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AbstractThis work in algebraic combinatorics is concerned with a new, combinatorialapproach to the study of certain structures in algebraic topology and formal grouptheory. Our approach is based on several invariants of combinatorial structureswhich are associated with a formal group law, and which generalise classicalinvariants. There are three areas covered by our research, as explained below.Our �rst objective is to use the theory of incidence Hopf algebras developed byG.-C. Rota and his school in order to construct and study several Hopf algebras ofset systems equipped with a group of automorphisms. These algebras are mappedonto certain algebras arising in algebraic topology and formal group theory, suchas binomial and divided power Hopf algebras, covariant bialgebras of formal grouplaws, as well as the Hopf algebroid of cooperations in complex cobordism. Weidentify the projection maps as certain invariants of set systems, such as theumbral chromatic polynomial, which is studied in its own right. Computationalapplications to formal group theory and algebraic topology are also given.Secondly, we generalise the necklace algebra de�ned by N. Metropolis and G.-C. Rota, by associating an algebra of this type with every formal group law overa torsion free ring; this algebra is a combinatorial model for the group of Wittvectors associated with the formal group law. The cyclotomic identity is alsogeneralised. We present combinatorial interpretations for certain generalisationsof the necklace polynomials, as well as for the actions of the Frobenius operatorand of the p-typi�cation idempotent. For an important class of formal group5



laws over the integers, we prove that the associated necklace algebras are alsode�ned over the integers; this implies the existence of special ring structures onthe corresponding groups of Witt vectors.Thirdly, we study certain connections between formal group laws and symmet-ric functions, such as those concerning an important map from the Hopf algebraof symmetric functions over a torsion free ring to the covariant bialgebra of a for-mal group law over the same ring. Applications in this area include: generatingfunction identities for symmetric functions which generalise classical ones, gener-ators for the Lazard ring, and a simpli�ed proof of a classical result concerningWitt vectors.
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IntroductionThe relevance of Hopf algebras and formal group theory to algebraic topology(and in particular to K-theory and bordism theory) is well-known. The rôle ofthe Roman-Rota umbral calculus, as an elegant and illuminating framework forcomputations, became clear through the work of A. Baker, F. Clarke, N. Rayet al. (see [3], [34], [35], [8]). In the last decade combinatorial methods havealso been brought to bear on some of the more subtle aspects of algebraic topol-ogy. This has been made possible by the important advances in combinatoricsin recent years, especially through the establishment of algebraic combinatoricsas an independent area of research. One of the main ideas is to �nd a combina-torial interpretation for the coe�cients of various polynomials and formal powerseries that we investigate (which are in general hard to express and manipulate);thus, we are in a position to apply methods from algebraic combinatorics, whichcould lead to new insights. Several of the resulting techniques have then beenfed back to enrich their combinatorial origins, �nding application in areas suchas graph theory, modular representations of matrix groups, and symmetric func-tions. Applications of combinatorial techniques to algebraic topology have beengiven recently by N. Ray and W. Schmitt; these applications are based on thetheory of incidence Hopf algebras, developed by G.-C. Rota and his school (see[19], [46], [47]), which plays a major rôle throughout our work as well.The aim of this work is to investigate several aspects of the beautiful interplay10



11between algebraic topology, formal group theory, umbral calculus, and combina-torics, by building on the recent results of N. Ray and W. Schmitt. On the onehand, formal group theory and algebraic topology suggest generalisations of cer-tain invariants of combinatorial structures, such as the chromatic polynomial ofa graph, the characteristic polynomial of a poset of partitions, the necklace poly-nomials, and certain symmetric functions. We associate invariants of the typementioned above with every formal group law, such that the classical invariantsall correspond to the multiplicative formal group law F (X;Y ) = X + Y +XY .Other formal group laws give rise to new invariants, which encode new informa-tion about the combinatorial structures. On the other hand, the study of thecombinatorial invariants associated with a formal group law leads to a combina-torial framework for investigating certain structures in formal group theory andalgebraic topology. Thus, certain Hopf algebras of set systems are combinatorialmodels for binomial and divided power Hopf algebras, for covariant bialgebrasof formal group laws, as well as for the Hopf algebroid of cooperations in com-plex cobordism. Necklace algebras provide a useful framework for investigatingWitt vectors associated with a formal group law, as well as for understandingp-typi�cation. Certain symmetric functions can also be associated with a formalgroup law, and they prove to be useful new tools in the study of the Lazard ringand Witt vectors, for instance.In Chapter 1 we have collected a minimum amount of information about thestructures and concepts used in this work. The main aim is to establish a notationwhich is consistent with traditional notation, and to de�ne all the concepts whichare not so easily accessible in the literature. We also reformulate some backgroundmaterial (such as that on binomial and divided power Hopf algebras { which haverecently come to provide a natural setting for the Roman-Rota umbral calculus,and that on formal group laws) in a way which makes more e�ective use of the



12coalgebraic viewpoint. Most of the concepts presented in this chapter also arisein algebraic topology, as explained in x1.4; however, we have preferred to use theclassical topological notation only in Chapter 3, where concrete applications totopology are discussed. There are some classical results quoted in this chapter,but in general they are stated only when we need them, or they are just referredto the appropriate source. The main references for this work are:� Bourbaki [4] for the concepts and notation of graded algebra,� Sweedler [53] and Nichols and Sweedler [32] for all information concerningHopf algebras and their applications to umbral calculus,� Hazewinkel [18] for an encyclopaedic description of the theory of formalgroups,� Adams [1] and Ravenel [33] for all information concerning generalised ho-mology theories,� Aigner [2] for general combinatorial terminology,� Schmitt [47] for an up-to-date account on incidence Hopf algebras,� Macdonald [28] for the theory of symmetric functions.In Chapter 2 we de�ne and investigate the umbral chromatic polynomial of setsystems of a fairly general type, which we call partition systems. This invariantwas �rst de�ned for graphs by N. Ray and C. Wright in [41], in which case it en-codes the same information about the graph as R. Stanley's symmetric functiongeneralisation of the chromatic polynomial [51]. We propose two de�nitions for acolouring of a partition system, which coincide with the de�nition due to Wag-ner [55], in the case of simplicial complexes. These new de�nitions of colouringenable us to generalise the product formula for the classical chromatic polyno-mial of a graph, as well as Whitney's formula for expanding this polynomial as



13the characteristic polynomial of an associated poset. We also present relatedformulae for our umbral chromatic polynomial of a partition system, such as adeletion-contraction identity. In the last section, automorphism groups of parti-tion systems are considered, and combinatorial interpretations and new formulaeare given for the normalised versions of the associated polynomials. One of theseformulae generalises the classical formula for expanding the divided conjugateBell polynomials in terms of divided powers of x. This is the reason for which theresults in this chapter are important ingredients for constructing combinatorialmodels for divided power algebras and covariant bialgebras of formal group laws.In Chapter 3 we show that incidence Hopf algebras of partition lattices pro-vide an e�cient combinatorial framework for formal group theory and algebraictopology. We start by showing that the universal Hurwitz group law (respectivelyuniversal formal group law) are generating functions for certain leaf-labelled trees(repectively plane trees with coloured leaves). Two formal group law identitiesare then proved using a combinatorial technique. With reference to p-typical for-mal group laws, we discuss the way in which the formula for the correspondingcharacteristic type polynomial of a partition system simpli�es; we also discussthe p-typical analogue of Lagrange inversion. As far as applications to algebraictopology are concerned, we illustrate the way in which several computations canbe carried out e�ciently by using the incidence Hopf algebra framework. Suchcomputations include: expressing certain coactions, computing the images of thecoe�cients of the universal formal group law under the K-theory Hurewicz ho-momorphism, proving certain congruences in the complex cobordism ring, andconstructing two combinatorial models for the dual of the polynomial part of themodulo p Steenrod algebra, for a given prime p.In Chapter 4 we construct several Hopf algebras of set systems, equipped or



