because Ay = 3X? — )\ = 0), which means that we have

in fact

By(z) = a* — 6 2 + 3 2% 4 (15M7 — A3)z.

Thus we have arrived at the crucial problem of expressing the elements );, for
i # p*¥ — 1, in terms of the polynomial generators of ®¢. This turns out to be a
difficult problem, and is closely related to the open problem of characterising the
subgroup of the group of Hurwitz series X +ry X?/2!+1r, X? /314 ... (where r; lie
in some torsion free ring R) under substitution, which is generated by Hurwitz
series of the form X + ¢ X?/p!+ pXP /p*!+.... The first problem can in fact be
reduced to understanding how Lagrange inversion works for the Hurwitz series

AMX) and A(X) (which were reinterpreted in §1.2 as the exp and log series of
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the universal p-typical formal group law). Note that expressing the coefficients
of A(X) in terms of those of A(X) is just a special case of Lagrange inversion;
however, the converse requires more, if we want to express Xp_l,sz_l, ... onlyin
terms of Ap_1, Ap2_y,.... Before investigating this problem, we show how it helps
us express the elements \;, for i # p* — 1, in terms of A\,_1, A2y, .. ..

Let us start with a few definitions and notations. We say that a partition
I = (i1,...,1) of n is p-typical if all its parts i; are of the form p* — 1. All
partitions considered from now on in this section are assumed to be p-typical.
We set A; := A;, ... )\, and denote the coefficient of A; in the expression of an
element z in ® by ¢()\r,2); we do the same thing for A7, ¢7, and ¢;, where in
the last two cases the element z lies in ®,. Note that c¢(¢7,¢;) = c(é;, ¢s) by
Lagrange inversion; however, this equality does not hold when we replace the
umbra ¢ with A, as we have discussed in the previous paragraph. Let us consider
the set P(n) of p-typical partitions of n with the partial order defined in §1.10.
Note that ¢(¢7,¢;), ¢(Ar, As), and ¢(A7, As) can only be non-zero if I < .J. We
have

Moo= Y cpd)ds= Y Y )60, 8,) | A

JEP(n) IeP(n) \ILJ€EP(n) (3 9 2)

whence
And) = Y M) b, d,). (3.2.3)
I<JeP(n)
Formula (3.2.3) answers our original question of expressing A, in terms of A,_p,
Ap2_1,-.., provided that we are able to determine the coefficients (A1, Ag).

We now fix n = p* — 1 for the rest of this section. We have the following
analogue of (3.2.2):

o= Y cdnd) =) Y b ds)eh ) | A

JEP(n) IeP(n) \ILJEP(n)
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which provides
Y cldnds) A ) = Sr ) - (3.2.4)
I<JEP(n)
We can interpret this formula in terms of the incidence algebra (over Z) of the
poset P(n). Indeed, let us define the function f in this algebra by f(I,.J) :=
c(¢r,d5). Tts convolution inverse f~! exists because f(I,1) = (—=1)') is invert-
ible, and (3.2.4) tells us that c¢(A;, X\,) = f~1(1, (n)).

Let us consider an example for p = 2. We have seen above that s = 1503 — )3,
so let us now compute A7. The poset P(7) is totally ordered, and we have (17) <
(3,1%) < (32,1) < (7). First of all, we have c(MA2, A7) = —c(d1¢2, d,) = 1575
(this holds in general, for all the monomials A; with I a maximal element in

P(n)\ {(n)}). Secondly, we have

(Mg, Ar) = —e(d3s, by) (M A2, Ar) — (61s, &)
= —30-1575 — (—51975) = 4725.

Finally, we have

C(AI7X7) = C( :1))753) c()‘il)‘3vx7) - C( ?7512%) C(A1A§7X7) - c(quvE?)

— (—15)- 4725 — 225 - 1575 — (—135135) = —200115.
We now apply (3.2.3) and obtain

Ao = 3AT, Ay = —120)7 + 150103, A5 = —2205)] + 210X3 )5,

As = —28980)F + 210007 A3 + 357 .

Returning to the expression of A7 in terms of Ay, A3, and A7, let us note that the
sign of a monomial is no longer determined by the number of its factors, like in
Lagrange inversion.

Although it is easy to implement, the above procedure does not offer us any

indication about the combinatorial significance of the coefficients ¢(A, A,,), as
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Lagrange inversion does about the coefficients ¢(¢r, ¢,) (here we use the form
of Lagrange inversion in terms of leaf-labelled rooted trees, which was proved in
[17]). We now intend to show that finding the convolution inverse of the function
f in Z(P(n)) discussed above reduces to several classical M6bius inversions on
certain posets of trees. Moreover, we can easily recover the Haiman-Schmitt form
of Lagrange inversion.

We need a few more definitions and notations. In what follows, a tree means
a rooted tree with n + 1 leaves labelled 1,2,... ,n + 1, and no vertex having
only one descendant (such trees were called “of the first kind” in §3.1). We only
consider trees for which the number of descendants of every vertex is a power of
p; we call these trees p-typical, and denote their set by §2(n + 1). We recall the
definition of the type 7*(T') of a tree T' from §3.1. We define a partial order on
2(n + 1) as follows: Ty < T3 if and only if T5 is obtained from T; by contracting
certain internal edges (that is edges not incident to leaves). This poset clearly

has a unique maximal element, namely the tree of type A,, and several minimal

n/(p—1)

o1 - Let us also note that the map from

elements, namely the trees of type A

2(n+1) to P(n) specified by T + I, where 7*(T) = A;, is order preserving. We

are now able to state our main result.

Proposition 3.2.5 We have that

c(Ar, N) = — w(T,1),

T>‘( ):A]

where (1 denotes the Mébius function of the poset £2(n +1).

PROOF. We prove this result by induction on (), which clearly starts at 1.
Now assume that it holds for I(i) < k, and consider a p-typical partition [ of n

with {(I) = k. The idea is to sum the relations

M(Tv/l\) + Z M(Tlv/l\) =0, T/\(T) = A1,

T'>T
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prove that

Z N (1) = (D)"Y e(dr By) e Mg )
(T)=X;1

T'>T J>1

’T

(3.2.6)

and use (3.2.4). Hence, let us concentrate on (3.2.6). We clearly have
I WIURED o SO AT
MNT)=A; T'>T J>I +NT

where N(I,T’) denotes the number of trees T satisfying T < T" and 7MT) = ;.
It is easy to see that this number only depends on the type of T, not on the
tree T" itself. Furthermore, by a slightly more general form of the Lagrange
inversion formula due to Haiman and Schmitt, N(I,T") = (=1)!De¢(¢y, Tg(T/)).
Thus (3.2.6) follows by induction. O

Let us make a few remarks. The poset §2(n + 1) is not a lattice, and it seems
to admit no obvious closure or coclosure operator. This means that we cannot
apply the standard techniques for computing the Mobius function, which makes
this problem quite difficult. On the other hand, we notice that if we let our poset
of trees contain all trees with n + 1 leaves, then we obtain a Boolean algebra. In
consequence, (7, /1\) = (=11 for all trees with 7¢(T) = &7, and Proposition
3.2.5 still holds (with A replaced by ¢), by reducing to the Haiman-Schmitt form
of Lagrange inversion.

We now consider an example, again for p = 2 and n = 7. We present below
the value of u(T, /1\) for several (binary) trees which contribute to the expression
of ¢(AT, ;). For simplicity, we have drawn these trees with edges incident to
leaves removed, and without distinguishing the root; we will refer below to the
tree obtained in this way as the skeleton of the original tree. We notice that
the values of the Mobius function are greater than 0, which explains the fact
that —c(A], A7) is more than twice —c(¢], @,). This leads us to the following

conjecture.
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o)
Q o) o)

Q Q Q

Q Q Q

Q Q

Q

o) {\

1 1 1 3 4 5

Conjecture 3.2.7 We have /,L(T,/l\) > 1 for all binary trees T with 2% leaves,

where k > 3.

Note that this is not true for the trees contributing to the expression of
c(M X3, A7), for instance. We computed (7T, /1\) for the trees with 2% leaves whose
skeleton is a path, for £ = 3,4,5,6,7.8.

3] 4 5 6 7 8
w0y 1| 7 769 | 14678615 | A 7741-10'? | & 2954-10%°
log,(1(T, 1)) | 0 | 2.80735 | 9.58684 | 23.8072 | 52.7816 111.187

These computations suggest that the value of u(T, /1\) for trees with 2% leaves
whose skeleton is a path might be of the order 22"
If Conjecture 3.2.7 is true, it confirms the importance of Proposition 3.2.5,

and suggests that we might be able to find some objects which are counted by

(T, 1),



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 99

3.3 Classical Results in Algebraic Topology Re-

stated

In this section we express several classical coactions in algebraic topology in the
language of incidence Hopf algebras. The main instrument for translating topo-
logical formulae into this language is Theorem 1.7.6, which establishes the con-
nection between substitution of formal power series and the convolution product
in the incidence Hopf algebras @, and H.. Sometimes we prefer to write formu-
lae using the incidence algebras @.(/I,) and H*(ﬁn) of the lattices I1,, and ﬁn
The context will always determine which algebras we are using. The principle on
which our formalism is based is the one already discussed in §1.7; namely, that
in some cases, such as those considered below, a ring homomorphism ¢: R, — T
is uniquely determined by the image of Alg(£) on some function in Alg™(®.., R.)
or Alg™(H., R.).

Let us consider the Hopf algebroid (see [33]) MU.(MU) = MU, [V )1V .. .]
= MU, @ H., where H, is the dual of the Landweber-Novikov algebra (see Ex-
ample 1.7.4). Let nz, nr be the left and right units, § the comultiplication, and
v the conjugation of MU(MU). We write MY for (n + 1)IbMY ¢! for nr(o,),
and consider the umbras MY = (1,6MV 0V ) oMU = (1,6MYV oMUV ),

and ¢ft := (1,08, 6%, ... ). The right unit g is usually expressed via the formula

—R — —MU

¢ (X) =90 (X)).
By Theorem 1.7.6 (1) this is equivalent to specifying ng as follows:

(bMU (b

R R MU
nr: pt e =p® st or (P (=0T

(3.3.1)



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 100

by taking inverses. If we work in (H A MU).(MU), we can also write

b bR bMU b bMU

LE poe =k or (e =
(3.3.2)

where b := ng(b,), and b = (1,68, 6% ...). The comultiplication § can be

specified using the notation in §1.7 in either of following ways:

5: CbMU'_> CbMU®CbMU or C¢MU'_> §¢MU®C¢MU
(3.3.3)
Similarly, the conjugation ~ is specified by
v e M or M M (3.3.4)

We will present in §3.4 and §3.5 more substantial applications, demonstrating
the computational advantages of this new point of view. For now, we consider
a few simple applications, demonstrating the advantages in simplifying notation
and proofs. For our applications, we need the umbra x := (1,u,u?, ...) in K, =
Zlu,u='] and &% = (1,v,0%...) in K.(K), where v = 5 (u). Let us recall
that the image of K.(K) in K.(K)® Q consists precisely of those finite Laurent
series f(u,v) satisfying f(it, jt) € Z[t,t_l,%] for all 1,7 € Z \ {0}. We also
need the standard map of ring spectra g: MU — K representing the universal
Thom class in K°(MU); the map g.: MU, — K, is the Todd genus, mapping ¢,
to u”. Finally, let us recall the fact that K,(MU) = Z[u,u=t, b8 bl .. .], and
that g.: MU, (MU) — K.(MU) maps bnMU to bi‘ We will also need the umbras

bR = (1,68 05 . ) and ¢F = (1,08, 61, .. .), where ¢ := (n + 1)!1b%.

Example 3.3.5 Let us first check that the elements ¢? are primitive in
MU.(MU). Indeed, we have

5o = M s <§¢ " C¢MU>®C¢MU = et 21w <§¢ " CquU) — 190"
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Example 3.3.6 It is well-known that the map f.: MU (CP*) — MU.(MU)
induced by the inclusion f: CP*® ~ MU(1) — Y?MU is specified by gMV s
MU Let us identify MU,(CP>) with its image in (H A MU),(CP>), and try
to determine the map f.. It is an immediate consequence of (1.7.8), and it is also
a well-known fact in umbral calculus that
"= Y (*(0,0) Bi(x).
o€lln

Applying the map f., we immediately obtain from (3.3.1)

Fula™) = (P4 ¢ ) (bnm) = OF, (3.3.7)

Hence, the map f. can be interpreted as umbral substitution by ¢F.

Formula (3.3.7) and the following commutative diagram show that the el-
ements ¢ are primitive under the coaction MU,(CP*) — MU.(MU) @nu,
MU (CP>).

MU (CP*) MU(MU) @yu, MUL(CP™)
fx I® f«
MU, (MU) : MU, (MU) @y, MU(MU)

It is shown in [8] that K.(MU) is isomorphic to the direct limit
MU (CP*) =+ MU.(CP*) —=+ MU.(CP>) —~ ...

where the maps are “multiplication by z”. This means that there is a Z-linear
map MU,(CP>*) — K,(MU) sending 2" to u"~'. We deduce that ™ is not
divisible (by integers) in MU.(CP>), whence the ring of primitive elements in
MU (CP>) is precisely Z[x]. This is a simplified proof of the result which was

first proved by D. Segal in [48], Theorem 2.1.



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 102

Example 3.3.8 The Hurewicz homomorphism h.: MU, — K.(MU) can be eas-

ily determined using the following commutative diagram:

MR

MU, MU.(MU)
hx
gx
K.(MU)
Hence, we can specify h, as follows:
h*: §¢'_><=/1*<=¢I\' or M¢|_>M¢I(*MH7
which means that
he(dn) =) S+ Lk +1)dpu" ™", (3.3.9)
k=0
and
ha(,) = Z(_l)kk!3¢1((n+ Lk+1)u®. (3.3.10)
k=0

Example 3.3.11 We would now like to give a more explicit expression (than
the usual one) for the coaction 5K K. MU) = K.K) ®gk, K.(MU). Let
us present first a simple way of computing the image of MY under the map
(g A g): MU(MU) — K.(K). Since g is a map of ring spectra, we have the

commutative diagram

MU, " MU, (MU)
gx (97g)«
. i —

K. K.(K)

Hence (g A g)«(¢%) = v™. On the other hand, from (3.3.1) we obtain MY =

/~‘(ZS * §¢R- By applying (¢ A g)«, we deduce

(gAg): O o T (3.3.12)
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which means that

Biy (k") (v—u)...(v—nu)

A e U R ()

Let us now recall the commutative diagram

§

MU.(MU) MU(MU) @y, MUL(MU)
gx (9Ag)x@gx
K.(MU) = K.(K) ©x, K.(MU)

Hence, by combining (3.3.3) and (3.3.12), we have
5K . C¢K s <Mm " CHR> ® §¢K7

which means that

n+1
- k!
55 () =

Yoo (0,m) ¢ (o) | @b,

n<o€lny1

n+1 k" n+1

103

e 3renyid PIRDINGUL DU CL | L

1=k WEH,H.L,‘ ngenn-l-l,k

Finally, we have the following result:

S5 (K _n+1 k! ik 1) S5 ) =7 ik b
(n)_Z( ZS(TL—I— 7Z) (Zv )u v ®k—1'

!
= +1)! i=k

(3.3.13)

3.4 The K-theory Hurewicz Homomorphism

In this section, we intend to compute the images of the coefficients fﬁl of the uni-

versal formal group law under the Hurewicz homorphism h.: MU, — K. (MU).