14not with a group of automorphisms, by using the theory of incidence Hopf al-gebras. We start by extending the constructions for graphs in [37] to certaincocommutative Hopf algebras of set systems, whose structure is examined. Thepreviously mentioned polynomial invariants of set systems are realised as Hopf al-gebra maps onto certain binomial and divided power Hopf algebras, as well as ontothe covariant bialgebra of a formal group law. An extended version of Stanley'ssymmetric function generalisation of the chromatic polynomial is also realised asa Hopf algebra map. One of the main themes of this chapter is that passage froma binomial to a divided power algebra corresponds, in the combinatorial setting,to the association of a group of automorphisms with a given set system. Severalconcepts and properties concerning binomial and divided power Hopf algebrascan be lifted to the combinatorial Hopf algebras in a compatible way with theprojection maps. Thus, we de�ne delta operators, binomial and divided powersequences, and prove two identities concerning the interaction of a delta opera-tor with the product and the antipode. In the second half of this chapter, weadopt a similar approach for constructing and investigating non-cocommutativeHopf algebras and Hopf algebroids of set systems, equipped or not with a groupof automorphisms. These structures project onto such structures as the Fa�a diBruno Hopf algebra, the dual of the Landweber-Novikov algebra, and the Hopfalgebroid of cooperations in complex cobordism.In [29] N. Metropolis and G.-C. Rota studied the necklace polynomials, andwere lead to de�ne the necklace algebra as a combinatorial model for the classicalring of Witt vectors (which corresponds to the multiplicative formal group law).In Chapter 5 we de�ne and study a generalised necklace algebra, which is associ-ated with an arbitrary formal group law F (X;Y ) over a torsion free ring A. Themap from the ring of Witt vectors associated with F (X;Y ) to the necklace alge-bra is constructed in terms of certain generalisations of the necklace polynomials.



15We present a combinatorial interpretation for these polynomials in terms of wordson a given alphabet. The actions of the Verschiebung and Frobenius operators,as well as of the p-typi�cation idempotent are described and interpreted combi-natorially. A formal group-theoretic generalisation of the cyclotomic identity isalso presented. In general, the necklace algebra can only be de�ned over the ra-tionalisation A
Q. Nevertheless, we show that for an important family of formalgroup laws over Z, namely Fq(X;Y ) = (X + Y � (1 + q)XY )=(1 � qXY ), q 2Z(which contains the multiplicative formal group law), the corresponding necklacealgebra can be de�ned overZ; furthermore, the generalised necklace polynomialsturn out to be numerical polynomials in the variables x and q (that is they takeinteger values for integer x and q), and they can be interpreted combinatoriallywhen q is a prime power. These results enable us to de�ne ring structures com-patible with the associated maps on the groups of Witt vectors and the groupsof curves associated with the formal group laws Fq(X;Y ); there are few formalgroup laws with this property, and these ones are not mentioned in Hazewinkel'sbook.In Chapter 6 we investigate several connections between formal group lawsand symmetric functions, by using a combined approach, combinatorial and al-gebraic. We start by studying a certain Hopf algebra map from the Hopf algebraof symmetric functions over a torsion free graded ring to the covariant bialgebraof a formal group law over the same ring. This map has a geometrical inter-pretation in terms of a generalised homology theory and the determinant map,de�ned on unitary matrices. The study of the adjoint map provides identitiesfor symmetric functions which generalise classical ones, as well as some Catalannumber identities. The images of various symmetric functions under the abovemap are computed using P. Doubilet's formulae for these functions in terms ofM�obius inversion on set partition lattices [11]. As an application of our results so



16far, we discuss a family of elements in the Lazard ring, with elements of degreepk � 1 being polynomial generators, for every prime p. This family is implicit inthe construction of the universal p-typical formal group law, and is well-suitedfor combinatorial manipulations. In the last section, we associate with every for-mal group law certain symmetric functions similar to the symmetric functions qnstudied by C. Reutenauer in the recent paper [42]; the latter are associated withthe multiplicative formal group law. The symmetric functions which we de�neare used to give a short proof of the fact that addition of Witt vectors associatedwith a formal group law over a torsion free ring is determined by polynomialswith coe�cients in that ring. Finally, we prove a Schur positivity result similarto the one conjectured and partially proved by Reutenauer.Throughout our research, we have used extensively the computer algebra sys-tem Mathematica and, occasionally, the symmetric function package of J. Stem-bridge (forMaple). We implemented several procedures for computing polynomialinvariants of set systems, and for certain computations in algebraic topology andformal group theory. These procedures assisted us in formulating conjectures andidentifying counter-examples, and thus lead us to a better understanding of thestructures we were investigating.



Chapter 1BackgroundIn this chapter we give a brief description of the structures in formal group theory,algebraic topology, and combinatorics which will be used in our work. The mainaim is to establish notation, while more detailed information on these structuresappears in the references.1.1 Binomial and Divided Power Hopf AlgebrasThroughout x1.1, x1.2, x1.7, and x1.10 we let A� be a non-negatively gradedcommutative ring with identity, which we refer to as the ring of scalars. Weemphasise that A� is free of additive torsion when, and only when, it embedsin its rationalisation AQ� := A� 
 Q. All rings and algebras we consider areassumed graded by complex dimension, so that products commute without signs.We let C� be a graded coalgebra over A�, with comultiplication � and counit"; thus � invests C� with the structure of both left and right C�-comodule. Weusually assume that C� is free, and of �nite type, and write C� for the gradeddual Hom�(C�; A�), which is naturally an A�-algebra with identity.We �rst recall how C� may be interpreted as a ring of operators on C�.Let Lop(C�) be the A�-module consisting of those linear endomorphisms � of17



CHAPTER 1. BACKGROUND 18C� which are left C�-comodule maps, and so satisfy the condition� � � = (I 
 � ) � � (1.1.1)(where I = IC� denotes the identity on C�). We refer to these operators asleft-invariant, and consider Lop(C�) as an algebra under composition. Then C�and Lop(C�) are isomorphic as A�-algebras under the map which assigns to eachf 2 C� the compositionC� �- C� 
 C� I
f- C� 
A� �= C� ; (1.1.2)which we denote by �f . The inverse map associates to each linear operator� satisfying (1.1.1) the linear functional f� de�ned by f� (z) = "(�z), for allz 2 C�. We often use (1.1.2) to equate C� and various of its subalgebras withtheir images in Lop(C�), identifying f with �f and � with f� . In consequence,for any � 2 Lop(C�) we may writeh� �� j zi = h� j�zi ; (1.1.3)where we follow the standard convention of expressing the duality map as hf jzi :=f(z), for any f 2 C� and z 2 C�. Indeed, 1.1.3 provides an alternative de�nitionfor the action of C� on C�.For any A�-coalgebra map p : B� ! C�, we note that�f � p = p � �p�(f) (1.1.4)in Hom�(B�; C�), for all f 2 C�. We shall apply this formula in x1.2 and x4.1,for example, where C� is a Hopf algebra, and p is either the product map or theantipode.We remark that the algebra of right-invariant operators is de�ned by theobvious modi�cation of (1.1.1), and that whenever C� is cocommutative, the twoconcepts coincide. Otherwise, the map corresponding to (1.1.2) is actually ananti-isomorphism.



CHAPTER 1. BACKGROUND 19Given a countable basis c! for C�, we denote the dual pseudobasis for C� byc!. We may then deduce directly from (1.1.2) that the comultiplication is givenin terms of the action of c! on C� by�(z) =X! c!z 
 c! : (1.1.5)Whenever f in C� is of degree �1 and f(C1) contains the identity of A�,we refer to �f as a delta operator. We may de�ne the category of coalgebraswith delta operator by insisting that the morphisms are coalgebra maps whichcommute with the delta operators given on source and target, respectively.By way of example, consider the graded polynomial algebra A�[x], and thecomultiplication, counit, and antipode maps speci�ed by�(x) = x
 1 + 1
 x ; "(xi) = �i;0 ; and 
(x) = �x ;respectively. These maps invest A�[x] with the structure of a commutative andcocommutative Hopf algebra, which is known as the binomial Hopf algebra overA� (in one variable). The standard basis consists of the powers xn, for n � 0.Note that � may be rewritten as� : A�[x] �! A�[x; y] ;in which guise it is given by �(x) = x+ y, and is known as the shift (by y). Thenthe notions of left and right-invariant coincide, and are traditionally referred toas shift invariant. The most basic such operator is the derivative d=dx, whichwe abbreviate to D. Under the isomorphism of (1.1.2), it corresponds to theA�-linear functional which annihilates all xn for n 6= 1, and satis�es hD j xi = 1in A0. Thus D is a delta operator on A�[x]. In fact, the functionals de�ned byhD(n) jxmi := �n;m form the pseudobasis dual to the standard basis (so D(1) = D);by (1.1.2) they act on A�[x] such that D(n)xm = �mn�xm�n for all non-negativeintegers n and m. Whenever A� embeds in AQ�, we may rewrite D(n) as Dn=n!,



CHAPTER 1. BACKGROUND 20and interpret (1.1.5) as the formal Taylor expansionp(x+ y) =Xn �Dnn! p(x)� ynfor any polynomial p(x).We set A�n := Homn(A�; A�) and identify it with An in a canonical way. Thegraded dual of A�[x] (as a coalgebra) can now be viewed as the graded algebraA�ffDgg of formal divided power series (or Hurwitz series; see [6]) over A�. Foreach n, we shall express the elements of AnffDgg in the form��nI + �1�nD + � � �+ �k�nD(k) + � � � ;where �i 2 Ai, I is the identity operator, and D(k)D(l) = �k+lk �D(k+l) for allk; l > 0.We now select a sequence (or umbra) � = (�0; �1; �2; : : : ), where �i 2 Ai and�0 = 1. Then the Hurwitz series�(D) := D + �1D(2) + : : :+ �i�1D(i) + : : : (1.1.6)lies in A1ffDgg, and acts on A�[x] as a delta operator; in fact any delta operatoron A�[x] is equal to u�(D) for some umbra � and some invertible element u inA0. Given a positive integer m and a polynomial p(x) in A�[x], we de�ne theumbral substitution by m� in p(x) as follows:p(m�) := h(I + �(D))m j p(x)i :It is not di�cult to show that p(m�) can be obtained from p(x1 + : : :+ xm) bysetting xji � �j�1.The Hurwitz series (1.1.6) form a group under substitution, with identity D.The umbra corresponding to the inverse of �(D) will be denoted by �, and �(D)will be referred to as the conjugate delta operator of �(D).Note that the divided powers �(D)(n) de�ne a new pseudobasis for A�ffDgg,and that there is a dual basis of polynomials B�n (x) in A�[x]. By de�nition, these



CHAPTER 1. BACKGROUND 21polynomials satisfy h�(D)n jB�m(x)i = n!�n;m; hence, by using (1.1.3), it followsthat B�n (x) is monic of degree n (so that B�0 (x) = 1), and thatB�n (0) = 0 and �(D)B�n (x) = nB�n�1(x) ;for all n > 0. The sequence of polynomials B� = (1; B�1 (x); B�2 (x); : : : ) is knownas the associated sequence of �(D). It is not di�cult to show thatB�n (m�) = m(m� 1) : : : (m� n+ 1) ; (1.1.7)for all n > 0. On the other hand, let us note that (1.1.5) immediately providesthe formula �(B�n(x)) = nXi=0 �ni�B�i (x)
B�n�i(x) ; (1.1.8)which de�nes B� to be a binomial sequence.We recall some classic examples of delta operators and their associated se-quences.Examples 1.1.91. For any A�, let � be the umbra (1; 0; 0; : : : ); then �(D) = D and B�n(x) = xn.2. For scalars k� = Z[u], where u 2 k1, let � be the umbra (1; u; u2; : : : );then �(D) is the discrete derivative operator (euD � 1)=u and B�n(x) =x(x � u) : : : (x � (n � 1)u). It follows that �(D) = ln(1 + uD)=u andB�n(x) = Pni=1 un�iS(n; i)xi, where the S(n; i) are Stirling numbers of thesecond kind. Thus B�n(x) and B�n(x) are homogeneous versions of the fallingfactorial and exponential polynomials, respectively.3. For scalars �� = Z[�1; �2; : : : ], where �i 2 �i, let � be the umbra (�0; �1;�2; : : : ) with �0 = 1. Then B�n(x) and B�n(x) are the conjugate Bell polyno-mials and the Bell polynomials, respectively.



CHAPTER 1. BACKGROUND 224. Given a prime p, we consider the summand �p� of �� which is the image ofthe idempotent speci�ed by�n 7! 8<: �n if n = pk � 10 otherwise . (1.1.10)We denote by �n the image of �n in �p�, and by � the corresponding umbra.It is not di�cult to prove that �n = 0 unless n is divisible by p � 1. Weclearly have �p� =Z[�p�1; �p2�1; : : : ] =Z[�p�1; �p2�1; : : : ]. The relevance ofthis example will be discussed in x1.2 and x1.4.For basic information concerning the Bell polynomials we refer to [9]. The fol-lowing simple property is taken from [34].Proposition 1.1.11 For any binomial Hopf algebra with delta operator (A�[x];�(D)), there is a unique ring homomorphism g� : �� ! A�, speci�ed by �n 7! �n,which induces a map g� : (��[x]; �(D)) ! (A�[x]; �(D)) of graded Hopf algebraswith delta operator. Thus (��[x]; �(D)) is the universal example, and B� is theuniversal binomial sequence.Proposition 1.1.11 justi�es our �rst important notational convention, to whichwe shall adhere throughout this work. Given an elementP �(x) in ��[x], we denoteg�(P �(x)) in A�[x] by P �(x). If we substitute 1 for u in P �(x), then we obtain apolynomial in Z[x], which we denote by P (x). Whenever P �(x) is homogeneous,then P �(x) is a homogenised version of P (x). If f� is now a function from a setX to ��, we denote the function g� � f� : X ! A� by f�.In tandem with A�[x], and to cope with the situation when the scalars containtorsion, we must also consider the divided power algebra R�fxg, where R� is asimilar ring of scalars. This is the free graded R�-algebra with standard basisthe divided powers x(n) 2 Rnfxg for n � 0, where x(0) = 1, x(1) = x, andx(k)x(l) = �k+lk �x(k+l). Whenever R� is torsion free, then x(n) becomes identi�ed