According to (1.2.13), these coefficients are related to the coefficients Fil of the

universal Hurwitz group law by Fjl = n!l!ff;l. An algorithm for this computation

appears in [1], but no closed formula is given. All the set partitions considered in
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this section lie in the lattice I1,,1;, with meet denoted by A. According to 3.1.4,

we have

F?il = Z /“L(b(a? U) §¢(0-7/1\) 9

o<oyg

where o is the partition {[n],n 4 [[]} of [n +{]. Using (3.3.9) and (3.3.10), we
have

h(F2) = > 5 0,m) pr(m,0) CFlow) ¢ (w, 1)

m<o<w, 0<0g

= Y w0 (r ) CMo.00 A w) oo Aw,w) ((w,T).

n<o<og Aw
If we sum only over m < o9 Aw we get 0, since we have the factor (" * (") (7, o9 A

w) = 0. Hence

Fl) =3 w0, 00 Aw) (00 A w,w) ¢ (w, 1)

- S (X i)

<0 w: oo Aw=n
min{n,lx}
SRR IS k'@“)( )% ot
<o k=0
n min{i,j} .
= ZZS(‘SI((n,i)S(‘SKU,j) Z k'( )( ) iy i Lut ]
i=1 j=1

where n, and [, denote the number of blocks of the partition 7 < oy contained in
[n] and n + [{], respectively; the third equality follows by counting the partitions
w with o9 A w = m: concentrating on such partitions with precisely & blocks
intersecting both [r] and n + [{], there are () (l”> ways of choosing the blocks
of 7 to be amalgamated, and k! ways of matching them. Dividing both sides by

n!l!, we finally obtain the formula for h*(fgl)
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Proposition 3.4.1 The images of the coefficients of the universal formal group

law fﬁl under the Hurewicz homomorphism h, are specified by

n

l min{7,5} . .
K _pk 1+7—k '
ha( 21) = Z Zﬁfiz ﬁlb,j Z (k, Pk - k) b£+j—k—1 u*

=1 j7=1 k=0

3.5 Congruences in MU,

In this section, we prove some congruences for the @.-Stirling numbers S?(n, k)
in MUs;(,—r) modulo a prime p. The main tool will be the Hattori-Stong theorem
and the periodicity modulo p of the classical Stirling numbers of the second kind,

for which there is a nice proof using group actions (see [45]):
Sn,k)y=Sn—p+1,k) modp, forn>p-—1. (3.5.1)

The Hattori-Stong theorem essentially says that the Hurewicz homomorphism
he: MU, — K.(MU) is integrality preserving, that is for all z € MU, @ Q we
have that z € MU, if and only if (h. @ 1)(z) € K.(MU). This turns out to be a

purely algebraic statement, and such a proof can be found in [§].

Proposition 3.5.2 We have the following congruences in MU,:

0 mod ifnZ0 modp—1
$(np 1) = oA el
Gn_pt1 mod p otherwise,

(3.5.3)

n MUZ(n—p-I—l) 5

0 mod ifnZ0 modp—1
S(mp—2) = p fn# p
Gn_pt2 mod p otherwise,

(3.5.4)
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in MUsyn—py2), if p > 3;

0 modp ifn#0,—-1,—2 modp—1
. mod fn=-2 modp—1
S(n.p—3) = Pr—p+3 p f p
3b,— mod p ifn=—-1 modp—1
o (3.5.5)
3010p—pr2 — Pr—pts modp ifn=0 modp—1,

in MUQ(n—p—I—S); pr > 5.

PROOF. Let us compute the image of S%(n, k) under the Hurewicz homo-

morphism h,: MU, — K.(MU). By (3.3.9) we have

ho(S(n, k) = Y CF(0,7) ¢*(m, 0)

<o €ll, i
n
o~ K
=Y > O Y (“(mo)
1=k w&ll, m<o€ll, i

= S(n,1) S*(i k)un
i=k

We will first show that if 7 > p and & < p — 1, then S(‘SI((i,k) =0 mod p.
Consider a partition o € II; ; with £ < p—1 blocks and type T(bK(O') = (pf)2 ...
(¢§ﬂ;1)rj . If 7 > p, then T(bK(O') is divisible by p in K.(MU) since qbf_l is. If 3 < p,

then there are
7!
2z (g (k—re — oo =)l ooyt

partitions in II; ; having the same type as o; but this number is divisible by p

under the above hypothesis.
Now consider the image of ¢; under h. given by (3.3.9). Using (3.5.1), we

deduce that

u! mod p ifl=0 modp—1

h(r) = ¢ ul + oKu!=' mod p ifl=1 modp-—1
ut + 3wl + w2 mod p ifl=2 modp—1, (3.5.6)
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in Ky (MU).
According to the above remarks, and using (3.5.1) again, we have the following

congruences, implying (3.5.3), (3.5.4), and (3.5.5), respectively:

h*(S(b(n,p — 1)) = S(n7p _ 1)un—p+1 = 0 mOd p lf n 7‘é 0 mod p— 1

n—p+1

u mod p otherwise;

ha(S%(n,p = 2)) = S(n,p = 2)u" P42 4 S(n,p— 1)S(p = 1,p — 2)¢7 w"77*!

0 mod p ifn#0,—1 modp—1

u™ P2 mod p ifn=—-1 modp-—1

u" P2 4 ol Pt mod p if n =0 mod p —1;
hao(S?(n,p = 3)) = S(n,p = 3)u" 77" 4 S(n,p = 2)S(p — 2,p — 3)¢y w7

+S(n,p— 1S (p— 1,p — Bpu"*!

0 mod p ifn#0,—1,-2

| e mod p ifn=-2

- 3un 3 4 36K 2 mod p ifn=-1
2u" T 4 31T 4 (3()? — 63 JunT T mod pifn =0,

where all the congruences for n are mod p—1. We have used the following facts:

—1 -2
S(p—l,p—2)2<p2 )El mod p, S(p—Z,p—3):<p2 >E3 mod p,

¢ 1 —1 -3 - —1 - - -
S(bj(p—l,p—g):— p p (¢{x)2_|_ p gx53(¢{x)2_¢£x mod p
2 2 2 3
in K,(MU). O
Congruence (3.5.3) was proved in [34] using arguments related to the universal

formal group law; it had an essential role therein for proving the universal von

Staudt theorems. We believe that our technique is more powerful, since it also

provides (3.5.4) and (3.5.5), which seem to be new.
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3.6 Combinatorial Models for the Dual of the

Steenrod Algebra

In this section, we discuss some connections between the Hopf algebras @, and H.,
and the dual of the Steenrod algebra. Some of the results are known; nevertheless,
we believe that the combinatorial proofs presented here provide new insights.

Consider a prime p, and let ¢,y := ¢pn_y. In [39] it is shown that the subal-
gebra Z/(p)[oa), (2): - - -] of the mod p Faa di Bruno Hopf algebra . @ Z/(p) is
actually a sub-Hopf algebra, isomorphic to the polynomial part of the dual of the
mod p Steenrod algebra; the proof is based on number-theoretical arguments. We
present here an alternative proof, which is purely combinatorial and was inspired
from [45].

Consider the cyclic group Cyn acting on [p”], and hence on the partition lattice
II,n. We want to determine the partitions fixed by every element of Cpn. If o is
such a partition, then Cpn acts on its blocks. Let g be the cycle (1,2,... p"),
let B be the block of ¢ containing 1, and let <gpk> be the stabiliser of B. From
¢*" B = B, we deduce that {1,1+p*,... 1+ (p"~* — 1)p*} C B. Furthermore,
the sets {7,7 +p*,... .1+ (p"% — 1)p*}, for i = 1,2,... . pF, all lie in different
blocks of o, whence they are precisely the blocks of ¢. In consequence, we have
n+1 partitions fixed by every element of Cyn, namely one for each £ = 0,1,... ,n.
The orbit of every partition which is not of the above type has p' elements, where
¢ > 0. Finally, since all partitions in the same orbit have the same type, (1.7.3)

becomes

n

§(d(m)) = Zqﬁfﬁ_k) @éwy  in Z[(p)Pa) P@)s-- - (3.6.1)

k=0
Let us now consider the Hopf algebra P, := H. @ Z/(p), and the ideal J,
generated by the elements b;, ¢ # p* — 1. Writing b,y for b,n_;, we clearly

have an isomorphism of algebras P./J, = Z/(p)[ba), bz), . . .]. We intend to show
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that .J, is also a coideal (and hence a Hopf ideal), and that in the Hopf algebra
Z[(p)[bay, b(ay, - - -] we have

k
S(by) = bty © bry - (3.6.2)

We will prove these statements together. Consider arbitrary integers m,k >
1 such that m > p*. A partition in ﬁmpk can be represented by a pF-tuple
(21,...,0,%) with 7; > 1 and E?il i; = m. The cyclic group C,r acts on ﬁmmk
in the obvious way, and there is at most one partition fixed by each element of
C,x, namely the one with equal block sizes, if p* divides m; the sizes of all the
other orbits are non-zero powers of p. This shows that if kg is highest power of p
dividing m, then

ko
(S(bm_l) S P* ®J* -I' prk k_1 ®b(k)7

m/p
k=0

whence the desired statements follow.

In consequence, we have proved:

Proposition 3.6.3 The polynomial part of the dual of the mod p Steenrod algebra
is isomorphic to the sub-Hopf algebra Z/(p)lon), ¢y, --] of the mod p Faa di
Bruno Hopf algebra . @ Z/(p), as well as to the quotient of H. @ Z/(p) (that is
the dual of the Landweber-Novikov algebra tensored with Z/(p)) by the Hopf ideal
J.

Let R. be an evenly graded commutative ring of characteristic p. Since P,/J,
is a Hopf algebra, then the set Alg™( P./J., R.) is a group under convolution. We

can now derive an analogue of Theorem 1.7.6 (2).

Proposition 3.6.4 The set of formal power series in R*[[X]] of the form

r(X) =3 X

k>1
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(that is p-typical power series) form a group under substitution. There is an
anti-isomorphism from Alg*(Z/(p)[bay, b2y, - -], Rx) to this group, specified by
("= r(X).

In consequence, Lagrange inversion for p-typical power series in R*[[X]] is
equivalent to computing the antipode of Alg"(Z/(p)[ba),b(2), - - -], f), which is

much easier than computing the antipode of Alg™(H., R.).



Chapter 4

Hopf Algebras of Set Systems

In this chapter we construct and study several Hopf algebras/algebroids of set
systems which map onto the Hopf algebras/algebroids presented in Chapter 1
via the polynomial /symmetric function invariants defined in §1.8 and Chapter 2.
All our constructions concern the universal cases, namely the rings of scalars @,
and H,, with corresponding umbras ¢ and b. Purely as a matter of algebra, our
constructions may be carried over to the setting corresponding to any other ring
and umbra of the types discussed in §1.1. A notational consequence also deserves
comment; since the rings @, and H, are both torsion free, we choose to rewrite
divided powers such as qb(D)(n) and 2(,) in the more explicit forms ¢(D)" /n! and

z™ /n!, respectively.

4.1 Cocommutative Hopf Algebras of Set Sys-
tems

Consider the free @,.-module S, := @.(&) spanned by the set & defined in §1.5.
In this section we define several graded Hopf algebra structures on Sy, following

the general method in [47] (which was summarised in §1.7) for constructing the

111
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incidence Hopf algebra of a hereditary family of posets with a Hopf relation. The
resulting Hopf algebras map onto @.[z] in a variety of ways, and so provide
combinatorial generalisations of the algebraic phenomena associated with the
universal Hurwitz group law.

As pointed out in §1.5, we shall not attempt to distinguish notationally be-
tween a set system and its isomorphism class, since in those cases where it matters,
we have taken care to ensure that the context is clear.

Let P be the hereditary family consisting of all finite products of intervals
from the posets (Ky(s), C), for arbitrary set systems S. Intervals corresponding
to different set systems are considered distinct, even if they consist of identical
sets, so we index by & the elements of Ky (s) determining an interval. We define a
map from P to & as follows: given set systems S, for i € [n] and intervals [Us,, W]
in Ky s;y, we map [Us,, Ws,] x ... x [Us,, Ws,] to the isomorphism class of the
set system S1|(Ws, \Us,)- ... - Su|(Ws, \ Us, ). Let ~ be the kernel of this map.
The proof of the order compatibility of ~ is mainly based on the fact that disjoint
union interacts with restriction such that (Sy - S2)|(Uy U Usz) = (S1]Uy) - (S2|Us),

where U; C V/(S;) for « = 1,2. This proof can be divided into two steps, as shown

below:
[Us,, Ws,] x [Us,, Ws,] ~ [(Us, UUs,)s,.s,, (Ws, UWs,)s,.5,],
(As,, As,) — (As, U As,)s, s,
[Us, Ws] ~ [Dsjwa\ve)» (Ws \ Us)sjwa\vs)) » As = (As \ Us)s|we\Us) |

the two maps indicated are the corresponding order compatible bijections. Since
isomorphism of set systems is a congruence with respect to disjoint union, the
relation ~ is a Hopf relation.

Let H(P) be the @.-incidence Hopf algebra of the family P modulo the Hopf

relation ~. The bijection from P/~ to & induced by the map above can be
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extended by linearity to a bijection from H(P) to S.. We use this bijection to
transfer the Hopf algebra structure of H(P) to S.. Comultiplication in S, is
specified by

§(S)= Y SWasWw,

Wev(s)

where W := V(8) \ W. The counit is determined by

1 if S={0
e(S) = ' 03
0 otherwise.

Multiplication is disjoint union, and the unit is the map 5 specified by (1) := {0}.
The antipode is determined by
Sy = Y (=)o) Slo. (4.1.1)
cell(V(S))

Clearly, the Hopf algebra S, is commutative and cocommutative. It is also
graded, by setting the degree of S equal to |V(S)], and it has finite type. The
indecomposables in S, are the isomorphism classes of connected set systems, so
that S, is isomorphic, as an algebra, to the polynomial algebra @,[&,]. Since each
poset in the family P is a Boolean algebra, we can apply Theorem 10.2 in [47] to
obtain further information about the structure of S, as in Theorem 4.1.2 below.
For this purpose, we recall from [47] the projection p of S, onto its primitive
elements, specified by

p(8) = > (=) (ol - 1)tS)e.
cell(V(S))
Theorem 4.1.2 The Hopf algebra S, is isomorphic to the polynomial Hopf al-

gebra @.[p(S,)], having primitive indeterminates.

We can define similar Hopf algebra structures on S, by basing the multiplication
on V or ), rather than disjoint union; this is possible because both operations

interact with restriction in similar fashion to disjoint union, and isomorphism
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of set systems is still a congruence. The resulting Hopf algebras are likewise
polynomial, and have primitive indeterminates. Complementation of set systems
induces a Hopf algebra isomorphism between (S, ) and (5., ®). In what follows,
by S. we always mean (S, ).

We now consider the graded dual S* of the coalgebra S, which has pseu-
dobasis {Ds : S € &} dual to &. As a left-invariant operator, Ds acts on 9.

according to the rule

DsT =) TIW,
w

where W := V(T) \ W, and the summation ranges over those subsets of V(T
for which T|W = S. The multiplication in S* is given by
Ds, Ds, = 2(5;81,82) Ds ,
Se6

where (S; 81, S3) denotes the coefficient of S; @ S; in §(S). We now utilise Theo-
rem 4.1.2 to view S, as the polynomial algebra @.[p(&,)] with primitive indeter-
minates, and write Dps) for the partial differentiation operator with respect to
the variable p(S), where S lies in &, . It is now easy to see that S is isomorphic
to the @,-algebra of Hurwitz series in the variables D, s).

Perceptive readers may have noticed that, thus far, we could have restricted
our scalars to Z. We now impose deletion/contraction relations on S, which
involve the scalars @, in an essential manner. Let R, be the graded submodule

of S, spanned by all elements of the form
S—8S\U—-op-1S//U, (4.1.3)

where U is a maximal element of the poset (S§,C) with |U]| > 1, and let Q. be

the graded submodule spanned by all elements of the form

S =S\ U — s (0. {UD) S /U,
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with U as before. Then writing p?, ¢, and x? for the @,-linear maps from S, to
®.[z] obtained by respectively assigning p?(S; ), ¢?(S;z), and y?(S;z) to the
isomorphism class of the set system §, it is not difficult to check, using Theorem
2.3.1, that ker p® = R, and ker ¢® = Q.. Our first realisation result for polynomial

invariants can now be proven.

Proposition 4.1.4 The maps p?, ¢®: S, — @.[z] and x?: (S.,®) — B.[z] are

surjective maps of graded Hopf algebras.

PROOF. Surjectivity follows from (1.8.4), whilst p? and ¢? are algebra maps by
Proposition 1.8.5. It therefore suffices to prove that they are coalgebra maps as
well, since any bialgebra map of Hopf algebras is a Hopf algebra map. We will
show that R, and (). are coideals in the corresponding coalgebras, concentrating
on the former.