CHAPTER 1. BACKGROUND 23with xn=n! in RQ�fxg. We may specify comultiplication, counit, and antipodemaps by�(x(n)) = nXi=0 x(i) 
 x(n�i) ; "(x(n)) = �n;0 ; and 
(x(n)) = (�1)nx(n) ;respectively. These maps invest R�fxg with the structure of Hopf algebra. TheR�-linear map j : R�[x] ! R�fxg, de�ned by xn 7! n!x(n) for all n � 0, is aHopf algebra map, and is monic whenever R� is torsion free. The graded dualof R�fxg (as a coalgebra) is the graded algebra R�[[D]] of formal power series inthe variable D, and the duality is expressed by hDn j x(m)i = �n;m. The action ofD on R�fxg given by (1.1.2) is di�erentiation with respect to x, as before, whilstthe dual map j� : R�[[D]]! R�ffDgg is prescribed by Dn 7! n!D(n).For any sequence r = (1; r1; r2; : : : ) with ri 2 Ri, the corresponding deltaoperator on R�fxg is r(D) := D + r1D2 + r2D3 + : : : ;which lies in R1[[D]]. As before, there is a conjugate delta operator r(D).We have now established our second important notational convention: a for-mal power series associated with an umbra denoted by a Greek or upper caseRoman letter (or a lower case Roman letter) will be Hurwitz (or standard) re-spectively.In R�fxg there is a basis of polynomials �rn(x) dual to the alternative pseu-dobasis r(D)n of R�[[D]], where n � 0. These polynomials form a divided powersequence, in the sense that�(�rn(x)) = nXi=0 �ri (x)
 �rn�i(x) ; (1.1.12)we refer to this sequence as �r.In order to construct the universal example, and relate it to Proposition 1.1.11,we take our inspiration from [1] and choose as scalars the polynomial algebra



CHAPTER 1. BACKGROUND 24H� := Z[b1; b2; : : : ], where bn has grading n. The element bn will be denotedby mn, as it is traditionally done in algebraic topology (see x1.4). Clearly, mi,i � 1, are also polynomial generators for H�. Let b be the sequence (b0; b1; b2; : : : )with b0 = 1, and observe that we may compatibly identify �� as a subalge-bra of H� by means of �n 7! (n + 1)!bn. Thus there is a canonical inclusione : (��[x]; �(D)) ! (H�fxg; b(D)) of Hopf algebras with delta operator, with re-spect to which B�n(x) = n!�bn(x). The following analogue of Proposition 1.1.11then holds.Proposition 1.1.13 For any divided power Hopf algebra with delta operator(R�fxg; r(D)), there is a unique ring homomorphism gr : H� ! R�, speci�edby bn 7! rn, which induces a map gr : (H�fxg; b(D)) ! (R�fxg; r(D)) of gradedHopf algebras with delta operator. Thus (H�fxg; b(D)) is the universal example,and �b is the universal divided power sequence.This proposition justi�es a similar notational convention to the one followingProposition 1.1.11.1.2 Formal Group LawsDe�nition 1.2.1 A (one-dimensional, commutative) formal group law over acommutative ring R is a formal power series F (X;Y ) in R[[X;Y ]] with the fol-lowing properties:1. F (X; 0) = F (0;X) = X;2. F (X;Y ) = F (Y;X);3. F (X;F (Y;Z)) = F (F (X;Y ); Z).



CHAPTER 1. BACKGROUND 25The formal power series [�1]F (X) in R[[X]] de�ned by F (X; [�1]F (X)) = 0 iscalled the formal inverse. We will use the following standard notation:X +F Y := F (X;Y ) ; X �F Y := F (X; [�1]F (Y )) : (1.2.2)The third condition in the de�nition of a formal group law allows us to iteratethe above notation, e.g. X +F Y +F Z := F (F (X;Y ); Z). It also makes sense todenote by PF ( ) the formal sum of the indicated elements. For integers n, wede�ne [n]F (X) :=8<: F (X; [n� 1]F (X)) if n � 0[�1]F ([n]F (X)) otherwise . (1.2.3)If the ring R is torsion free, the formal group law F (X;Y ) has a log serieslogF (X), that is a formal power series in RQ[[X]] satisfying logF (F (X;Y )) =logF (X)+ logF (Y ). The substitutional inverse of logF (X) is called the exp seriesof F (X;Y ), and is denoted by expF (X). Given a prime p and assuming R to betorsion free, we call F (X;Y ) p-typical if the only powers of X in logF (X) are ofthe form Xpk .We now turn to the product structure on A�[x], and in particular to thequestion of expressing each B�i (x)B�j (x) as a linear combination of the B�n (x).Inevitably, this is closely linked with the product structure on A�fxg, and theexpression of �ai (x)�aj (x) in terms of the �an(x). The problem displays remarkablecombinatorial complexity, and its investigation and interpretation are recurringthemes below.Let us begin with A�[x]. The transpose of the product is a formal comultipli-cation � : A�ffDgg �! A�ffDggb
A�ffDgg ;in which we use a suitably completed tensor product b
. Equivalently, and more



CHAPTER 1. BACKGROUND 26naturally, we may interpret � as the A�-algebra map� : A�ffXgg ! A�ffX;Y gg (1.2.4)speci�ed by �(X) = X + Y . This is tantamount to writing X and Y for therespective shift invariant operators @=@x and @=@y. Clearly � is coassociative,cocommutative, and an algebra map, whilst X 7! 0 de�nes a counit.To address our problem we �rst consider its dual, which asks for a descriptionof �(�(X)) = �(X + Y ) in terms of �(X) and �(Y ).Proposition 1.2.5 There are Hurwitz seriesF �(X;Y ) 2 A1ffX;Y gg and [�1]�(X) 2 A1ffXggsuch thatF �(�(X); �(Y )) = �(X + Y ) and F �(X; [�1]�(X)) = 0 :Proof. Choose F �(X;Y ) := �(�(X) + �(Y )) and [�1]�(X) := �(��(X)). 2It is important to observe that the transpose of the antipode 
 of A�[x] isthe algebra endomorphism induced by X 7! �X, which may equally well bedescribed by �(X) 7! [�1]�(�(X)).For each positive integer l, we shall writeF �(X;Y )(l) =Xi;j F �;li;j X(i)Y(j) and ([�1]�(X))(l) =Xk ��;lk X(k)(omitting the superscript l whenever it takes the value 1). We shall make regularuse of the abbreviationsX +� Y := F �(X;Y ) and �� X := [�1]�(X) ;these are extremely convenient, and suitably graphic. The �rst notation may beiterated, whence it makes sense to writeP�( ) for the formal sum of the indicatedelements.



CHAPTER 1. BACKGROUND 27So long as A� is torsion free, we may reinterpret X +� Y as the formal grouplaw Xi;j F �i;j=(i!j!)X iY j (1.2.6)over AQ�. This interpretation holds, more generally, over any extension A� � +A�which contains the appropriately divided coe�cients; the minimal such extensionwas referred to in [34] as the Leibnitz extension of A�, and was denoted by LA�.We therefore refer to X +� Y as a Hurwitz group law over A�.A crucial example of such an extension for arbitrary A� occurs when there isan embedding e : A� ! #A� in some ring #A� which contains a sequence a suchthat �n = (n + 1)!an for all n � 0. Then #A� does indeed contain elementsfai;j for which F �i;j = i!j!fai;j, as required, and we denote the formal group lawPi;j fai;j X iY j in #A�[[X;Y ]] by fa(X;Y ). By analogy with the universal case,e extends to an embedding e : (A�[x]; �(D)) ! (#A�fxg; a(D)) of Hopf algebraswith delta operator, with respect to which B�n (x) = n!�an(x).Of course, the product on #A�fxg dualises to the formal comultiplication(1.2.4) on #A�[[X]]. ThenX+�Y is identi�ed with the formal group law fa(X;Y ),which we also denote by X +a Y ; in addition, we may rewrite 1.2.5 asfa(a(X); a(Y )) = a(X + Y ) and fa(X; [�1]a(X)) = 0 :This is compatible with the de�nitions at the beginning of this section, up toabbreviating X +fa Y to X +a Y , and [�1]fa(X) to [�1]a(X). Thus the for-mal group law X +a Y has exp series a(X), log series a(X), and formal inverse[�1]a(X) =Pk iakXk, where e provides the identi�cation ��k = k! iak in #A�.The covariant bialgebra U(fa)� of the formal group law fa(X;Y ) over +A� (see[18]) lies in the chain of Hopf algebra mapsA�[x] �! U(fa)� �! #A�fxg ; (1.2.7)



CHAPTER 1. BACKGROUND 28and its underlying module is the free +A�-module spanned by the polynomials�ai (x), where i � 0; we denote this module by +A�h�ai (x)i. The contravariantbialgebra R(fa)� of fa(X;Y ) is just +A�[[a(D)]].With reference to our examples 1.1.9, both F �(X;Y ) and f �(X;Y ) are theadditive group law X + Y , whilst both F �(X;Y ) and f�(X;Y ) are the multi-plicative group law X +Y +uXY . Moreover, F �(X;Y ) is the universal Hurwitzgroup law, by virtue of Proposition 1.1.11. The minimal ring with an embeddingof the form e : �� ! #�� is clearly H�, whilst L�� is the Lazard ring L�. Clearly,L� is a subalgebra of H�, and LQ� = Q[b1; b2; : : : ] = Q[m1;m2; : : : ]. Furthermore,by Lazard's theorem, L� is a polynomial algebra over Z. The formal group lawf b(X;Y ) over L� is also universal, and its covariant bialgebra U(f b)� is the freeL�-algebra spanned by �bi (x), where i � 0. One of the main thrusts of our workin Chapter 4 is to provide combinatorial models for the universal examples of1.2.7, and for related Hopf algebras.It can be shown that the idempotent of (�Q)� speci�ed by (1.1.10) restrictsto an idempotent of L�; its image is precisely the ring L�p�, which we denote byV�. The above idempotent maps the coe�cients of f b(X;Y ) to the coe�cientsof the formal group law over V� obtained by reinterpreting the Hurwitz grouplaw F �(X;Y ) over �p� as in (1.2.6). The exp series of this new formal grouplaw corresponds to an umbra in H� which we denote by bp; we clearly have �n =(n+1)! bpn inH�. The formal group law f bp(X;Y ) over V� is the universal p-typicalformal group law. It is isomorphic to f b(X;Y ), when both formal group laws areconsidered over L�
Z(p); hereZ(p) denotes, as usual, the ring of integers localisedat a prime p, that is fl=n 2 Q : (n; p) = 1g. We have V Q� = Q[m(1);m(2); : : : ],where m(n) := mpn�1. Furthermore, by an analogue of Lazard's theorem, the ringV� is a polynomial algebra over Zwith polynomial generators of degree pn � 1.There are some nice choices for the generators, such as Hazewinkel's generators



CHAPTER 1. BACKGROUND 29vn, n � 1; we also have Araki's generators wn, n � 0 for V� 
Z(p) (see [33]).These generators are de�ned recursively in terms of m(n) bypm(n) = n�1Xi=0 m(i) vpin�i and pm(n) = nXi=0 m(i)wpin�i ; (1.2.8)where w0 = p.As a �nal example, we refer to an important family of p-typical formal grouplaws indexed by positive integers q. We consider the formal group law fkp;q (X;Y )with logarithmkp;q(X) := X + upq�1p Xpq + up2q�1p2 Xp2q + : : : in kQ1[[X]] :It is easy to check, by using the de�ning relations (1.2.8), that the ring homomor-phism from V� to kQ� mapping the coe�cients of the universal p-typical formalgroup law to those of fkp;q (X;Y ) sends vq to upq�1, and the rest of Hazewinkel'sgenerators to 0. Hence fkp;q (X;Y ) is a p-typical formal group law over the sum-mand of k� generated by upq�1, which we denote by k(q)�.Let us now return to the Hurwitz group law F �(X;Y ). Since F �(X;Y ) and[�1]�(X) respectively encode the action of � and the antipode in terms of thepseudobasis �(X)(l), we may immediately dualise to obtainB�i (x)B�j (x) = i+jXl=1 F �;li;j B�l (x) and B�k (�x) = kXl=1 ��;lk B�l (x) : (1.2.9)These formulae answer our original question in terms of the Hurwitz group law;they may neatly be summarised asB(X)B(Y ) = B(X +� Y ) and 
(B(X)) = B(��X) (1.2.10)in A�[x]ffX;Y gg, where B(X) = PiB�i (x)X(i). By iterating the former, weconclude that QB(Xi) = B(P�Xi) for any �nite sequence of variables Xi; wewrite F �;ln1;::: ;nk for the coe�cient of Qki=1(Xi)(ni) in (P�Xi)(l) .



CHAPTER 1. BACKGROUND 30Applying (1.1.4) to the product map and the antipode of A�[x] respectively,we further deduce that�(D)(l) (p(x)q(x)) = Xi;j�0F �;li;j ��(D)(i) p(x)� ��(D)(j) q(x)� and(1.2.11)�(D)(l) 
(p(x)) =Xk�1 ��;lk 
��(D)(k) p(x)� ; (1.2.12)for arbitrary p(x) and q(x) in A�[x]. We refer to (1.2.11) as the Leibnitz rule for�(D).Returning to our examples 1.1.9, we note that, in the case of �(D), the formu-lae (1.2.9) are trivial, and the Leibnitz formula is the standard one for D. In thecase of �(D), the product formula (1.2.9) becomes the Vandermonde convolution,and the Leibnitz formula reduces to the well-known action of the discrete deriva-tive on a product. The universal case �(D) is considerably more mysterious, andis discussed in later sections.Formulae (1.2.9), (1.2.10), (1.2.11), and (1.2.12) may easily be rewritten interms of a(D), in which context the �rst two are well-known. Note thatl!F �;ln1;::: ;nk = n1! : : : nk!fa;ln1;::: ;nk (1.2.13)in +A�, under the identi�cation provided by e.1.3 Hopf AlgebroidsDe�nition 1.3.1 A Hopf algebroid over a commutative ring R is a pair (A;� )of commutative R-algebras with structure maps�L; �R : A! � left and right units,� : � ! � 
R � comultiplication," : � ! A counit,
 : � ! � conjugation,



CHAPTER 1. BACKGROUND 31satisfying the following conditions:1. " � �L = " � �R = IA ;2. (I� 
 ") � � = ("
 I� ) � � = I� ;3. (I� 
 �) � � = (� 
 I� ) � � ;4. 
 � �R = �L and 
 � �L = �R ;5. 
 � 
 = I� ;6. maps exist which make the following diagram commute� � 
R �? �� 
�I� -I��
� 
A �ppppppppppppppppppppY p p p p p p p p p p p p p p p p p p p p*A6�R �6� A6�L� " -"where (
 � I� )(z1 
 z2) := 
(z1) z2 and (I� � 
)(z1 
 z2) := z1 
(z2).Here � is a left A-module via �L, and a right A-module via �R; on the otherhand, � 
A � is the usual tensor product of bimodules, and � and " are A-bimodule maps. A graded Hopf algebroid (A�; ��) is called connected if the rightand left sub-A�-modules generated by �0 are both isomorphic to A�.We now de�ne Hopf algebroid structures on the algebras �� 
 ��, H� 
H�,and L� 
H�, which will be identi�ed with the following polynomial algebras:�� 
 �� �= ��[ 1;  2; : : : ] via �n 
 1 7! �n and 1
 �n 7!  n ;H� 
H� �= H�[c1; c2; : : : ] via bn 
 1 7! bn and 1
 bn 7! cn ;L� 
H� �= L�[c1; c2; : : : ] via the restriction of the above isomorphism.