Obviously, e(R.) = {0}. Now consider an element of the form (4.1.3), and
W CV(S). fU C W, then (S\U)|W = S|W. If W C U, then (S\U)|W = S|W.
If none of the above hold, then (S\U)|W = S|W and (S\U)|W = S|W. Finally,

since deletion commutes with restriction, we have

5(S—S\U)= Y (SIW—(SIWN\ D) 2SI+ Y SIW e (SIW—(SW)\U).

wWoU wcU

Since U is a maximal element of (S, C), then S//U is isomorphic to N - S|U and

SSHU) =N @ {0} + {0y o M) - | Y SIWaS|(U\W)

= D (SIW)JU SV + 3 SIW o (S[)//U.

These relations show that d(R.) C R. @ S, + S« ® R., whence R, is a coideal.
The proof for Q. is similar, and the result for y? follows from that for ¢?,

using Proposition 2.4.1. O
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Now consider the algebra SymZ(x) of symmetric functions with integer co-
efficients, with the Hopf algebra structure described in §1.10. We give here an
alternative description of the comultiplication (cf. [15]), which will be used in the
proofs of Proposition 4.1.5 and Theorem 4.2.4. Given A C Nand t(x) € SymZ(z),
let ¢(x4) denote the symmetric function obtained from ¢(x) by substituting 0
for x; whenever i ¢ A. If {(x) has degree n, then its image under comultipli-
cation can be computed by examining the image of #(x[y,)) under the natural
isomorphism Z[xz1, ... ,x,] = Z[z1,... ,2,] @ Z[xps1,. .. ,T2,]. This observation
enables us to establish an analogous result to Proposition 4.1.4 for the Z-linear
map X : Z(&) — SymZ(x) specified by S — X(S;x), where X(S;z) is defined
in §1.8.

Proposition 4.1.5 The map X : (Z(&),V) — SymZ(z) is a map of graded Hopf

algebras.

ProOOF. According to Proposition 1.8.6, we have only to prove that X is a
coalgebra map. Consider a set system S with d vertices. It suffices to show that

X(Ssapa) = Y X(SIW;ap) X(SIW; zasp) -
WCV(S)

—_—
—

Now there is an obvious bijection from Zj341(S) to

U Zu(SIW) x Zpui(SIW),
WCV(S)

wamely [ 5 (1, 17), where f = fIf=}([d]) and /" = fIf=*(d + [d]); moreover,
we clearly have @/ = 2'2/", from which the formula follows. O

Inspection of the comultiplication in S, reveals that the sequences (NV,,) and
(K,) are binomial in the sense of (1.1.8), and according to (1.8.4) they map (as
they must) to familiar binomial sequences in ®.[z] under p?, ¢?, and y?. Tt is

therefore of interest to determine all binomial sequences in S,, and especially
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those whose elements lie entirely within the generating set &. For this purpose,

we define the set system
K.(A):={UC|[n] : |U|l€ A}

for every n € NU {0}, and every set A C NU {0} containing 0 and 1. Obviously,
K.({0,1}) =N, and K,(NU{0}) = K,..

Proposition 4.1.6 The only binomial sequences whose elements lie in & are

those of the form (K, (A)) for {0,1} € A CNU{0}.

PROOF. Clearly, all sequences (K,,(A)) are binomial. Now let (B,,) be an arbi-
trary binomial sequence whose elements lie in &. Assume for induction that there
is a set A, C [n] U {0} such that B, = K;(A,) for all 0 < ¢ < n; this certainly
holds for n = 0. Then define

An—l—l =

A, otherwise.

Choose an arbitrary subset U of V/(B,41) with 1 < |U| < n,and « € V(B,4+1)\U.
The binomial property implies that B,41|(V(B,+1) \{z}) is isomorphic to B,. It
follows by the inductive hypothesis that U € 5,44 if and only if |U| € A, C A, 4.
We conclude the proof by setting A := UnZO A,. O

It is now time to embellish our Hopf algebras with delta operators.

Let §: S, — @.[x] be a surjective map of graded coalgebras. Then its trans-
pose 0*: @*{D}} — S* is an injective algebra map. Hence §* induces an algebra
isomorphism from @*{{ D}} to the subalgebra ®*{{ D?1} of S*, where D’ := 0*(D).
Therefore, given a delta operator (D) € #*{{D}}, we may write the delta oper-
ator 0*(a(D)) as a(D%).

Proposition 4.1.7 The map 0: (S.,a(D?)) — (®.]z],a(D)) is a map of coalge-

bras with delta operator.
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PROOF. The fact that a(D) o8 = 0o a(D?) follows immediately from (1.1.4) by
setting p=146, f = («(D) |-). O

Clearly, we can take § to be any one of the maps p?, Y® or ¢, and combine
the results of Proposition 4.1.7 and Proposition 4.1.4. By way of example, we

record that

DrS= > GwaSW, D= > e 0 {WHSIW,
WeS\{#} Wwes\{0}

and o(D)S = Z V§|W({W}) SIW (by Proposition 2.4.1)
WeS\{0}

in S,. In particular, we have

DN, = D°N,, =nN,_4 and HD)VK, =nkK,—1.
(4.1.8)

Let A be an arbitrary delta operator on S.. Let T, be a subcoalgebra of 5.
such that S, = T. & &*{ Dy, }}* (see [53]). Then A acts on T, non-trivially,
and @*{{ A}} may be viewed as its dual. In this context, it is consistent to refer
to the basis of T, dual to the pseudobasis A”/n! as the associated sequence
of A in T,; such sequences are obviously binomial. Of special interest are the
subcoalgebras C'(A). spanned by the binomial sequences (K, (A)) of Proposition
4.1.6. Note that (K,(A)) is the associated sequence of Dy, in C'(A)., but that it
is also the associated sequence of other delta operators, as exemplified by 4.1.8.
There is an isomorphism of coalgebras with delta operator between (C(A)., A)
and (@.[z], (D)), specified by K, (A) — 2", where a,_; = (A | K,(A)). The
determination of the associated sequences of A therefore reduces to the classical
case.

We conclude this section by explaining how the identities (1.2.11) and (1.2.12),
which hold in @.[z], can be lifted to S..
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Proposition 4.1.9 Let o be an arbitrary umbra in ®,, and A a delta operator

on S, which is a derivation; then the following identities hold in S,:

a(A)(S1-82) = Y Fey(a(A) /il &) - (a(A) /]! S2)

w20 (4.1.10)
a(A)4(S) =D 1§ y(a(A) /R S). (4.1.11)

Given any map 0: S, — &.[z] of graded Hopf algebras, D is a derivation, so the

above identities hold for it.

PROOF. Let p denote the multiplication in S.. We have that Aop =po(A®
I+ 1® A), whence, by Proposition 1.2.5,
a(A)op=poa(AQI+TDA)=poF*' (AR I, 12 A).
This proves (4.1.10). On the other hand, we know from (1.1.4) that Ao~y =
Y0 laoy|y. Forall §, S and S; in & with 81,8, # {0}, we have that
¥(S) = =8 + decomposables in S, (see (4.1.1)),
and
(A]S1-8)=(ART+ TR A|S®S8;)=0.
This implies (Aovy|-) = (= AJ-), whence the linear operator corresponding (Ao~y|-)
is —A, and Aoy = —yoA. Using Proposition 1.2.5 again, we immediately obtain
a(A) oy = yoa(~4) =y o (a(A)),

which proves (4.1.11).
If § is the map specified above, then, by using (1.1.4) once again, we have

that D op=po Lipeop |- For all §; and Sy in &, we have

op|-
(D" op|S1®82) = (D |0(S1-82)) = (D |(51) 0(S2))
=DI+12D|0(S)®0(S,))

= (D' I+T0D |85 0S8,).
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In consequence, the operator corresponding to (D% op|-)is D @ I +1® D’, and
Diop=po(D@I+1®D%. O

We may take § = p? and 0 = ¢ in Proposition 4.1.9 to obtain identities
concerning the interaction of a(D?) and (D) with the multiplication and the

antipode in S.. Analogous identities hold for a(DX) in (S, ®).

4.2 Cocommutative Hopf Algebras of Set Sys-
tems with Automorphism Group

In this section, we define cocommutative Hopf algebra structures on the free
modules H.(€) and L.(P) spanned by the sets € and P defined in §1.6; we also
study certain quotients of these Hopf algebras.

As pointed out in §1.6, we shall not attempt to distinguish notationally be-
tween a set system with automorphism group and its isomorphism class, since in
those cases where it matters, we have taken care to ensure that the context is
clear.

The obvious idea for constructing a Hopf algebra structure on H.(€) would
be to extend the procedure in the previous section. Thus, we would have to
consider the hereditary family P consisting of all finite products of intervals in
the posets (Ky(s)/G, ©), for set systems with automorphism group (S, ) whose
isomorphism classes lie in €. However, the kernel of the map from P’ to € extending
the map defined in the previous section is not an order compatible relation. This
is the reason for which we adopt a direct approach, defining the comultiplication
in H.(&) by

5(S8,G) =) (S,HIW e (S,G)W,

WeT
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where T is an arbitrary transversal of Ky (s)/G. The counit is specified by

1 if (S,G) = ({0}, {1})

0 otherwise.

e(S,G) =

Multiplication is induced by disjoint union, as defined by (1.6.2), and the unit is
the map 7 specified by n(1) = ({0}, {1}). It is not difficult to check that the above
maps define a Hopf algebra structure on H.(€). In particular, coassociativity

follows by observing that

G16(S,G) = Y |Gw|(S.GW @ (S.G)|[W (4.2.1)
WCV(S)
= Y (GIWIS.GW) @ (IGTW](S,6)|W);
WCV(S)

here we have used the standard fact that |G(W)| = |G|/|Gw|, as well as the fact
that G is cycle-closed, which implies Gy = G|W x G|W. We can also use (4.2.1)
to prove that the antipode of H.(€) is specified by
CRICHGESED DIV | RUCEICREIDE

(0,w)EA(Ky(s)) Beo

Using once again the fact that G is cycle-closed, we deduce that
18,6y = ()]s @) B,
(o.w)ET Béo

where T is an arbitrary transversal of A(Ky(s))/G. Note that considering cycle-
closed automorphism groups is essential; indeed, the obvious extensions of the
above maps do not define a Hopf algebra structure on H.(2(). Clearly, the Hopf
algebra H.(€) is commutative, cocommutative, graded (in a similar way to S.),
and has finite type. We may define similar Hopf algebra structures on H.(€) by
basing the multiplication on V or (), rather than disjoint union. We can also

replace the ring H, of scalars with other rings, such as Z.
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We would now like to factor the Hopf algebra H.(&) by relations of the form
S —|G](S,G). Let L. be the graded ideal of H.(€) generated by the set

{S§—-|G|(S,G) : (S,G) € &}, (4.2.2)
Proposition 4.2.3 The ideal I, is a Hopf ideal.

PROOF. According to (4.2.1), we have
55— 1GI(S.G) = S (SIW — [GIW|(SIW, GIW)) © S[TT
wev(s)

+ Y GIW(S, AW @ (SIW — |GIW| (S|W,G|W)) .
WCV(S)

which lies in H.(€) @ [. + [, @ H.(€). O

According to the above result, we have the graded Hopf algebra H.(€)/Ll.,
which we denote by C.. We will denote the element (S, G) + L. of C, by [S,G].
Note that H.(S) can be regarded as a sub-Hopf algebra of C.. Let us also
note that for a given set system S, the elements [S,G] in C, which are not
divisible by integers correspond to the maximal cycle-closed subgroups G of the
automorphism group of §. In general, there is more than one such subgroup.
Indeed, let S be the set system on 7 vertices corresponding to the projective
geometry PG5(2), with automorphism group G'Ls(2); it is not difficult to see
that the maximal cycle-closed subgroups of GGL3(2) are its Sylow subgroups.

Let pb,c*: C. — H.{z} be the H,-linear maps specified by
[S.Gl = p?(S;2)/IG] and  [S,G] = ?(S52)/|G],

respectively; note that these maps are well-defined, and that we can choose the
codomains to be H.{x} by Lemma 2.5.2 and (2.5.6). Similarly, we consider the
Z-linear map X : Z(€) — SymZ(z) specified by (S, G) — X(S,G;z).

Theorem 4.2.4 The maps p°,c’: C. — H{z} and X: (Z{¢€),V) — SymZ(x)

are surjective maps of graded Hopf algebras.
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PROOF. Surjectivity follows from (1.8.4) and the fact that X (N, Y,; ) is the
elementary symmetric function A,. According to Propositions 1.8.5 and 1.8.6,
it only remains to prove that the given maps preserve comultiplication. For p
and ¢, this follows immediately from Proposition 4.1.4 by regarding I.(&) as a
sub-Hopf algebra of ., and by using the relation [S] = |G| [S, G, which holds in
C.

In order to prove that X is a coalgebra map, it suffices to show that

X(S,Giapa) = Y X(SIW,GIW; ap)) X(S|W, GIW; 2asqa)) ,

weT
- (4.2.5)

where T is an arbitrary transversal of Ky(s)/G. Let us denote Zp(S|W) x
Eapa(SIW) by Ew, for simplicity. Recall the bijection from Zpqy(S) to
UWgV(S) =w constructed in the proof of Proposition 4.1.5. The group G acts on
the second set via this bijection, and we have a restricted action of Gy on =y .
There is a second bijection, from |y o7 Zw/Gw to <UW§V($) EW> /G, given by
Gw(f', ) = G(f', f"). Since G is cycle-closed we have Gy = G|W x G|W, and

hence a third bijection, from =y /Gw to
(Z)(SIW)/(GIW)) x (Zapa)(SIW)/(GIW)).
These three bijections together yield a fourth one, from Z4)(S)/G to

U (G S/ (GIW) x (Zaspa)( STV /(GIW)),

WeT
with the property that if G(f) — ((G|W)(f),(GIW)(f")), then =/ = /" 2/".
This proves (4.2.5). O
Now let 0: C. — H.{x} be a surjective map of graded coalgebras, such as p’
or ¢*. As in the previous section, we may employ §* to associate a delta operator
a(D’) on C, with the delta operator a(D) on H.{x}, and check that the map
0: (Cy,a(Dg)) — (HAx},a(D)) becomes a map of coalgebras with delta operator.

This result then yields a suitably strengthened version of Theorem 4.2.4.
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As an analogue of (4.1.8), we have
DN, X)) = DN, X)) = (Namr, Yast), (D) (K, X)) = (Kot Yt )

With reference to the binomial sequences (K,,(A)) defined in the previous section,
we remark that the sequence (K,,(A), X)) is a divided power sequence, in the sense
of (1.1.12); furthermore, every divided power sequence in C, is of this form.

We also obtain an analogue of Proposition 4.1.9, whose proof is similar.

Proposition 4.2.6 Let a be an arbitrary umbra in H,, and A a delta operator
on C, which is a derwation; then the following identities hold in C\:
A(A) ((S1,Gh) - (82, Ga)) = Y f25 (a(A) (S1,Gh)) - (a(A) (82, Ga))
§,§>0

and  a(A)y(S,G) =) ity(a(A)"(5,0))

E>1
Given any map 0: C, — HJ{x} of graded Hopf algebras, D’ is a derivation on

(s, so the above identities hold for it.

All our results for the map ¢® may be reformulated by complementation for
the map x*: (H.(¢€)/.,®) — H.{z}, specified by [S,G] = x?(S;2)/|G.