CHAPTER 1. BACKGROUND 32Note that we may compatibly identify �� 
 �� as a subalgebra of H� 
H� bymeans of  n 7! (n + 1)!cn. The structure maps of the Hopf algebroid (H�;H� 
H�) are de�ned as follows:� " : H� 
H� ! H� is speci�ed by "(cn) = 0;� �L : H� ! H� 
H� is the standard inclusion;� �R : H� ! H� 
H� is given byXi�0 �R(bi) =Xi�0 ci Xj�0 bj!i+1 ;where c0 = 1;� � : H� 
H� ! (H� 
H�)
H� (H� 
H�) is speci�ed by�(cn) =Xk�1 Xn1+n2+:::+nk=n+1ni�1  kYi=1 cni�1!
 ck�1 ;� 
 : H� 
H� ! H� 
H� is determined by
(bn) = �R(bn) and Xi�0 
(ci)  Xj�0 cj!i+1 = 1 :The Hopf algebroids (��; �� 
 ��) and (L�; L� 
H�) are de�ned by restrictingthe structure maps of (H�;H� 
H�). We abbreviate �R(�n) to �Rn , and �R(bn)to bRn ; we also denote by �R, bR,  and c the corresponding umbras. For a proofof the fact that the above structures are indeed Hopf algebroids, we refer to [33]Theorem A2.1.16.1.4 Connections with Algebraic TopologyInteresting instances of the structures discussed in x1.1, x1.2, and x1.3 occur whenLA� is the coe�cient ring E� := ��(E) of a complex oriented cohomology theory



CHAPTER 1. BACKGROUND 33E�(�) (note that we always have LE� = E�). All the examples considered in 1.1.9are of this type.All homology and cohomology theories referred to in this work are assumedto be unreduced.Let E�(�) be a multiplicative cohomology theory with complex orientation Z inE2(C P1). The ring of coe�cients E� is assumed to be torsion free. We haveE�(C P1) �= E�[[Z]] and E�(C P1) �= E�h�1; �2; : : : i, that is the free E�-modulegenerated by �1; �2; : : : The standard map � : C P1 � C P1 ! C P1 classifyingthe tensor product of the two line bundles over C P1 � C P1 determines themultiplicative structure of E�(C P1). The diagonal map C P1 ! C P1 � C P1induces the comultiplication � : E�(C P1) ! E�(C P1 � C P1) �= E�(C P1) 
E�(C P1) speci�ed by �(�n) = nXi=0 �i 
 �n�i ;which turns E�(C P1) into a Hopf algebra. The map � induces a map�� : E�(C P1)! E�(C P1 � C P1) �= E�(C P1)b
E�(C P1) :Letting ��(Z) := F (Z 
 1; 1 
 Z), it is easy to show that F (X;Y ) is a formalgroup law, and that E�(C P1) is its contravariant bialgebra, while E�(C P1) isits covariant bialgebra.Let D 2 H2(C P1) be the �rst Chern class of the Hopf bundle over C P1,and let x 2 H2(C P1) be the standard spherical generator. In [35] it is shownthat the Boardman mapE�(C P1)! H�(EQ)b
H�(C P1) �= EQ�[[D]]is a monomorphism, which maps Z to the exp series expF (D) of the formal grouplaw F (X;Y ); we letexpF (D) = a(D) = D + a1D2 + a2D3 + : : : in EQ2[[D]] :



CHAPTER 1. BACKGROUND 34It is also shown that the Hurewicz homomorphismE�(C P1)! H�(EQ) 
H�(C P1) �= EQ�[x]is a monomorphism, which maps �n to �an(x).Let us now consider the space 
S3 of loops on the 3-sphere. Let f1 be thesuspension of the inclusion S2 ,! 
S3 and j1 the evaluation map �
S3 ! S3.We de�ne x 2 �S2 (
S3) and D 2 �2S(
S3)as the classes represented by f1 and j1, respectively. The unit S0 ! E induceselements x 2 E2(
S3) and D 2 E2(
S3). In [36] it is shown that E�(
S3) �=E�[x], and that E�(
S3) �= E�ffDgg as Hopf algebras. Let h : 
S3 ! C P1represent the integral cohomology class D 2 H2(
S3). The use of the notationD for an element in EQ�(C P1) and another one in E�(
S3) is now justi�ed, sinceh� maps the �rst element to the second one; the same is true about the notationx. Hence h� and h� can be interpreted (via the corresponding isomorphisms) asthe embeddings E�[x] ,! E�h�ai (x)i and E�[[a(D)]] ,! E�ffDgg, respectively.We now turn to the examples considered in 1.1.9, each of which correspondsto a certain complex oriented cohomology theory. Recall that given a torsion freering A� and an umbra � in A�, we have de�ned a formal group law fa(X;Y )over LA�. We summarise the examples in 1.1.9 in the following table, where H�stands for the ringZ[b1; b2; : : : ] (as de�ned in x1.1), as well as for singular homol-ogy, depending on the context. The orientations for the cohomology theories wemention are the usual ones (see [1] or [33]).



CHAPTER 1. BACKGROUND 35LA� fa(X;Y ) Corresponding cohomology theoryZ X + Y H�(�) (singular cohomology)k� X + Y + uXY k�(�) (connected K-theory)L� f b(X;Y ) MU�(�) (complex cobordism)H� f b(X;Y ) (H ^MU)�(�)V� 
Z(p) f bp(X;Y ) BP �(�) (Brown-Peterson cohomology)k(q)� 
Z(p) fkp;q (X;Y ) g(q)�(�) (connected Morava-type K-theory)The notation g(q)�(�) is non-standard; it is motivated by the fact that the caseq = 1 corresponds to the connective version of the Adams summand of K-theory,which is usually denoted by g�(�). The fact that the complex cobordism ringMU�is isomorphic to the Lazard ring L� is a remarkable result due to Quillen. It isalso known that H�(MU) is isomorphic to the ring H� = Z[b1; b2; : : : ]. Further-more, the Hurewicz homomorphism MU� ! H�(MU), which is known to be amonomorphism, can be interpreted (via the above isomorphisms) as the embed-ding L� ,! H� discussed in x1.2. Based on these remarks, we shall henceforthidentify MU� with L� and H�(MU) with H�.Finally, we discuss Hopf algebroids. J. F. Adams showed that under certainconditions on the cohomology theory E�(�), there is a Hopf algebroid structureon E�(E), with structure maps de�ned by topological maps. He also determinedthe Hopf algebroid structure of MU�(MU) (see [1] or [33]). It is known thatMU�(MU) �= MU�[bMU1 ; bMU2 ; : : : ] as algebras, whence MU�(MU) �= L� 
 H�via bMUn 7! cn. This is actually an isomorphism of Hopf algebroids, since thestructure of L� 
H� de�ned in x1.3 is precisely the one described by Adams forMU�(MU). The induced Hopf algebra structure on H� is known to topologistsas the dual of the Landweber-Novikov algebra; we will refer to it once again inExample 1.7.4, from a combinatorial point of view. As far as the Hopf algebroidH� 
H� is concerned, we note that it is isomorphic to (H ^MU)�(MU).



CHAPTER 1. BACKGROUND 361.5 Set SystemsWe shall always write jV j for the cardinality of a given set V , and k + [n] for theset of integers fk + 1; k + 2; : : : ; k + ng.Given any �nite set V of vertices (possibly empty), we refer to a collectionof subsets S � 2V as a set system if ; 2 S and V = SW2SW ; since S uniquelydetermines the vertices, we denote V by V (S) whenever S is in doubt. Similarly,given a partition � of the set V , we denote the latter by V (�). The set systemsS1 and S2 are isomorphic if there is a bijection f : V (S1) ! V (S2) such thatff(U) : U 2 S1g = S2.Instead of considering arbitrary set systems, in this work we concentrate onso-called partition systems, which we now de�ne, since they provide the mostappropriate framework for our constructions. Throughout this work, we employthe non-standard convention that the empty set has the unique partition f;g.Given a partition � of the �nite set V , we denote by Bool(�) the Boolean algebraof subsets of V consisting of arbitrary unions of blocks of �. A set system Psatisfying � � P � Bool(�) for an arbitrary partition � of V will be called apartition system. The blocks of � are the atoms of the poset (P;�); we will referto them as the atoms of P. Since � is uniquely determined by P, it is oftenconvenient to denote � by At(P), and Bool(�) by Bool(P). The sets belongingto Non(P) := P n f;g nAt(P) will be called non-atoms.Any set system which contains every vertex as a singleton is obviously apartition system, with singletons as atoms. Amongst such examples, we shallregularly consider simplicial complexes (or down closed set systems) such as theindependence complex I(H) of a graph H, andNV := ffxg : x 2 V g [ f;g ; KV := 2V ; K� := [B2� 2B ;where � is a partition of V . If V = [n], we denote NV byNn and KV by Kn; if � is



CHAPTER 1. BACKGROUND 37the partition of [n1+ : : :+nk] with blocks [n1], n1+[n2], : : : , n1+ : : :+nk�1+[nk],we denote K� by Kn1;::: ;nk . We shall also consider the set systems In consistingof those sets in Kn which are intervals (in Z).Given a partition system P and U 2 Non(P), we de�ne the deletion of U tobe the partition system P nfUg, abbreviated to P nU . We also de�ne the strongdeletion as P nnU := P n fW 2 P : U �Wg :Now let � � Bool(P) be a partition of a set U � V (P) (so that U necessarilylies in Bool(P)). We de�ne the partition system Pj� to befW 2 P : W � B for some B 2 �g ;and call it the restriction of P to �. We also de�ne the partition system P=� tobe fW 2 P : B �W or B \W = ; ; for all B 2 �g [ � ;and call it the contraction of P through �. Note that even if all the atoms ofa partition system are singletons, not all the atoms of a contraction of it are(except for the trivial case, when we are contracting through singletons). Wecan transform an arbitrary partition system P into one which has only singletonatoms by de�ning Sing(P) := fAt(PjU) : U 2 Pg :We may then de�ne the strong contraction of P through � as P==� := Sing (P=�).We abbreviatePjfUg, P=fUg, and P==fUg to PjU , P=U , and P==U , respectively.For instance,f;; f1g; f2g; f3g; f1; 2g; f1; 2; 3gg==f2; 3g = f;; f1g; f2g; f1; 2gg ;where 1 := f1g and 2 := f2; 3g.



CHAPTER 1. BACKGROUND 38The restriction and the contraction of a partition � through a set U 2 Bool(�)is de�ned in a similar way to the restriction and the contraction of a partitionsystem, namely:�jU := fB 2 � : B � Ug ; �=U := fB 2 � : B \ U = ;g [ fUg :Given two partitions � and � of V satisfying � � �, where the order is re�nement(that is: every block of � is a subset of some block of �), we recall that the inducedpartition �=� on the blocks of � is the partition of � whose blocks are the setsfB 2 � : B � Cg for C in �.Given two partition systems P and Q with the same vertices and atoms, wede�ne the complement of Q in P to be the partition system{PQ := P nNon(Q) :The complement of P in Bool(P) will be denoted by P, and called, simply, thecomplement of P. Given partition systems P1 and P2, we shall write their disjointunion as P1 � P2, and de�ne their join byP1 _ P2 := fU1 t U2 : U1 2 P1; U2 2 P2g ;where t denotes disjoint union of sets. Note that the join of partition systemscorresponds to disjoint union of graphs, when we identify a graph with its inde-pendence complex. It is useful to de�ne the following operations, as well:P1 �P2 := P1 � P2 ; P1 �P2 := P1 _ P2 :We say that a partition system is connected if it di�ers from f;g and is notisomorphic to a non-trivial disjoint union. Similarly, we call a partition systemjoin-connected if it di�ers from f;g and is not isomorphic to a non-trivial join ofpartition systems. We write Pc for the partition system consisting of those setsU 2 P for which PjU is join-connected. Given a graph H, it is not di�cult to see



CHAPTER 1. BACKGROUND 39that I(H)c consists of those sets of vertices U for which the restriction of H to Uis a connected graph. In general, �nding an alternative description of Pc, whichis easier to grasp than the one given above, amounts to �nding such a descriptionfor join-connectivity; however, we have not been able to do this.Given a partition system P, we refer to any partition � of its vertices whichsatis�es � � P as a division by P, and denote the set of such divisions by �(P).This is partially ordered, as usual, by re�nement, and the partition of V (P) intothe atoms of P is the minimum element b0 (or b0�(P) if the context is unclear).In particular, �(KV ) is the lattice of all partitions of V , and is usually denotedby �(V ), or �n when V = [n]. The poset �(In), which will be denoted by e�n,is isomorphic to the Boolean algebra (Kn�1;�). We write �n;k and e�n;k for thesubsets of �n and e�n consisting of partitions with k blocks. The set S�(PjU),where U ranges over Bool(P), consists of all divisions of appropriate subsets ofthe vertices by elements of P; this set will also be useful below, and we label itb�(P).Recall that a preferential arrangement of a �nite set V is a pair (�; !), where� is a partition of V , and ! is a bijection from [j�j] to �, inducing a linear orderon �. Given a partition system P, we denote by A(P) the set of preferentialarrangements (�; !) of V (P) with � 2 �(P). This set can be partially orderedby setting (�; !0) � (�; !) if � � �, and only adjacent blocks are amalgamated inorder to obtain � from �. Following Wagner [55], we de�ne a colouring of P withcolours C to be a map f : V (P)! C whose kernel is a division by P; we denotethe set of such colourings by �C(P). If C = N or C = [n], we simply call themcolourings and colourings with at most n colours, respectively.For each partition � of a given set, we de�ne its type ��(�) to be the monomial�k11 �k22 : : : in ��, where ki is the number of blocks of � with i+ 1 elements. Thetype of a colouring is the type of its kernel.