In conclusion, we address the problem of finding a model for the covariant
bialgebra L.(3!(x)) of the universal formal group law. To this end, we consider
the free L.-module L.(PB) spanned by the set P defined in §1.6; clearly, this
module is a sub-Hopf algebra of L.(€). If I, is now the ideal of L.(&) generated
by the set in (4.2.2), we have the graded Hopf algebra P, := L.(B)/(L.NL.(B)),
by a similar argument to Proposition 4.2.3. Note that there are inclusions of Hopf
algebras

L(S) = P, — L&)/,

Theorem 4.2.7 The restriction of ¢® to P. is a map of graded Hopf algebras

onto L.(3°(z)).
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PROOF. We establish that ¢*(J3) C L.(3%(z)), from which the result follows by
Proposition 4.1.4 and (1.8.4). Consider (S,G) € B, and let m be the associated
partition. We will prove that ¢?(S;x)/|G| € L.(3%(x)) by induction with respect
to |S\K™; the induction starts successfully at 0, by the definition of L.(3?(z)). If
|IS\K7™| > 0, choose a set U € S\ K™ minimal with respect to inclusion, and recall
the deletion/contraction formula Theorem 2.3.1. We clearly have ¢ = G|U x G|U,
and (S\ U, G) € B. Also, G|U can be viewed as an automorphism group of S//U
in the obvious way, whence (S//U, G|U) lies in B (the corresponding partition is
obtained from 7|U by adjoining the block consisting of the singleton {U}). Using

these facts, formula (2.3.1) can be rewritten as

[C (€] |GIU| |G|U]

H(Sia) _ HS\Usa) Wosin (0 AUY) (8103 ) |

Given the choice of U, we have

/“L%(S|U)(O7{U}) _ ., Ffl,...,nk L

|G|U| nil.ong!

by (3.1.2) and (1.2.13), where n; are the sizes of the blocks of 7|U, and r is some

positive integer. The induction is now complete. O

4.3 A Non-cocommutative Hopf Algebroid of
Set Systems

Recall that we denoted by S the set of weak isomorphism classes of set systems
for which the poset of divisions has a unique maximal element. In this section
we define a non-cocommutative structure on the free @.-module §* = @*<é>
spanned by the set é; this structure is not a Hopf algebra, but a Hopf algebroid.
However, its construction starts by defining a similar structure on the free Z-

module Z<@>, and this i¢s a Hopf algebra. This construction is analogous to the
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one for S,, being also based on the general method of constructing incidence Hopf
algebras described in [47].

As pointed out in §1.5, we shall not attempt to distinguish notationally be-
tween a set system and its weak isomorphism class, since in those cases where it
matters, we have taken care to ensure that the context is clear.

Let P be the hereditary family consisting of all finite products of intervals from
the posets [I(S) ordered by refinement, for set systems S with weak isomorphism
classes lying in S. Intervals corresponding to different set systems are considered
distinct, even if they consist of identical sets, so we index by & the elements of
I1(S) determining an interval. We define a map from P to S as follows: given
set systems S; for ¢ € [n] and intervals [7s,, 0s,] in [I(S;), we map [rs,,0s,] X

. X [7s,,0s,] to the weak isomorphism class of the set system ((Si|os,)//7s,)
.- ((Snlos,)//7s,). Let ~ be the kernel of this map. The proof of the order
compatibility of ~ is mainly based on the fact that disjoint union interacts with

restriction and strong contraction such that

((S1-S)|(or U as))//(m Ums) = ((Silow)//m1) - ((Szloz)//m2),

where [m;, 0] are intervals in [I(S;) for i = 1,2. This proof can be divided into

two steps, as shown below:
[7T51 ) 051] X [7T527 052] ~ [(ﬂ-sl |—|7T52 )51 -S2 9 (051 |—|052 )51 '52]7 (1051 ) 1052) = (1051 |—|1052 )51 S

(s, 05] ~ [(ws /78 )(sl0s)/jms (08 /T8 )slos)ipms) s Ps = (ps/Ts)Slos)/ims i
the two maps indicated are the corresponding order compatible bijections. Since
isomorphism of set systems is a congruence with respect to disjoint union, and
since ~ is a reduced congruence (this is the reason for considering weak isomor-
phism classes of set systems), the relation ~ is a Hopf relation.

Let H(P) be the Z-incidence Hopf algebra of the family P modulo the Hopf

relation ~, as defined in [47]. The bijection from P/~ to S induced by the map
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above can be extended by linearity to a bijection from H(P) to Z<@> We use
this bijection to transfer the Hopf algebra structure of H(P) to Z<@> Comulti-
plication in Z<é> is specified by
§(S):= Y Slows/lo.
c€ll(S)

The counit is determined by

1 if S={0
e(S) = ' 03
0 otherwise.

Multiplication is disjoint union, and the unit is the map 5 specified by (1) := {0}.
The antipode can be expressed using the Schmitt formula (1.7.1). Note the rdle
of the non-standard convention I1({0}) := {{(0}}; also note the fact that we have
no counit if we replace S with the set of weak isomorphism classes of all set
systems.

Clearly, the Hopf algebra Z<é> is commutative and non-cocommutative. It
has finite type, and is graded by setting the degree of the weak isomorphism class
of § equal to |6H(5) | — |/1\H(5)|. On the other hand, this Hopf algebra is isomorphic,
as an algebra, to the polynomial algebra Z[éo].

Let us denote by R the set of weak isomorphism classes of K,,, n > 0. This
set generates a sub-Hopf algebra of §*, which is easily seen to be isomorphic to
the Faa di Bruno Hopf algebra discussed in Chapter 1; a slight variation of the
above combinatorial model for this algebra appears in [47] Example 14.1, and is
based on complete graphs.

We now define the Hopf algebroid (@*,3\*). The left @,-module structure
on §*, which is expressed by the map 7y, is the usual one; we will identify the

elements of @, with their images via 5. The maps § and ¢ are defined by the

same relations as the corresponding ones for Z<@>, plus the constraint to be left
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module maps. The right unit ng is defined by
nr(¢n) = Y 7o) Kp. (4.3.1)
G€M 11
The conjugation v is defined as before for weak isomorphism classes of set systems,
while we are constrained to set y(¢,) := nr(¢,). In order to check that (&., §*)
with the above structure maps is indeed a Hopf algebroid, as well as in view of
later applications, we define the algebra map ¢?: S, =&, 00, by specifying its

image on weak isomorphism classes of connected set systems S:
a(8) = (o"(D) | *(Ss2)) .

It is not difficult to see that the map ¢® restricts to an algebra isomorphism

o~

between @,[RK] and &, ® &,, which commutes with the restrictions of the struc-

ture maps defined above. Hence (®.,®.[8]) is a Hopf algebroid isomorphic to
(€., P. @ P.). In particular, we have
E(Kngr) = (D) | Bl (a)) = Y wt(0,0) ¢ (0,1) = ¢,

o€llni1

(4.3.2)

and

§(z)=10z  for z€nr(d.)C S,. (4.3.3)
Furthermore, all the axioms of a Hopf algebroid can now be easily checked for
(P., §*) either directly, or using the above isomorphism and the fact that Z<é>
is a Hopt algebra.

In order to write computations in a concise form, it helps to consider the func-
tions ¢¥, 1% in @.(ILp1), ¢ in (@, 0 0.) (), and ¢, %, (ra(0), yrnls)
in §*(Hn+1); as the notation suggests, K is the umbra (K1,Ks,...), and nr(¢)
is the umbra (1,nr(¢1),nr(P2),...). Throughout this section, we let 0:=0p

n+1

and 1 := 1 unless there is some other poset in sight. The definition (4.3.1)

n+1?
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of nr can now be rewritten as nr(¢,) = (¢¢ * §’C)(6, /1\), which is equivalent to
Kogr = (u? + (9)(0, ).
The Hopf algebroid (&., §*) clearly has the same properties as the Hopf alge-

bra Z(&) of being commutative, non-cocommutative, graded, and isomorphic to

a polynomial algebra.

Proposition 4.3.4 The map (I,¢%): (@*,g*) — (@.,0,2®,) is a surjective

map of graded Hopf algebroids.

PROOF. The map ¢ clearly preserves gradings, while surjectivity follows from
(4.3.2). Now let S be an arbitrary connected set system with weak isomorphism
classes lying in 8. First, we need to show that (g 0¢?)(S) = 0. By expressing
c?(8; z) according to Proposition 2.4.1 and by using (4.3.2) once again, we obtain

ES) = 3 vE(o) by

ocl(3)

Since all partitions in II(S) have at least two blocks, we have £(¢?(S)) = 0.
The fact that ¢® o ng = ng has been already observed, when we discussed the
restriction of ¢ to @*[ﬁ]

The fact that § o &% = (’c\‘b ® E¢) o 0 follows from

(E@e)od)(s)= (/ﬁS s)* CbR)(aaU) @ (/ﬁS s)* C(bR)(UaT)
7EHE) (4.3.5)
= 1) (0,7 @ (¢ () % C¥ ), 1)
well(8S)
= M%(S)(av 7T) ® CbR(ﬂ-v 1)
well(8S)

As far as the relation ¢® 0o v = 4 0 ¢ is concerned, it is easily checked when

applied to ¢,. Hence, we only need to prove that the above relation holds when



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 130

applied to S in S. We do this by induction on |V(S)|, which starts at 1. For

[V (S)| > 2, we use induction and the definition of v to prove that

I
R

> Slo-v(S//o)

c€ll(S)

=P(US) @S+ Y F(S|o)(E(S/fo)

c€ll(S)

the last equality follows from the axioms of a Hopf algebroid:

(Ioy)o(®@e)od=(I0y)odoc® =nrococ® =nroc.

Note that the map ¢® allows us to define a right @, @ ®,-comodule algebra

structure on §* via the map
A: S, = 5, @, (0,00,), A:=(13¢")04.

Recall that an element z of this comodule algebra is called primitive if A(z) =
z® 1. The set of primitive elements is a @.-subalgebra of §*, and will be denoted

by P(g\*) Our next goal is to apply the following structure theorem to the map
(I,c%).

Theorem 4.3.6 (c¢f. [33] Corollary A1.1.19) Let (I, f): (A, [) — (A., O.) be

a map of graded connected Hopf algebroids. Suppose
1. f: I, — O, ts onto, and

2. P(I.) is an A.-module and there is a A-linear map p: I'c — P(I) split
by the inclusion of P(I) in I.
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Then there is a map &: I'e — P(I) @4, O, defined by & := (p® f)od, which is an
isomorphism of P(I.)-modules and ©.-comodules (6 denotes the comultiplication

of (A, ).

~ ~

To apply the above theorem, we need to construct a projection p: S, — P(95.).
We believe that it is possible to construct a projection which is an algebra map;
thus, the map ¢ in the above theorem would be an isomorphism of algebras and
&, @ d,.-comodules. For the moment, we have only been able to define such a
projection on a sub-Hopf algebroid of (&, §*) Let © denote the set of those weak
isomorphism classes in & which correspond to set systems § with &\ max S a
simplicial complex (here max & denotes the set of maximal elements in the poset
(§,9)). Clearly, the free @.-module D, = @*@\)} generated by Dis a sub-Hopf
algebroid and a sub-®, @ ®.-comodule algebra of S.. We define the algebra map

p: Do — D, by specifying its image on weak isomorphism classes of connected

set systems S:

P8 =8 3 vio)Kpm.

c€Il(S)

~

Theorem 4.3.7 The algebra map p is a projection onto P(D.). Hence, the map
£: D, — P(ﬁ*) Qe (P @ D) defined by £ := (p2C?) 06 is an isomorphism of

algebras and @, @ ®,-comodules.
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Proor. We have

AS)-Sol= Y /cp & (S//p)

1£pell(S

- ¥ (,ﬁ # RN D,p) @ (s * ¢, 1)

1#pell(S)

= Y ke 0m) @ (s 0) ¢ (0 T)

7r§cr<f; m,o€ll(S)

+ Y s 0.1 @ O p) s (0 1)

7r<p<T; m,p€ll(S)

- Z /~‘n @ (0. T) - Z /“LH ) @ (*(x, 1)
T#0€II(S) T£mell(S)

= un @ (¢ (0, 1) = *(a.1)).
UEH

Let K := (/,L%( s (MR( )(6 /1\) Combining the above result with (4.3.3), we
obtain
Z /~LH 0 U & C(bR(U /1\)

o€ll(S)
=Kol+ Y phe0.0)@ (¢ (0,1) = ¢*(e,1))

c€ll(S)

=Kel+AS)-Sal;

hence A(S — K) = (S — K) ® 1. On the other hand, according to Proposition
2.4.1, we have
K= 3 vao)(u+ N0 Tm) = D v8(0) Koy
c€II(S) ocell(S)

We conclude the proof by noting that p(K,,) = 0 for n > 1, whence p is indeed a
projection. O

Let us note that l/j* is the direct sum of @*[ﬁ] and P(ﬁ*); on the other hand,
P(ﬁ*) is easily seen to be a polynomial algebra in the set of variables p(f)o \ ,/é),
where D, denotes, as expected, the subset of D consisting of weak isomorphism

classes of connected set systems.
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4.4 Non-cocommutative Hopf Algebroids of Set
Systems with Automorphism Group

In this section, we define non-cocommutative Hopf algebroid structures on certain
quotients of the free modules H*<§l> and L*<‘i§> spanned by the sets 2A and ‘ﬁ
defined in §1.6. We also relate our constructions to the cocommutative Hopf
algebras of set systems with automorphism group constructed previously.

As pointed out in §1.6, we shall not attempt to distinguish notationally be-
tween a set system with automorphism group and its weak isomorphism class,
since in those cases where it matters, we have taken care to ensure that the
context is clear.

Let us consider the algebra Z<§l> with multiplication induced by disjoint union,
as defined by (1.6.2), and unit map n specified by n(1) = ({0}, {1}). Clearly,
this algebra is commutative, graded (in a similar way to Z<é>), and has finite
type. Note that if the weak isomorphism class of (S, ) lies in é\l, then the weak
isomorphism classes of (§,G)|o and (S,G) /o also lie in é\l, for every o € II(S);
later we will need the fact that ‘ﬁ is also closed with respect to restriction and
contraction (in the sense mentioned above), which is again easy to check. Hence,
we may define the following comultiplication:

5(8,G) =) (S.G)lo®(S,G)/o,
o€T
where T is an arbitrary transversal of [I(S)/G. This comultiplication is not

coassociative (indeed, ((I @ )0 d)(Ky, X4) # (6 @ I) 0 §)(K4, X4)), but it has a

counit determined by

1 if (S,G) = ({0}, {1})

0 otherwise.

e(S,G) =

o~

We would now like to factor the algebra Z(2) by the graded ideal .J, generated
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by the set
{S—|G|(S8,G) : (S,G) e U}. (4.4.1)

Proposition 4.4.2 The ideal J. is also a coideal.

PrOOF. Consider (S, G) with weak isomorphism class in A Using the fact that
|G(0)] = |G|/|Gy]|, we obtain

G15(S,G) = Y |G| (S,G)|o @ (S,G)/o.

c€ll(S)
Using (1.6.1), we have
(S —1GI(S,G) = Y (Slo—|Glo|(S|o.Glo)) © S/fo
c€ll(S)

+ Y 1Glol(S, )o@ (S)o = 1Glal(S//o.Glo))

c€ll(S)

o~ o~

which lies in Z(2) @ J. + J. @ Z{2). O

According to the above result, we can define the comultiplication ¢ on the
graded quotient Z<§l>/J* The element (S, )+ J. of this quotient will be denoted
by [S,G]. Note that Z<é> can be regarded as a sub-Hopf algebra of Z<§l>/J*
Furthermore, we can use the fact that Z<é> is a Hopf algebra to prove that
Z<§l>/J* is also a Hopf algebra. Let us also note that for a given set system S,
there is a unique element [S, G] in Z<§l>/J* which is not divisible by integers, and
this corresponds to G being the automorphism group of S.

The elements [K,,, X,,], n > 1, generate a sub-Hopf algebra of Z<§l>/J* This

is isomorphic to the dual of the Landweber-Novikov algebra, which was discussed



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 135

in Example 1.7.4. Indeed, we have

En,cr
sz = Y K Slol 0 Ko 5 o]
(o,w)EA(KR) )
= Y %ol Ko, Zalo] @ Ky, X))
(o,w)EA(KR)
=nl Y (H[’Qwaﬂwd)®[’C|a|72|a|];
o€ll(In) \U€o

here we have used the following facts:
|Go| = |GI/IG (o) | Xnlol = [Xnol/[Xn/ol, and  A(Ky) /X0 = 1I(Z,).

Let us now consider the embedding K, — [K,] = n![K,, X,] of the Hopf algebra
Z<ﬁ> in the sub-Hopf algebra of Z<§l>/J* generated by [K,,Y,], n > 1. This
is a purely combinatorial way of understanding the fact that the Faa di Bruno
Hopf algebra @, embeds in the dual of the Landweber-Novikov algebra H, via
¢n—1 — nlb,_1 (see Example 1.7.4). Another combinatorial model for the dual
of the Landweber-Novikov algebra appears in [47] Example 14.2, and is based on
paths; however, this model does not help us understand the embedding @, — H..

Now let A, be the quotient of the algebra H*<§l> by the graded ideal generated
by the set in (4.4.1). We can extend the map ¢ defined in the previous section
to an algebra map ¢ from A, to H, ® H, as follows: [S,G] = ¢*(S)/|G]. Note
that @ is well-defined; furthermore, ¢ does indeed take values in H, @ H, since,
assuming S to be connected, we know from (2.5.6) that ¢?(S;z)/|G| lies in H.{z},
and that (¢f(D) | 2"/n!) = bl' |. Let us also note that @ sends [K,,Y,] to
¢n—1. Using a similar approach to the one in the previous section, we define
the Hopf algebroid (H., A\*), and prove that (I,¢%) is a surjective map of graded
Hopf algebroids. All the definitions and proofs are easily adapted to the new

context. The only slight difference appears in the definition of the right unit,
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which becomes

na(bn) = Y 7(0) Kol Y] -

c€M(Tps1)
This definition is actually equivalent to the condition ¢’ o ng = 1.

We now address the problem of finding a model for the Hopf algebroid (L.,
L. ® H.). To this end, we consider the free L.-module L*<‘i\3> spanned by the set
‘ﬁ defined in §1.6. Clearly, (L*,L*<‘i§>) is a sub-Hopf algebroid of (L*,L*<§l>).
Now let J, be the ideal of L*<§l> generated by the set in (4.4.1). By a similar
argument to Proposition 4.4.2, we have the graded Hopf algebroid (L., ﬁ*), where

~ o~ o~

P.:= L.(B)/(J. N L.(P)). Note that there are inclusions of Hopf algebroids
(Lay L&) = (Le, P) = (Luy L(2)/.).

Theorem 4.4.3 The restriction of (I,¢°) to (L., ﬁ*) is a surjective map of graded

Hopf algebroids onto (L., L. ® H.,).
PrOOF. This is an immediate consequence of Theorem 4.2.7, and the fact that

(K 2] = (D) | Bi(x)/nl) = cos

In conclusion, we present a combinatorial model for the map (¢™(D) |-) from
the covariant bialgebra of the universal formal group law L.(3’(z)), which is
isomorphic to MU (CP>), to L. @ H., which is isomorphic to MU.(MU). Recall
from Example 3.3.6 that the above map is induced by the topological inclusion
CP* ~ MU(1) = X?MU. The map (¢¥(D) | -) is neither an algebra nor a
coalgebra map. We lift this map to a purely combinatorial map s from a certain

sub-Hopf algebra P! of P, to P.. Let us first introduce the following notation:

S:=SU{V(8)},  Pl:=L(P)/(L.NLIB));

here B’ denotes the subset of P consisting of isomorphism classes of set systems

with automorphism group (S, ) for which I1(S) has a unique maximal element,
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and [, is the ideal of L.(€) generated by the set in (4.2.2). We now define the

map s: P/ — P. as follows:

S, G if See,

qsay=4 S0 |
{S,G} —/,Ln(g)(O,l)/|G| otherwise.

This map is well-defined as long as we show that /,LZ 8 (0,1)/|G| lies in L,. This

(

is indeed the case, since

¢ NN o~
Mg 01 o (Sie)  A(Sia) (1.4.4)
G| |G| Gl

and we know from Theorem 4.2.7 that both of these polynomials lie in L.{(3?(z)).

By using (4.4.4) once again, we prove our final result, which states that s is a

lifting of (¢f(D) | -).
Proposition 4.4.5 The following diagram is commutative:

P, : P,

b @

\ (6R(D)] )

L. H.

The above diagram captures the essence of the results contained in this chap-
ter, namely that the universal objects L.(38?(x)) and L. @ H, are images of some

combinatorial structures via maps of Hopf algebras/algebroids, which are com-

patible with the embedding L*<ﬁf(:1;)> — L. H,.



Chapter 5

Necklace Algebras and Witt
Vectors Associated with Formal

Group Laws

In this chapter, we generalise the constructions in §1.9 in the context of formal
group laws. Thus, we obtain combinatorial models for Witt vectors associated
with a formal group law. We shall see that the classical necklace algebra of
Metropolis and Rota corresponds to the multiplicative formal group law. Other
special cases are also investigated, including a family of formal group laws not
mentioned in [18] for which there are ring structures on the associated Witt

vectors and curves.

5.1 Constructing the Generalised Necklace Al-
gebra

We start this section with a brief survey of Witt vectors associated with formal

group laws (cf. [18] Chapter 3).

138
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Throughout this chapter, we let F/(X,Y") be a formal group law over a torsion
free ring A with
logp(X) = ZanX”, a=1, a, € AQ.
n>1
Unlike the rest of this work, here we do not require A to be graded. In particular,

for every integer ¢, we consider the formal group law

X+Y —(¢+1)XY
1 —¢XY

F(X,Y) = in Z[X, Y]] (5.1.1)

with logarithm
log,(X) = 30 e glIx]),

n>1

where [n], := 14+ ¢+ ...+ ¢"~*. Note that we have written logq(X) instead of
logy, (X), for simplicity; actually, throughout this chapter, we replace every sub-
script or superscript F, by ¢. Let us also note that Fy(X,Y') is the multiplicative
formal group law, while F_;(X,Y") gives the addition formula for the hyperbolic
tangent. It is worth mentioning that the formal group law F,(X,Y") is relevant
to algebraic topology in the following sense: the ring homomorphism from the
Lazard ring, which we identify with MU,, to Z mapping the coefficients of the
universal formal group law to the coefficients of F,(X,Y) is precisely the Fuler
characteristic for ¢ = 1, the Todd genus for ¢ = 0, and the L-genus for ¢ = —1
(see e.g. [30]).

Recall that in §1.9 we have defined A* to be the set of infinite sequences
of elements of A, as well as the ghost ring Gh(A). Given the formal group law
F(X,Y) over A, we follow [18] by defining the map

W't AQ™ = Gh(AQ),  wl(a) = ayua}/’
dln
The group of Witt vectors W (AQ) has underlying set AQ™, and is defined by

insisting that w’ be a group homomorphism. Let C(F, A) denote the group of
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curves in the formal group law F(X,Y'), that is the group tA[[t]] with addition

specified by
a(t) +r B(t) = Fla(t), B(1)) (cf. (1.2.2)).

We define the map
EY: Gh(AQ) = C(F,AQ),  E"(a):=expp(alt)),

where a(t) := Y o, a,t™. Themap H': WF(AQ) — C(F, AQ) defined by H' :=
EY o w! is known as an Artin-Hasse type exponential map associated with the

formal group law F(X,Y). It is easy to check that

HF(a) = ZF o, t”.
n>1

For every positive integer r, the Verschiebung operator V, is defined on

W (AQ) and on Gh(AQ) as in (1.9.1), and on C(F, AQ) by
V,a(t) = a(t"). (5.1.2)
The Frobenius operator f, is defined on Gh(AQ) and C(F, AQ) by

fona=ra, and falt) = oz(,otl/r) +r oz(,oQtl/r) +5... +r oz(,ortl/r) \
(5.1.3)

respectively, where p is a primitive r-th root of unity (see [18]). The Frobenius
operator is also defined on W¥(AQ) such that it commutes with H”'. Clearly, V,

acts on WI'(A), Gh(A) and C(F, A), while f, acts on Gh(A) and C(F, A).

WF(AQ) e C(F, AQ)

Ch(AQ) (5.1.4)
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Theorem 5.1.5 (cf. [18] §25.1 and Theorem 6.5.8)

1. Addition in WE(AQ) is defined by polynomials with cocfficients in A, which
means that A is a subgroup of WY (AQ) (this is the group of Witt vectors
W(4)).

2. The maps w'', E¥, and HY are isomorphisms of abelian groups.
3. The image of WY(A) in C(F, AQ) is precisely C(F, A).

4. The Frobenius operator f, acts on WI(A). The maps w!", EY', and H*

commute with the actions of the operators V, and f,.

Note that if FI(X,Y) is the multiplicative formal group law Fy(X,Y) over
A, then WT(A) coincides with the additive group of W(A). As pointed out in
[18], it is quite remarkable that in this case we are able to define a multiplicative
structure on W*(A) as well, such that v o g'" is a ring homomorphism, for some
map v: Gh(AQ) — Gh(AQ) of the form v, (o) = kpav, with k, € Q (for Fo(X,Y)
we have v,(a) = na,, as discussed at the end of this section). In §5.4 we prove
that this actually happens for every formal group law F,(X,Y).

We now define and study the necklace algebra associated with the formal
group law F'(X,Y). In general, we are only able to define it over AQ, so we
will denote it by Nr'(AQ). The module structure of Nr¥'(AQ) is the same as
that of Nr(AQ). In order to define the multiplicative structure and to relate
N7t (AQ) to the other structures in diagram 5.1.4, we need to associate with
F(X,Y) generalised necklace polynomials. Let us consider the incidence algebra
over AQ of the lattice D(n) of divisors of n. Let ¢(I" be the element of this algebra
defined by

§F(d17d2) ‘= Qdy /dy s
for every dy,dy € D(n) with di|dy. Since a; = 1, the element (¥ has a convo-

lution inverse, which will be denoted by uf". It is easy to see that u°(d;,dy) =
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dl/dg M(dl,dg) = dl/dg M(dg/dl), and that Ml(dl,dz) == M(dl,dg) == M(dg/dl) We
now define the polynomials
M*(x,n) = Z/,LF(d,n) ag x? in AQ[z].
d|n
Clearly, M°(z,n) = M(z,n), and M¥(1,n) = 0 for n > 1. In order to give a
combinatorial interpretation for the polynomials M*(z,n), we recall from [29]
the polynomials S(x,n) := nM(x,n). Let us also recall that n in N is a period of

lwl/n where

the word w (on a given alphabet), if there is a word w such that w = u
|w| denotes the length of w; the smallest period is called the primitive period. A
word with primitive period equal to its length is called aperiodic. It is not difficult
to prove, via Mobius inversion, that S(m,n) represents the number of aperiodic
words of length n on an alphabet with m letters. Necklaces can be defined as
equivalence classes of words under the conjugacy relation (that is w ~ w’ if and

only if there are words u, v such that w = uv and w' = vu); moreover, primitive

necklaces can be defined as equivalence classes of aperiodic words.

Proposition 5.1.6 The polynomials M (z,n) can be expressed in the basis

{S(x,1)} of the AQ-module AQ|x] by the following formula:

M*(x,n) = ZTF <%,n> S(x,d),

d|n
where 78 (1,n) == Zﬂi P (1,5) CF(Gm)

It turns out that this proposition is a special case of Theorem 5.2.3, so we
postpone the proof until then. Let us note that 7¥'(n,n) = 0 for n > 1, and
that 7°(7,n) = 7'(4,n) = 0 unless ¢ = 1; indeed, we can pair the chains in D(n)
contributing to 79(¢,n) such that each pair consists of a chain containing 7, and
the same chain with ¢ removed. We now explain the combinatorial significance of

the above formula in terms of a combinatorial object which we call a factorised
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word. This is a word w (on a given alphabet), together with an expression of the

following form:

Clearly, |wo| = |w]/(i1...1;). The word wy will be called the root of the fac-
torised word. We define the type of the factorised word to be the element
(=1)*apup@i, - - - @i, in AQ. In this section, as well as in §5.2 and §5.3, we usually
think of the formal group law F'(X,Y’) as being the universal one; then the type
of a factorised word is a signed monomial in the polynomial generators m; of LQ.

With these definitions, we can now state the following corollary of Proposition

5.1.6.

Corollary 5.1.7 For all m,n in N, M¥(m,n) in AQ enumerates by type the

factorised words of length n on an alphabet with m letters.

PROOF. A factorised word w = (... ((w)®)...)* of length n on an alphabet
with m letters is uniquely determined by the primitive period u of w (and wy)
and the chain {1 = do|dy]|...|dg|n} in D(n) with dj, dividing n/|u|. Indeed, we
set wgy 1= u”/(|“|dk), and ¢ := dg_j41/dk—; for 1 < j < k. We can choose u of
length d dividing n in S(m,d) ways. According to the above remark, the sum of
types of the factorised words of length n and primitive period u is

S =1 o) Py = D7 1 (1 dy) M) = 77 (2.m)

QL

where the first summation ranges over all chains which can be associated with u
as above; the first equality follows from the generalisation of the formula for the
Mobius function of a poset. O

We now relate Nr¥'(AQ) to the other groups in diagram 5.1.4, by defining the
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following maps:
T WP(AQ) — NrP(AQ),  T7(a):=) V.M (ay,),
n>1

gt NTF(AQ) — Gh(AQ), gf(oz) = Zan/d g,

d|n

s Nrf'(AQ) — C(F, AQ), ()= ZF [oalr 8"

n>1

here MF'(b) := M*(b,n), the Verschiebung operator V, on Nrf(AQ) is defined
as in (1.9.1), and

[b]F(c(t)) := expp(b logp(a(t))) for b e AQ.

Note that the last definition is compatible with (1.2.3).

For every map v: Gh(AQ) — Gh(AQ) of the form v,(a) = k,a, with k, €
Q, we define a multiplication in N7¥'(AQ) by insisting that v o g" be a ring
homomorphism. For F(X,Y) = Fo(X,Y) and k, = n, we obtain the necklace
algebra defined by Metropolis and Rota. The ring structure of Nr(AQ) will

only be important in §5.4; until then, we regard Nr¥(AQ) only as an abelian

group.

Proposition 5.1.8 All the above maps are isomorphisms of abelian groups, com-
muting with the action of the Verschiebung operator, and the following diagram

15 commautative.

TF

WF(AQ) N (AQ) o C(F, AQ)

gF

Ch(AQ) (5.1.9)

PROOF. We note first that ¢” is invertible, and that its inverse is defined by

(gt @) =D i (d,n) aq. (5.1.10)

d|n



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 145

We now have

((g") owl)ula) = pFin) | Y ajal, |

iln jli
e = 0 (02) = X3 (1) e
in il jln/i
- Z Z/“‘F(ijv”) ajal = Z ZMF(kvn) aj Ozi/j ;
i il Kln ilk

the last equality follows by setting k := ij. Hence ¢* o T" = w’. To check the
commutativity of the second triangle, we note that

(logrroE" 0 g")(a) = (¢"(a))(t)  and  (logpoc")(a) =) a;logx(t').

i>1

The coefficients of t" in both power series above are equal to E“n dyy; 0, Whence
EFogh =cf.

The map ¢" is clearly an isomorphism of abelian groups, and commutes with
the Verschiebung operator. By using the commutativity of diagram 5.1.9 and
Theorem 5.1.5, we deduce that 77 and ¢ have the same properties as ¢*. Note
that the inverse of T can be found by using an algorithm similar to the clearing
algorithm in [29]. O

Diagram 5.1.9 for F'(X,Y) = Fo(X,Y) is not exactly the same as diagram

1.9.3. In order to explain the relation between them, we define the following

homomorphisms:
w: Gh(AQ) — Gh(AQ), wi(a) == nay,, (5.1.11)
t: C(Fo, AQ) — 1 + tAQJ[t]], a(t)) = 1%04(75)'

We can easily check that

w=wouw’, g=wog®, c=10®, E=10Fo0w™".

A first result which validates our constructions is a formal group-theoretic
generalisation of the cyclotomic identity; in some cases, we are able to derive

from it nice explicit identities.
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Proposition 5.1.12 The following formal group-theoretic generalisation of the
cyclotomic identity (V. Strehl’s form) holds:

ZF (M (u, n)]F(vt™) ZF (M (v, n)]p(ut™) in C(F, AQ),

n>1 n>1

(5.1.13)
where uw,v € AQ. In particular, for Fo(X,Y) we obtain (1.9.4), and for
F_1(X,Y) we obtain

y(t; kym) =~y(t; m, k), (5.1.14)

where k,m € Z, and

[ (L 2 )M020 [ (1 = i)

7(t7 i? .]) = H >1(1 n Z't2n—1)M(j,2n—1) + H >1(1 _ Z't2n—1)M(j,2n—1) in Z[[t]] )

Proor. For the first part, we use the following identity which holds in
rI'(AQ):
> M (un) Vo MF(0) =Y M (v,n) Vi M (u) 5

n>1 n>1

indeed, the n-th term in both sequences is
ZMF(u,d) M <v, %) .
d|n

We apply ¢! to this identity, using the following facts:

' (V, ME(w)) =V, (M (u)) =V, HF (u,0,0,...) = ut" and
HFua) = Fluan]r(t") =Y Flulr(lanlr(t™) = [ulp(c (@)

n>1 n>1
here u € AQ and o € AQ™>.
In order to derive (5.1.14) from (5.1.13), we note first that we have

iy s (E A Xa) = s (1= Xa)
mzzzl o [Ls 1 (U4 X)) + TLsi (1 = Xin)

(5.1.15)
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This is easy to prove by induction when we have a finite sum on the left-hand

side; we then take the limit in the filtration topology of Z[[ X, X3,...]]. Since
[K]p(X) = > " [sign(k)]r(X)
1<i<|k]|
for any formal group law F' and integer k, and since

(14+X)™" —(1-X)7!
T+ )T+ (=X

(1] (X) ==X =

formula (5.1.15) generalises to

-1 _ Hle(l + X ) — Hm21(1 — X, )fm
;; ”ML“X”>‘ILQA1+X%%m+ILQ41—x%%m’

Finally, we note that

. M(i,m) if m odd
M~'(i,m) =

0 otherwise,

since log_(X) =X+ X*/3+ X5/5+.... 0

5.2 Verschiebung and Frobenius Operators

In the previous section, we have defined for all positive integers r the Verschiebung
operator V, and the Frobenius operator f, on Gh(R), WX (R), and C(F, R), where
R is one of the rings AQ or A. We have also defined V, on N7¥'(AQ) and Nr'(A).
We have seen that the isomorphisms in diagram 5.1.9 commute with the actions
of these operators. It is natural to define f, on Nr’(AQ) in a compatible way
with the isomorphisms mentioned above. It turns out that, in general, f, is not
an operator on N7¥'(A). Let us recall the well-known identities concerning the

interaction of the Verschiebung and Frobenius operators on any of the rings on
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which they act (see [18], [29], [14], [54]):

V.V, =V, Gf =1,

.V, =r1,

Ve = (15) 505 Vs = (18) Vool (5:2.1)
these identities are most easily checked in Gh(AQ). In this section, we intend

to express and interpret combinatorially the action of the Frobenius operator on

Nri'(AQ).

Theorem 5.2.2 The Frobenius operator f, acts on Nrt'(AQ) as follows:

B pf ™ ™
f,moz—rZT ([r,d]’j> ayg .

dlrn

PROOF. By (5.1.10), we have

frona= (") ¢ (a) = TZMF(i,n) Za”/d aq

t|n d|re

2 (e ).

dlrn \d|ri,i|n

=S| X e (1) ar=r X ()

dlrn \J|rn/[r.d] dlrn

The fourth equality follows by setting j := n/i¢ and noting that the conditions
dlrn/j and jln are equivalent to jlrn/[r,d]. O

Note that if r|d and d # rn, then 78 (rn/[r,d],rn/d) = 0. On the other
hand, according to the observations about p® and 7% in §5.1, we have that
(rn/[r,d],rn/d) = 0 unless [r,d] = rn, in which case it is equal to d/rn; hence,
we recover the formula in [29] for the action of f, on Nr(A), namely

f,mozzzgozd,

d
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where the summation ranges over the set {d : [r,d] = rn}.
We now interpret combinatorially the action of f, on Nr¥'(AQ) by computing
f, . M¥(m) for m,n € N.
Theorem 5.2.3 We have that
frn MF(:L') =7 Z MF(d, n) dpq 7. (5.2.4)
d|n
The above polynomial can be expressed in the basis {S(x,1)} of the AQ-module
AQlz] by the following formula
£, MY (2) = r%: 7 <%,rn> S(x",d). (5.2.5)

PROOF. Formula (5.2.4) follows easily:

£, ME(2) = (¢") 7 (w0 (2,0,0,...)) = r (6" (apa”, agx®, .. )

= TZ/,LF(d,n) apg "

d|n

Formula (5.2.5) follows by rewriting its right-hand side:

S (B Standy = 30 S uF i) | Yl d)e”

d|n d|n tn/d jld

= SN WL Flm) e [ S )

jln iln/j jldln/i
= ZMF (1, E) ¢ (Z,rn) e
; J J
iln
= "y Gon)an 2 = £, MP ().
iln

Let us note that f,V, M (z) can be easily computed now, by using (5.2.1).
Proposition 5.1.6 follows from (5.2.5) by setting r := 1. Let us also note that
%(n/d,rn) = 0 unless d = n, in which case it is equal to 1/(rn); hence, (5.2.5)
implies Theorem 4 (p. 100) in [29], namely the fact that f,, M(x) = M(2",n).
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We now define the repetition factor of a word w to be the quotient of |w| by

the primitive period of w. With this definition, we can interpret (5.2.5) as follows.

Corollary 5.2.6 For all m,n € N, 1/rf,, M¥(m) in AQ enumerates by type
those factorised words of length rn on an alphabet with m” letters, for which r

divides the repetition factor of the root.

ProoF. Let us recall from the proof of Corollary 5.1.7 the correspondence
between factorised words w = (... ((w{)?)...)"* and pairs consisting of an ape-
riodic word u and a chain {1 = dg|dq]...|dr} with d;. dividing |w|/|u|. In this
case, the alphabet has size m”, the words w have length rn, the length of their
primitive period u divides n, and d, = rn/|wg| divides n/|u|. The last condition
is equivalent to “r divides |wo|/|u|”, and this implies the fact that |u| divides n.

a

5.3 The p-typification Idempotent

Let Ay := A ® Z). Recall from [18] that a curve a(t) in C(F, A) is called p-
typical if logp(a(t)) is of the form EnZO BatP". There is a remarkable idempotent
ep on C(F, Ay), which is a projection onto the subgroup of p-typical curves; we
will call it the p-typification idempotent. 1t is expressed in terms of V, and f, as

follows:

(T,p):l

The p-typification idempotent has an important réle in formal group theory, since
the curve ¢,¢ is an isomorphism over the localisation of the Lazard ring L

between the universal formal group law and the universal p-typical formal group

law (see [18] or [33]). We can define ¢, on Gh(A) (not just Gh(A,))), WF(A,)),
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and Nr'(AQ). The action on Gh(A) is very easy to describe, namely:

a, if n=pF

Epn @ =
0 otherwise.

In order to describe the action of ¢, on Nr!'(AQ), we need some additional
notation. First, we denote by v,(n) the p-valuation of n (that is the largest integer
k such that p*|n). Now assume that m # p*, k& > 0, and consider the poset D,(m)
obtained from the lattice of divisors of m by removing all non-zero powers of p.
Let /,LZ}; denote the convolution inverse of (I in the incidence algebra (over AQ)
of this poset. We will write /,Lg(m) for /,Lg(l, m) if m # p*. k > 0; otherwise, we

set p!'(m) = 0.

Theorem 5.3.1 The idempotent ¢, acts on Nr'(AQ) as follows

vp(n)
Epn O = Z /,LZ}; (%) Qpk . (5.3.2)
k=0 p

In particular, the idempotent ¢, acts on Nr(Ag,) by

vp(n)
_ P i
Epn OO = 0 M <pvp(n)> Ozpvp(n) . (5.3.3)

PROOF. From ¢'(g, a) = ¢, ¢" (a), it follows that

k - k
o pi—i 0 I =
Y njacpac = 2uizo Iyt (5.3.4)

dln 0 otherwise.

An easy induction provides €, x @ = a,x; hence (5.3.2) holds in this case, accord-

ing to the convention /,Lg(pk) = 0 for £ > 0. We now use induction once more
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and (5.3.4) to prove (5.3.2) for n # p*, k > 0:

vp(d) d
Epn O = — Z Apjd Ep,d X = — Z An/d Z /,Lg <_l> Qpl

d|n, d#n d|n, d#n =0

Up(n) . d
= — Z Cln/d /,Lp - Oépl
=0 pt|d|n, d#n P
up(n) n
B N T S e, (E) o
=0\ iln/pt,itn/p!

<

—_
g

alk n
F
/’Lp <_l> Oépl .
=0 p

We now compute ju,(n) := nup(n) by using Proposition 1.7.15. Assuming

that n # p*, k > 0, we have

vp(n)

po(n) = o,y (Ln) =D > (=1 (L p") (P ) p(p )

=0 O=log<hh <...<lr=l

Here we have used

L 0 ifk>1
p(p") =
1 ifk=1.

Recalling the additional fact that p(rs) = p(r) u(s) if (r,s) = 1, we finally have

0 if pln
pp(n) =
p(n) otherwise.

This is clearly true for n = p* as well, whence (5.3.3) holds. O
Finally, we interpret combinatorially the action of ¢, on Nrf(AQ) by com-

puting ¢,, M¥(m) for m,n € N.

Theorem 5.3.5 We have that

<

—_

n

g

b

Epm MF (2) = 1 (pFun) ay x?* in AQ[z]. (5.3.6)

o
Il
=]
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The above polynomial can be expressed in the basis {S(x,1)} of the AQ-module
AQlz] by the following formula

vp(n) [vp(n)—k
Epm MF (2) = Z Z ut (1,%) it S(x, k).

(5.3.7)

PROOF. Formula (5.3.6) follows easily:

epn M (2) = (97) 7 (gp 0" (,0,0,...))
= (¢") Nz, ..,O,CLp:z:p,O,...,0,ap2:1;p2,0,...)
vp(n) .
= > 10t n)aga?
k=0

Formula (5.3.7) follows by noting that its right-hand side can be written as

vp(n) vp(n) fop(n)—k
S (1) e S (% 0 (1t ) o) e -,
1=0 p k=1 =0 p

Hence the coefficient of 27" (with 0 < k < v,(n)) in the right-hand side is equal

to
vp(n)—k vp(n)—k—1
Z p ( Z+k> Pk~ p ( Z+k+1> pein = 1" (P ) ae
1= =0

here the second sum does not appear if k = v,(n). O

We can interpret (5.3.7) combinatorially as follows.

Corollary 5.3.8 For all m,n € N, ¢,,, M"(m) in AQ enumerates by type those
factorised words of length n on an alphabet with m letters for which the root length

is a power of p.

Proor. We recall once again from the proof of Corollary 5.1.7 the correspon-
dence between factorised words w = (... ((w{)?)...)" and pairs consisting of an
aperiodic word u and a chain {1 = dg|d|...|d;} with d; dividing |w|/|u|. In this

case the alphabet has size m, the words w have length n, their primitive period
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u has length p* for some 0 < k < v,(n), and n/jwe| = d; = n/p'** for some
0 < i < wy(n) — k. The last two conditions are equivalent to |wo| being a power

of p. O

5.4 Special Cases

The main special case which we consider is the family of formal group laws
F,(X,Y), ¢ € Z, over Z defined in (5.1.1). Recall that the classical ring of Witt
vectors and the necklace algebra of Metropolis and Rota correspond to ¢ =0 (in
other words, to the multiplicative formal group law). According to the general
constructions, we have the group of Witt vectors W?(Z) and the necklace algebra
Nr?(Q), where the multiplicative structure of the latter depends on the choice of
amap v: Gh(Q) — Gh(Q) of the form v, (a) = kv, with k,, € Q; more precisely,
this structure is defined by insisting that v o0 ¢? be an algebra map.
Let us consider first the case ¢ = 1 and v = I. We have that
gila) =) .
dln
Hence, according to [54], Z™ is a subring of Nr'(Q), and this is precisely the

aperiodic ring Ap(Z). Multiplication in Ap(Z) is defined by

(aﬁ)n = Z Oéiﬁj-
[i.]=n

From now on, we let v := w, where w was defined in (5.1.11). In order
to simplify notation, we set g7 := v o ¢? and 74(d,n) := n7(d,n). Theorem
5.4.8 represents the main result of this section, generalising the classical necklace
algebra construction (which can be recovered for ¢ = 0); its proof is based on the

following two lemmas.

Lemma 5.4.1
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1. If g = 1 mod p for a given prime p, then [p'm], is divisible by p' for any

positive integers [, m.

2. The polynomials n/d7(d,n) in Q[q| are numerical polynomials for all pos-

itive integers d,n with d|n.

ProoF. We fix ¢ in Z, and divide the proof into three steps.
Step 1. Clearly, it is enough to consider m = 1, and ¢ = pr + 1 with r # 0.
In this case we have

14 P l
no_ (pr+1DP =1 PN i1 i

=1

It would be enough to show that p' divides <p;>pi_1 forall s = 1,...,p". Let
i = p¥j with (p,7) = 1 be such a number, and denote (pil)ppkj_l by N. We use
the formula v,(n!) = "7 [n/p°], where [a] denotes the greatest integer which is

less or equal to a.. The crucial observation is that
' /9] = 55 /071 + [0 = ) /]
and that this inequality is strict for all integers s with £+ 1 < s <[. Hence
v (N) >l —k+p"—1>1.

Step 2. We now show that p* divides 7%(p*, p*n), where p is a prime and n a
positive integer. If ¢ = 1 mod p, then this is clearly true by step 1, since every
term of 77(p*, p*n) is of the form x[p"1],...[p"],[p's+'n], with [} + ... + [,y = k.

If ¢ # 1 mod p, we use induction on k, which obviously starts at 0. Partitioning
the terms in 79(p*, p*n) according to the smallest element different from 1 in the

chains from 1 to p*n in D(p*n) corresponding to them, we obtain

T(ph ptn) = [phnl, — Z[pi]ﬁq(p’”,p’”n). (5.4.2)
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We know that p' divides ¢?'™ — g?'~'™ for all positive integers [, m, since M(z,p")

is a numerical polynomial; hence p' divides [p'm], — [p'~*

m],, by the assumption
on q. Applying this fact and induction to (5.4.2), we deduce that 77(p*, p*n) is

congruent modulo p* to
Pl = R ) = S ).

But this is equal to 0, by using (5.4.2) once again.
Step 3. We prove that d divides 7%(d,n) for every dln. Given a prime p
dividing d, we have d = p*m and n = p*mr for some positive integers k, m,r

with (p,m) = 1. We now use the following identity:

P (ptm, prmr) = ) (=1 T (P p ) T 0 )
(5.4.3)
where the summation ranges over all ¢y > 0, 5, > 1 with 3 + 25+ ...+ 1, = k,
Jij2---Js = mr, and r|j,. According to the previous step, we have p*|7(d,n).
To prove (5.4.3), we consider the sets C(i1,... ,%s;j1,- .. ,Js), With iz, j; as above,

consisting of all chains from 1 to n in D(n) of the form

il +~~~+is—1 +isl5

1|pi11 | N ‘pilll |pi1j1|pi1+i21j1| - .pi1+i212]'1|p“+i2]'1j2| Lo p jl .. .j5_1|n.

These sets determine a partition of the chains from 1 to n in D(n) contribut-
ing to 7%(d,n). Furthermore, the sum of terms corresponding to the chains in
Cli1y .-+ 5153715+ ,Js) is precisely (—1)*717(pt pijy)...7(p', p'js), whence
(5.4.3) is proved. O

Lemma 5.4.4 For every q # 1, we have that

, A1\ S(qbli d X X
e =iVig [ 3 7 (%7 [Z@']]n> (q ) (n, [Z@']]n> [[zjj]]
q

d|n, d#1 g—1

n>1

where €,5 = 0,5.

)
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ProOOF. We base our computation of ¢; - ¢; on the following formula:

ei-e; = (g7) (g (&) - 9 (e5)) - (5.4.5)

In order to make the map ¢?: Nr?(Q) — Gh(Q) commute with the Verschiebung

operator, we have to consider the operator V.. := rV, on GL(Q). We have
g'(ei) - g'(e;) = (Vig'(er)) - (Vg (er))
and §(e;) = [n],, whence
g'lei) - g (e;) =i Vigm = (i,9) Vi 7
where 7, := [kn],[in],, and k == [i, j]/i, | := [i,j]/j. By (5.4.5), we have
;v ey = (i) Vi (77 (). (5.4.6)

On the other hand, by (5.1.10) and (5.2.4) we have

@7 ) = S ) T = kY () S )

d|n d|n

= fr, M (x), P— [r]y;

the “umbral notation” x*" = [Ir], means that z*" is replaced by [Ir], after collect-
ing powers of  in fy, M?(x). Furthermore, combining this result with (5.2.5),

we have

(@)t ) = kY 7 (%m) S(zk,d), o =ir],. (5.4.7)

d|n

Finally, since S(1,d) =0 for d > 1, we can rewrite (5.4.7) as

@t =k 3w () 2L oo .

The lemma now follows by combining this result with (5.4.6). O

Theorem 5.4.8
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1. The polynomials M?(x,n) are numerical polynomials in v and q.

2. Multiplication in Nr?(Q) is defined by numerical polynomials P, ; ;(q) in
Qlq], with [i, 7] dividing n, in the sense that
(o~ B)n = Z (2,7) Prii(q) ci Bj .
[6.7]ln

Hence, there is a Z-algebra structure on Nr?(Z).
3. The Frobenius operator f, acts on Nri(Z).
4. The map T? induces a group isomorphism between W(Z) and Nri(Z).

PROOF. (1) According to Proposition 5.1.6, we have
M(x,n) = dz|:7'q <%,n> S(x,d).

The claim now follows from Lemma 5.4.1 (2), and the fact that M(z,d) =
S(x,d)/d are numerical polynomials.

(2) It suffices to show that e; - ¢; is obtained by applying V; ;) to a sequence
of integers divisible by (i, 7). This is clearly true for ¢ = 1, since formula (5.4.7)
still holds. We now fix the integers ¢ # 1 and ¢, 7,n > 0, and use Lemma 5.4.4.
By Lemma 5.4.1 (2)

ﬁrg (n ”’j%) = Bl (n ”’j%)

is an integer. Hence it suffices to show that the following number is an integer

i _o(n g SV d) N
(1,7) d’ i qg—1 n

Y

where

Y

N = 74 27 [Zv]]n S(q[i’j]/jad)
d’ 1 qg—1

and d # 1 is a divisor of n. Note that ¢—1 divides S(ql"1/7, d), since S(1,d) = 0 for
d # 1. On the other hand, n divides (¢ — 1)N, since M (¢t"1/7 d) = S(qlVi d)/d
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is a numerical polynomial and n/d divides 74(n/d, [¢, j]n/i) by Lemma 5.4.1 (2).
We now show that every prime power p* dividing n also divides N. If ¢ # 1 mod
p, this claim follows from the fact that n divides (¢ — 1)N; otherwise, p* divides
T4(n/d,[i,5]n/i) by Lemma 5.4.1 (1).

(3) This follows from Lemma 5.4.1 (2) and Theorem 5.2.2.

(4) This follows from the fact that M?(x,n) are integral polynomials, and
from the construction of the inverse of T via an algorithm similar to the clearing
algorithm in [29]. O

The main thrust of Theorem 5.4.8 is the existence of necklace algebras Nr¢(Z)
for all ¢ € Z. We now use the maps T'? and H? to define multiplicative structures

on WYZ) and C(F1,7Z).

Corollary 5.4.9 There are ring structures on W4(Z) and C(F'?,Z) such that the
restrictions of the maps T'?, H? and ¢? are ring isomorphisms, and the restriction

of wow? is a ring homomorphism.

Thus, we have identified a family of formal group laws not mentioned in [18],
for which the corresponding groups of Witt vectors and curves have ring structures
compatible with the maps in diagram 5.1.9.

Recall the formula f., M(x) = M(2",n) in [29], which holds in Nr(A), and
which was generalised to Nr'(AQ) in (5.2.5). We present here a conjecture,
which attempts to provide a different generalisation of the original formula of

Metropolis and Rota.

Conjecture 5.4.10 We have that

fnn Mq(x) = ZQT’,nyd(Q) Mq(xr’7d) n Q[‘rv(ﬂ ”

d|n

where Q,,.a(q) in Q[q] are numerical polynomials.
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If ¢ is a prime power p*, we are able to give a combinatorial interpretation for
the polynomials M?(x,n). Our ingredients are: the field GF(q), an alphabet I’
with m letters, and the free monoid (I x GF(q))* generated by I' x GF(q). We
let GF(¢)\ {0} act on this monoid by

(0, (c1,p1) ... (csyps)) = (e1,0p1) ... (cs,0ps).

Note that the equivalence relation determined by the orbits of this action is not
a congruence. We define a g-word as an orbit in (I" x GF(¢))* \ (I" x {0})*. We
call s € N a period of the g-word [w] if there is wq in (I x GF(q))* of length s
and p1,...,pt in GF(q) such that [w] = [(p1wo) ... (piwo)] (here Owy is defined
in the obvious way). The primitive period of w, aperiodic ¢-words, g-necklaces,
and primitive g-necklaces can now be defined in the usual way. Let us denote
n M(x,n) by S%x,n). We claim that these polynomials are uniquely defined by
the relations

> [n/d), S, d) = [n], 2" ; (5.4.11)

dln

indeed, we have that
(wogloM?),(2) = (wow!),(x,0,0,...)=[n],z".
Examining (5.4.11), we obtain the combinatorial interpretation mentioned above.

Proposition 5.4.12 For every m,n € N, S%m,n) represents the number of
aperiodic q-words of length n, and M(m,n) represents the number of aperiodic

g-necklaces of length n on the given alphabet I' with m letters.

We suggest that the constructions of Dress and Siebeneicher [14], [13] could
be extended to the above setting.
We conclude this section by briefly investigating the case when F/(X,Y) is the

universal p-typical formal group law corresponding to the prime p, which we have
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seen that is defined over a certain summand V' of the Lazard ring L. The corre-
sponding group W (VQ) is defined as a certain subgroup of the group of Witt
vectors (with underlying set LQ™) associated with the universal formal group law;
more precisely, it is the subgroup consisting of those infinite sequences « of ele-
ments of VQ for which e, = 0 whenever k is not a power of p. We define Nr¥'(VQ)
similarly, and abbreviate the sequence (a4,0,...,0,0,,0,...,0,,2,0,...) in
WH(VQ), Nrf(VQ), or G (VQ) to (a1, ap, ape, ... ).

Recall from (1.2.8) Hazewinkel’s generators of V and Araki’s generators of V{,),
which were defined recursively in terms of the coefficients m ;) of the logarithm of
the universal p-typical formal group law (m(; is the coeflicient of Xpi). It turns
out that we can express these generators very easily by using the necklace algebra

N7t (VQ) associated with the universal p-typical formal group law.
Proposition 5.4.13 We have that
T (vi,vg,...) =1,(1,0,0,...) and T (wo,wi,wq,...) = (p,0,0,...).
PROOF. According to the defining relations (1.2.8), we have
w (vy,v9,...) = p(may,meay, ... ), w! (wo, wy,wy, ... ) = p(m), may,...).
On the other hand, we have
9" (1,0,0,...) = (mpmay,--- ) b (mey,may.-..) = plmaymey,.-.).

The propositions now follows from the fact that ¢'" is an isomorphism and ¢ o

T = . O



Chapter 6

Formal Group Laws and

Symmetric Functions

This chapter is devoted to a brief study of the interaction between formal group
theory and the theory of symmetric functions. This interaction is reciprocal, in
the sense that we are able to use concepts/results in one of the two areas in order
to obtain results in the other area. We rely heavily on the notation and comments

in §1.1, §1.2, and §1.10, which we use without further comment.

6.1 A Remarkable Homomorphism and Its Ge-
ometrical Interpretation

Consider a ring A, as in §1.1, and an umbra a in AQ, such that the formal group
law f*(X,Y) lies in A'[[X,Y]]. Let us define the map of graded Hopf algebras
de: Sym# — U(f*). by

This is indeed a Hopf algebra map since we know from (1.1.12) and (1.10.1) that

{S,} and {B%(x)} are divided power sequences. In particular, considering the

162
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multiplicative formal group law f*(X,Y’) over k., the map d.: Sym* — U(f*).
is defined by
zlr—u)...(x—(n—1)u)

n!

do(S,) =

We now present a geometrical interpretation for the map d,.. This shows that
algebraic topology has a great deal to offer in enlightening and guiding our un-
derstanding of symmetric functions, as well as of the covariant and contravariant
bialgebras of a formal group law.

Let E*() be the multiplicative cohomology theory with complex orientation
Z in E?*(CP*>) which was considered in §1.4. It is well-known that F*(BU) 2
E*[[e1, ¢z, ...]], where ¢, are the generalised Chern classes. It is also known that

the map
E*(BU(n)) — E*(CP™ x ... x CP®) = E*(CP*)®... O E*(CP™)

induced by the classifying map of the direct product of n copies of the Hopf bundle
over CP* is a monomorphism mapping ¢;, with ¢ < n, to the i-th elementary
symmetric function in X7 := Z®@1®...01, Xy =1074®...@1, ..., X, =121
...® Z. On the other hand, we have that F.(BU) = E,[b1,bs,...], and that ¢, is
dual to b7 with respect to the monomial basis of E.[b, by, ...]. The multiplicative
structure of F.(BU) is determined by the map BU x BU — BU classifying the
Whitney sum of vector bundles. The diagonal map BU — BU x BU induces a
comultiplication 6: F.(BU) — E.(BU x BU) =2 E.(BU) ® E.(BU) satisfying

§(by) = zn:bi @ byi
=0

which turns F.(BU) into a Hopf algebra. The standard inclusion CP> =
BU(1) — BU induces a monomorphism E,(CP>) — E.(BU) mapping (3, to
b,. The determinant map det: U — S! defined on unitary matrices gives rise
to a map Bdet: BU — BS! = CP*; furthermore, the composite of the inclu-

sion CP* — BU with Bdet is the identity on CP*, whence Bdet.: E.(BU) —
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E.(CP>) maps b, to 3,. Since the determinant map is a group homomorphism,
the map Bdet, is a ring homomorphism; moreover, it is a Hopf algebra map.

It follows from the above topological arguments that we may identify the Hopf
algebras E.(BU) and E*(BU) with the Hopf algebras SymZ and Sym}, respec-
tively, in such a way that b, is identified with 5,, and ¢, with A,; furthermore,

the map Bdet, is identified with d.. Let us now consider the composite

Bdet

CP>™ x ...x CP* — BU(n) -%% CP*>,

where the first map classifies the direct product of n copies of the Hopf bundle
over CP™. It is easy to see that the composite is precisely the map classifying
the tensor product of the n line bundles over CP* x ... x CP*; in other words, it
is obtained from the map p considered in §1.4 by iterating it n — 1 times. Let us
also recall from §1.4 that Z in E?(CP*>) was identified with some formal power
series (D) in EQ'[[D]], and that p*(7) = f4(Z®1,1® 7). Combining the above
remarks, we finally obtain d*(a(D)) = 2221 X,,; this identity will be proved in

Proposition 6.2.1 in a purely algebraic way.

6.2 Identities Related to d,

Consider the transpose map d*: R(f*)* — Sym7, and its extension d*: AQ[[D]]

— Sym*. We denote d*(a(D)) in Sym? by A, and c/l\*(D) in Sym% by Ao.

Proposition 6.2.1 We have that

A=) "X, in Symy, (6.2.2)
n>1
and
Aog=)Y @1 W,  in Sym3. (6.2.3)

n>1
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Proor. We have

(d*(a(D)) | ST = (a(D) | du(ST)) = (a(D) | B (x) ... Bi(x))
= (6" a(D)) | Bi(x) @ ... @ Bi(x)) = f 4

here §'~! denotes the comultiplication iterated [ — 1 times, and I = (iy,... ,1).
Since the dual basis to ST is ¥y, we have

d(a(D)) =Y fiwr =) "X,.

n>1
On the other hand,
S I Eil—l lf l — 1
(d*(D) ] 57) = (D | (x)... Bi(x)) =

0 otherwise,

whence (6.2.3) follows. O

Corollary 6.2.4 We have

Z“Xn =gq (Z 1 Lpn> n Sym}.

n>1 n>1

We will now consider the important special case corresponding to the umbra

= (1,%%%1&...);

here ¢ is an integer, and [n], := 14+ ¢+ ...+ ¢"~'. We have

t? in kQ, with

o 1 N 1 —qu”z . exp((l —quz) —1
t(Z)_(l—Q)ul —uz )_(GXP((l—Q)UZ)—Q)U
for ¢ # 1, and
M) =12y M=

The formal group law f*(X;, X;) is given by

q X1+ X — (1 4+ @uXi Xy
(X, Xy) =
f ( 17 2) 1 _qu2X1X2 9

whence (X, X;) liesin k[[ X}, X5]]. Note that this formal group law is actually
the graded version of F,(X,Y) in (5.1.1).
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Corollary 6.2.5 The following identity holds in Symjq:

. )y o aa Y 2 (ZD)" T 0]y Ap T
! (Z T%U ) LA gy (—1) = 1], Ay un

n>1

ProoF. The identity follows immediately from Corollary 6.2.4 after proving

that

thX _ anl(_]‘)n_l [n]g Ay u ™
Tl g () = Uy A

It is not difficult to prove a similar identity for which the left-hand side sum is

n>1

finite, by induction on n. Then, we consider the limit with respect to the filtration
topology of kQ,[[X1, X2,...]]. O
Let us note that for ¢ = 0 we obtain the well-known identity
exp % u" | = Spu”,
n
n>1 n>0

while for ¢ = 1 we obtain the identity

L 2ot (6.2.6)

EnZO wn u™ Enzo(_l)n_l (n - 1) An (%

The latter appears in a slightly different form in [49], Proposition 2.2, and is

attributed to I. Gessel; hence Corollary 6.2.5 represents the g-analogue of (6.2.6).

Other types of combinatorial identities, not necessarily involving symmetric
functions, can be derived from Corollary 6.2.4. For instance, let us consider the
formal group law f°(X;, X3) over the ring H.. We view H. as Z[my, my,...], and
choose the monomial symmetric function basis in Sym3;. The coefficient of ¥, in
Ef21 X, is clearly 0, for every n > 1. This means that we can obtain a family of

identities by computing the coefficient of mlf .. .mjl W, in b(> .o, mi—1¥;), where

i>1
11 + ...+ lyy = n—1. The key ingredient for this computation is Lagrange
inversion, namely the fact that the coefficient of mlf e mjl in b,_1 1s equal to the

number of (unlabelled) rooted plane trees with n leaves and outdegree sequence

(2, ..., (I41)4) for the internal vertices. For instance, the coefficient of m}™' &,
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provides the identity

’Z (-t ¢ (nl—@> =0, (6.2.7)

where C; = %(itf) is the i-th Catalan number. This is a special case of an identity

in [43] §4.5 Problem 1(c). More generally, the coefficient of m? ¥, ;11 provides the

identity
° i o re + 1
> e () =0 (6.2:5)
i=[ 5]
where C71Y = (7’—|—11)i-|—1 <(r+12.)i+1> represents the number of r 4 l-ary rooted plane

trees with ri + 1 leaves (see e.g. [16], or [7] for a bijective proof).

6.3 Computing the Images of Certain Bases of

Sym: under the Map d,

The images of the elementary symmetric functions under the map d. are easy to
compute. Indeed, using the fact that d. is a Hopf algebra map, and denoting by

v the antipodes of Sym# and U(f?)., we have

d.(Ay) = (=1)" d.(7(5,)) = (=1)" 7(dx(55))

Il
N
|
[S—
S’

3
2
N
X
3 a
N
=
S’
S’
Il
N
|
[S—
S’
3
X
3 a
N
|
=
S’

We now move on to the computation of the images of the power sum symmetric
functions under the map d,.. The key ingredients for most of the computations
in this section are Doubilet’s change of basis formulae for symmetric functions
in [11], which use Mébius inversion on set partition lattices. We will use the
zeta type function (* and the Mobius type function p® in the incidence algebra
A.(Il,). According to our conventions, u denotes the classical Mobius function

of the lattice II,,, as it traditionally does.
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Proposition 6.3.1 For every partition [ = (i1,... ,4) of n, we have that
!
d*(LDI) = (H ij EQ—I) l’l .
7=1

PrOOF. First method. This is a combinatorial method. Choose ¢ in II, such

that /(o) = I. Combining Doubilet’s formula

7r<cr

with (1.7.8), we obtain

L) = o D (Zu <67w>x'w')

7r<cr w<T
1 ~
= — M“(O,w)x'“’l ( M(W,O‘))
14(0,9)] ; gég
_ 1 /«La(ﬁ a):z;'“' _ ﬁ Q-1 n
n@.0)" =

Second method. Since d, is an algebra map, it is enough to prove the result
for partitions [ of length 1. Since d, is a coalgebra map and ¥, is a primitive

element of Sym?, we have that d.(¥,) = cz for some ¢ in A.. Now
¢ = (D |d (W) = (Ao | ) = iy

the last equality follows from (6.2.3) and the well-known fact that (¥; |¥;) = 14, ;.
O
Using other two formulae of Doubilet, we can immediately express the images

of the monomial and forgotten symmetric functions.

Corollary 6.3.2 Let K be a partition of n, and choose o in I, such that I(o) =
K. We have

||

ZM o,m) Hij(ﬁ)aij(w)—1 2 (6.3.3)

>0 7=1

d* I(
Hf I
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||

_ 1K)
d*(wlx(_X)) = ( Hllz,H Z |M(U,7T)| Hij(ﬁ)aij(w)—l x|7r| ,

>0 j=1

(6.3.4)

where I(m) := (i1(7),... ,tz(7)). Furthermore, given the partition R = (r°) of

n =rs, we have

sl
d*(wR):ZL @ | (ra)® (6.3.5)

d(Wr(—X)) = (=1)° ﬁ Griym1 | (ra)'D (6.3.6)
[T|=s J=1
= (_nl’)s ,ﬁ(ﬁ,n) (Tl’)'ﬂ
‘ WEHr(zT)

where 115" represents the poset of r-divisible partitions of [n] (that is partitions

with all block sizes divisible by r).

PROOF. (6.3.3) and (6.3.4) follow immediately from Proposition 6.3.1 and [11].
To deduce (6.3.5) from (6.3.3), we use the fact that the number of partitions m
of [n] with I(7) = [ is n!/(I!||I]|). Given the partition o in I, with I(o) = R,

we have
1 s! ‘o
d-(Vr) = 5 %—:5(_1)5_[(1) T ]Hl(ij = DN(rij) @iy | 'O
_ 1 S (1) nt lﬁ)a. (r)(D)
Tl e (rin)! - i) ]\ Ao o)

= % Z (—1)5_|7r| /ﬁ(ﬁ,w) (r:z;)'”' .

‘ WEH,(lT)

(6.3.6) follows similarly. O
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Remark 6.3.7 Computing the images of the forgotten symmetric functions is
important because we can immediately obtain the coefficients in the expansion
of A in the elementary symmetric function basis. All we need to do is replace
every x® in (6.3.4) by a_;, and multiply the result by (—1)/Xl; indeed, we have
(A|WR(—X)) = (a(D)|d(¥r(—X))). According to (6.2.2), we obtain, in particu-
lar, the coefficient of EiE% in the formal group law f*(X,Y), where Fy := X 4V
and £y := XY

A

2. we have a canonical

Since Sym% is the dual algebra of the coalgebra Sym
action of the former on the latter, as discussed as the beginning of §1.1; this

action is well-known in the theory of symmetric functions (see [28]). For instance
ASy = (A]S)Susi =80y, and AW, = (A|W,) =nd,_;.

=1

(6.3.8)

A

2, and the map d, is a map

The operator A is, in fact, a delta operator on Sym
of Hopf algebras with delta operator; the second claim follows immediately from
(1.1.4). The following proposition, which extends the similar results (1.2.11) and
(1.2.12) concerning the action of a(D) on U(f*)., will enable us to compute the

action of A on other symmetric functions.

A

2, we have

Proposition 6.3.9 For every P,(Q) in Sym

APQ=) [H(AP)(NQ), (6.3.10)

1.5>0

Aqy(P) =) ity(A P). (6.3.11)

i>1

PROOF. Let p denote the product in Sym#? and g := (A |-). We have

(A[PQ) = (5(d(a(D)) | P © Q) = (" @ d")(s(a(D))) | P © Q)

(o) («(D)@1,10aD)) | PeQ)

<Zfﬁin®Aj|P®Q>-

1,720
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Hence lyop = 2 50 /1 A'@AY and (6.3.10) follows by recalling (1.1.4). Formula

(6.3.11) is proved similarly, using
(A[~7(P)) = (a(D) | d(v(P))) = (a(D) [7(d.(P))) = {a(=D) | d(P))

_ <Z¢;a(p)f | d*(P)> = <Z¢; A | P> :

i>1 i>1

Clearly, formula (6.3.10) can be iterated in order to express the action of A
on an arbitrary product. Here are some applications of Proposition 6.3.9 (cf.

(6.3.8)):

()
I _ a
AS = > i T Siss (6.3.12)
J=1

0<sp<ig
I(I)
AV = 3" g [[A7 (6.3.13)
0<55<1 =1
Ady =) (=18 Ay (6.3.14)
7=1

In order to express the action of A on the basis of monomial symmetric functions,
we need to combine the formula in [15] for the comultiplication corresponding
to these functions with (6.3.3), and use (1.1.2); this gives a more complicated

formula, which we do not present here.

6.4 Applications Related to the Lazard Ring

In this section, we study a certain family of elements in the Lazard ring L., by
using the results in the previous section corresponding to the universal formal
group law f°(X;, X;). More precisely, given two integers r,s with r > 1, and a

partition R := (r®) of n := rs, we consider the elements

G = (=1 (A WR(~X)) = (—1)° (b(D) | d(WR(~X))) in Loos.
(6.4.1)
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In other words, (—1)"=1% g, . is the coefficient of A? in the expression of A (or just
Xi+5+ ...+ X,) in the elementary symmetric function basis. Furthermore, if p is
a primitive r-th root of unity, then g, , is the coeflicient of Z™ in pZ +,...4,p" Z.

The elements g, , are implicit in the construction of the universal p-typical
formal group law (see [33]), to which we will refer below. These elements are
manipulated in a purely formal way in the process of p-typification, whence no
explicit formula for them is needed. Corollary 6.3.2 enables us to derive several

explicit formulae for g, .

Proposition 6.4.2 Let o is a partition of [n] with [(c) = R. We have

||

1 .
Gnr = 5 o [ L) mim— | 171 b

>0 j=1
A0 [
= Z W Hmm']—1 bl(I)—l
|I|=s Jj=1
1 ~ ~ .
== Z P (0, 7) ¢, 1) in Ly,
n! e
where I(m) := (i1(7m), ..., 1(7)). In particular, g,, = nm,_;.

Recall that the Milnor genus of an element z in L,_; is the coefficient of b,_;
in the expression of z as a polynomial in the b;’s. According to Proposition 6.4.2,
the Milnor genus of ¢, , is —r. Hence, according to the structure of the Lazard

ring, we have the following result.

Proposition 6.4.3 For every prime p and integer | > 1, the element gy, is a
canonical polynomial generator for the Lazard ring in dimension p' — 1. Further-
more, if p and q are two distinet primes dividing n, and 1, j are integers such that
ip+ 79 =1, then 19, + jgn,q 15 a polynomial generator in dimension n — 1. In
consequence, the Lazard ring is generated by the set of elements g, ,, where n > 2

is an integer, and p is a prime dividing n.
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Note that the elements (A | Wg) have similar properties with g, ..

Let us now recall the universal p-typical formal group law corresponding to
the prime p, which is defined over the summand V, of L., and whose exp series
was denoted by ”(Z). We denote by h%" the canonical projection from L. to
V.. The above remark on the Milnor genus of the elements g, , implies that
the elements z; := hip(gpzp) are polynomial generators of V,. Proposition 6.4.2
provides similar expressions for z;, simply by setting m; = 0 for ¢ # p* — 1, and
by replacing b; with 6% for all 7 (recall from §1.1 that 67 = 0 unless 7 is divisible
by p—1).

Let p be a primitive p-th root of unity. According to the definition of the
elements ¢, , at the beginning of this section, we have

ng&prs =pl ...+ p' 7.
s>1
On the other hand, it was proved in [20] that Hazewinkel’s generators v; satisfy
S 2V = pZ i A P
I>1
Projecting the first relation onto V, and using the second one, we obtain
> W (Gpap) 27 =Y P 27 (6.4.4)
s>1 I>1
Hence, we have a formal expression for z; in terms of Hazewinkel’s generators.

We now intend to derive more explicit information from (6.4.4). To this
end, we recall from §1.2 the formal group law f*"(X;, X;) over the summand
k(q). of k., where ¢ is an integer greater than 1. We denote by Efw the ring
homomorphism from Vi to k(¢). mapping the coefficients of the universal p-typical
formal group law to those of f¥*( X, X;). We have seen that this homomorphism
sends v, to u?’~!, and the rest of Hazewinkel’s generators to 0. By projecting
formula (6.4.4) via Efw, we obtain a similar result for the generators z; of V.. We

. . ., kP
state this result in terms of the composite h, o A", which we denote by h*".
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Proposition 6.4.5 We have that

psg =) = and =y
7 0 otherwise .

q

. . - kP
In particular, the homomorphism h*p sends z, to u?'~1, and the rest of the

generators z; of Vi to 0.

Proposition 6.4.5 can be reformulated by using the interpretation of the el-
ements g, , at the beginning of this section. On the other hand, we obtain the

following corollary as an immediate consequence.

Corollary 6.4.6 Let [ > 1 be an integer, and let q be a dwvisor of .

" _

1. The coefficient of v;p DI G the expression of z; in terms of the gen-
erators v; is 1 if ¢ =1, and 0 otherwise. The same holds for the coefficient
of zépl‘”/(pq‘” in the expression of v; in terms of the generators z;. In

particular, z1 = vy and z3 = v,.

2. The coefficients sz(gpl—1)/(pq—1) and U(gpl_1)/(pq_1) in the expressions of m_,

in terms of the generators z; and v; of Vi are both equal to p~'/4.

We conclude this section with a purely combinatorial proof of Proposition
6.4.5, which does not use Hazewinkel’s generators. The main point made here is
that the elements g, , are well-suited for combinatorial manipulations, due to the
formulae in Proposition 6.4.2.

PROOF. From Proposition 6.4.2 it follows that h*“(g,,) = 0 if r # p, or if
r = p and p? does not divide n. Now let s be an integer divisible by p?~!, and let

pi=t 1 up2q_1

77 4
p p

1

77

W(Z) = Tra(zr ) = 2o 4 L

2

We claim that h*"(g,,,) is equal to u?*'=P"") times the coefficient of Z* in

kPa(k(Z)) = 27"
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Let o be a partition [ps] such that I(c) = (p®). Given a subset A of N, we
denote by II2 the set of those partitions of [n] for which every block size lies in A.
Now consider the sets P := {p? : 1 > 1} and Q := {p?~! : i > 1}. According
to Proposition 6.4.2, we have

|7l

B g = 5 S el | TLA0 0 | e et
7=1

WEH;’S,WZCT

||

! - —1l)e;(m s—|m
= — Z H(pqej(W) 1_1)!p(q Dej(m) | o ps—| ||7T|!k|p7;z|]_1

WEHSQ J=1

1 ||
== Z H(pqej(ﬂ—l)!pl—ej(ﬂ u P17l LI

S. WGHSQ ]:1

here I(m) := (pa(™ . p?= (™) if 1 lies in HpPS, and I(m) := (prar(™=1
pqelﬂl(”)_l) if 7 lies in /I?. The above claim now follows by comparing the formula
for h*"*(g,s,) with the formula for the coefficient of Z* in kP4(k'(Z)) given by
Theorem 1.7.6 (1). O

6.5 Symmetric Functions and Witt Vectors As-
sociated with a Formal Group Law

In this section we associate certain symmetric functions with a formal group law,
and discuss their connection with Witt vectors associated with the same formal
group law.
Given the formal group law f*(Xy, X3) in AY[X;, X3]] considered in §6.1, we
define symmetric functions ¢ := ¢*(X) in Sym!; by
ottt => " Xut in Symi[[t]]. (6.5.1)
n>1 n>1

Since f*( X1, X2) = X| + X5 mod (X, X2)?, this is a good definition. Let us note
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that

D GGV =D () 4l > (Y,

n>1 n>1 n>1
which implies the existence of a polynomial Q%(x;y) := Q% (21, ... , Tu; Y1s- -+ s Yn)
in Aua;y] = A, ... 2051, - .., ys] such that

0,(X;Y) = Qn(q"(X); ¢"(Y)) - (6.5.2)

For example, consider the multiplicative formal group law f*(X;, X;) = X; +
Xy + uX; X,, for which we have
L+ uX,)

ZkX _ -1+ anl(

u
n>1

Hence, (6.5.1) becomes
H (1+ qnut” Z A, u” (6.5.3)
n>1 n>0

Now recall the symmetric functions ¢, in Sym?% studied by C. Reutenauer in [42],

which are defined by

H — qntn = St (6.5.4)

n>0
It is easy to see by substituting u := —1 in (6.5.3), and comparing with (6.5.4),
that ¢f = (—u)" "1 q,.
It is not difficult to show, by applying the logarithm a(Z) of f*(Xi, X3) to
(6.5.1), that
> Tppacr (g = Ta W (6.5.5)
dln

We write this, using the Witt vector notation introduced in §5.1, as
wi(q") = @p1Wn (6.5.6)

where ¢* := (¢%,¢%,...); note that we have written w®() instead of w/"(-), for

simplicity. In other words, @,_,¥, are the ghost components of ¢?.
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Let us now recall from [18] §15.3 the polynomials Y%(x;y) := Y% (@q,... ,2;

Yty - Yn) in AQ [z y] := AQ.[x1,. .. s @n; Y1, ..., Yn], which are defined by
wy(X(25y)) = wy (@) + wi(y) - (6.5.7)

The following is a classical result, whose proof in [18] §25.1 uses the so-called
functional equation lemma. The proof presented here is much simpler, and it
generalises the proof given in [42] in the case of the multiplicative formal group
law. Our proof relies heavily on the symmetric functions we have associated with

a formal group law.

Theorem 6.5.8 (c¢f. [18] §25.1) The polynomials X% (x;y) have coefficients in
A,.

PROOF. We concentrate on the universal formal group law f°(X;, X;) in
LY[X,, X,]], with logarithm m(Z) in LQ'[[Z]] = Q[m1, ma,...][[Z]]. Let us note
first that g, can be obtained from ¢’ by substituting m;_; with 1/:, for all 1.
According to (6.5.6), we have

wh (" (X;Y)) = wl(¢"(X)) + wi(d(Y)).

Combining this relation with (6.5.2) and (6.5.7), and using the fact that ¢’ are al-
gebraically independent (since g, are), we finally deduce that X°(z;y) = Q°(z;y).
But we have already seen that Q°(z;y) has coefficients in L.; furthermore,
Y (x;y) is the image of X°(x;y) under the homomorphism from L.[z;y] to
A.[z;y] mapping the coefficients of the universal formal group law to those of
f4(X1, X3). The theorem now follows. O

The main consequence of this result is the definition of the group of Witt
vectors associated with the formal group law f*( Xy, X3). Addition of Witt vectors

is defined by the polynomials X (x;y).
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C. Reutenauer conjectured in [42] that for n > 2, the symmetric functions
—q, are Schur positive, that is linear combinations of Schur functions with non-
negative integer coefficients. He proved this conjecture when n is a power of
2 by explicitly describing the representation of the symmetric group Y, whose
image under the characteristic map is —¢,. Reutenauer’s conjecture was proved
in general by W. Doran in [10], and independently by T. Scharf and J.-Y. Thibon.
Here we formulate a related Schur positivity result for the symmetric functions
¢ in Sym}. Let

a0, = Z (_1)1(1)7”1617

[I|=n—1

where m; 1= m;m,, .... Clearly, g; are symmetric functions in Sym7; further-
more, from (6.5.6) it follows that g; = 0 unless i; + 1 divides n for every part ¢;
of I. We now state the promised Schur positivity result, and refer to [28] for the

classical results used in the proof.

Proposition 6.5.9 The symmetric functions q; are Schur positive.

PROOF. We can rewrite (6.5.5) as

@ =T (B = (1)) = D Tupacr ()"
d|n, 1£d#n

We use induction based on the Littlewood-Richardson rule. Since ¢ = 5i, it

only remains to prove that S7 — ¥, is Schur positive. Let us note first that
v, =5, — S(n—l,l) + S(n—2,12) — ...

This follows from the fact that
U= Y0 Kiyp St
[I|=n
where K((n_)l} are entries of the inverse Kostka matrix, which are computed in [28]

page 107. On the other hand, the coefficient of S(,_j 1+ in ST is greater than 0

by Young’s rule, which concludes the proof. O
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Let us note that our result for n = 2¥ implies the Schur positivity of —¢,, since
the partitions of 2¥ — 1 with parts of the form 2° — 1, ¢ > 1, have odd lengths.
It would be interesting to describe the representations of Y, corresponding to
the symmetric functions g; in this case, and relate them to the representations

constructed by Reutenauer.
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