CHAPTER 1. BACKGROUND 40We call two partition systems with singleton atoms S1 and S2 weakly isomor-phic if there are integers k1; k2 � 0 and a set system S such that Si is isomorphicto S �Nki for i = 1; 2. Throughout this work, we shall not attempt to distinguishnotationally between a set system and its isomorphism class, respectively weakisomorphism class, since in those cases where it matters, we have taken care toensure that the context is clear. We denote by S the set of isomorphism classesof partition systems with singleton atoms; we also denote by bS the set of weakisomorphism classes of partition systems S with singleton atoms for which �(S)has a unique maximal element. We write S� and bS� for the subsets of S andbS consisting of isomorphism classes, respectively weak isomorphism classes, ofconnected set systems. Complementation, as well as all the binary operationsdiscussed above can be de�ned on S, while disjoint union can even be de�ned onbS; thus, we obtain monoid structures on S and bS, in each case the unit beingf;g.1.6 Set Systems with Automorphism GroupGiven a group G acting on a set X, we follow convention by writing the setof orbits under the action of G by X=G, the orbit of x 2 X by G(x), and thestabiliser of x by Gx.In this section, by set system we always mean a partition system with singletonatoms. We refer to a pair (S; G) consisting of a set system S and a group G ofautomorphisms of S as a set system with automorphism group. Obvious examplesare (KV ; �V ) and (Kn; �n), where �V and �n denote the symmetric groups onthe sets V and [n], respectively.Given a set system with automorphism group (S; G), the group G acts in anobvious way on b�(S), and on the set of colourings �A(S) via the map (g; f) 7!f � g�1, where g 2 G and f is a colouring. It also acts on the following posets by



CHAPTER 1. BACKGROUND 41preserving the corresponding order: (KV (S);�), �(S) and A(S); hence, there areinduced poset structures on the sets of orbits: KV (S)=G, �(S)=G and A(S)=G.It is not di�cult to see, and we will use the fact that the poset A(Kn)=�n isisomorphic to e�n.Consider a pair (S; G) as before, and a partition � of a subset of V (S). Welet Gj� denote the image of the group TB2�GB under the projection �V (�) ��V (S)nV (�) ! �V (�). Since Gj� is an automorphism group of Sj�, it makes senseto de�ne the restriction of (S; G) to � by (S; G)j� := (Sj�;Gj�). Restriction tofUg is abbreviated as before. Now assume that � is a partition of V (S). Thestabiliser G� of the partition � (under the action of G on �V (S)) permutes theblocks of �, whence we have a group homomorphism from G� to ��. The imageof this homomorphism is an automorphism group of S==�, which we denote byG=�. Hence it makes sense to de�ne (S; G)=� := (S==�;G=�), and call it thecontraction of (S; G) through �. Let us note that the kernel of the above homo-morphism is precisely Gj�, whence G�=(Gj�) is isomorphic to G=�; in particular,we have jG�j = jGj�j jG=�j : (1.6.1)We de�ne complement and disjoint union of set systems with automorphismgroup by(S; G) := (S; G) and (S1; G1) � (S2; G2) := (S1 � S2; G1 �G2) ;(1.6.2)respectively. Join and � are de�ned analogously.We decree that two set systems with automorphism group (S1; G1) and (S2;G2) are isomorphic if there is an isomorphism f : V (S1)! V (S2) of S1 and S2such that G1 is isomorphic to G2 via the map g 7! f �g�f�1. We call (S1; G1) and(S2; G2) weakly isomorphic if there are integers k1; k2 � 0 and a set system with



CHAPTER 1. BACKGROUND 42automorphism group (S; G) such that (Si; Gi) is isomorphic to (S; G) � (Nki; f1g)for i = 1; 2. Throughout this work, we shall not attempt to distinguish notation-ally between a set system with automorphism group and its isomorphism class,respectively weak isomorphism class, since in those cases where it matters, wehave taken care to ensure that the context is clear.We now consider the following sets of isomorphism classes, respectively weakisomorphism classes, of set systems with automorphism group:1. the set A of isomorphism classes of all set systems with automorphismgroup;2. the set bA of weak isomorphism classes of set systems with automorphismgroup (S; G) for which �(S) has a unique maximal element, and the follow-ing condition is satis�ed: (S; G) and (S; G)=� are disjoint unions of (S 0; G0)with S 0 connected, for every � in �(S);3. the set C of isomorphism classes of set systems with automorphism group(S; G) for which G has the property that every cycle of an element of G isalso in G;4. the set P of isomorphism classes of set systems with automorphism group(S; G) for which there is a partition � 2 �(S) such that K� � S � K� [Bool(�), and G is the direct product of symmetric groups acting on theblocks of a partition � � �;5. the set bP of weak isomorphism classes of set systems with automorphismgroup (S; G) satisfying the condition in (4) plus the condition that �(S)has a unique maximal element.Every set system may be considered as a set system with automorphism group,with respect to the trivial automorphism group f1g; hence we have the inclusionsS � P � C � A and bS � bP � bA :



CHAPTER 1. BACKGROUND 43Let us also note that the operations disjoint union, join, and � de�ne monoidstructures on P, C, and A. Disjoint union also de�nes a monoid structure on bPand bA.Peter Cameron has determined all permutation groups G with the propertythat every cycle of an element of G is also in G. He called such permutationgroups cycle-closed.Theorem 1.6.3 ([5]) A permutation group is cycle-closed if and only if it is thedirect product of its transitive constituents, each of which is a symmetric groupor a cyclic group of prime order.1.7 Incidence Hopf AlgebrasIn [47], W. Schmitt associated a Hopf algebra, called the incidence Hopf algebra,with a family of posets satisfying certain conditions. We review these conditionshere, and present some classical examples from this point of view; these exampleswill be used throughout this work. Other constructions based on the generalmethod in [47] appear in Chapter 4.Let P be a non-empty family of posets which are intervals (this means thatthey have a unique minimal and a unique maximal element). We assume thatthis family has the property that for all posets P in P and elements x � y inP , the interval [x; y] := fz 2 P : x � z � yg is also in P; such a family is calledinterval closed. We consider an equivalence relation � on P such that, wheneverP � Q in P, there exists a bijection � : P ! Q such that [b0P ; x] � [b0Q; �(x)] and[x;b1P ] � [�(x);b1Q], for all x in P ; such a relation is called order compatible, andthe map � is called an order compatible bijection. Given the above setup and acommutative ring with identity R, there is a natural coalgebra structure on thefree R-module H(P) generated by the quotient set eP := P=� (which is called the



CHAPTER 1. BACKGROUND 44set of types). The comultiplication � and the counit " are de�ned by�[P ] :=Xx2P [b0P ; x]
 [x;b1P ] and "[P ] :=8<: 1 if jP j = 10 otherwise .Now let us assume that the interval closed family P is also closed under for-mation of direct products; such a family is called hereditary. It follows that P is asemigroup under direct product, generated by the set of indecomposables, whichis denoted by P�. Let us assume that the order compatible relation � consideredabove is also a reduced semigroup congruence, that is a semigroup congruencesatisfying P �Q � Q� P � P for every P;Q 2 P with jQj = 1; such an equiv-alence is called a Hopf relation. Poset isomorphism is an obvious example of aHopf relation. Under the above conditions, the set of types eP is a monoid, withidentity element equal to the type of any one point interval. Furthermore, thecoalgebra structure of H(P) can be enriched to that of a Hopf algebra, by linearlyextending the multiplication in the monoid of types; this is called the incidenceHopf algebra of P. The antipode of this Hopf algebra is given by the Schmittformula: 
[P ] =Xk�0 Xx0<:::<xkx0=b0P ; xk=b1P (�1)k kYi=1[xi�1; xi] : (1.7.1)The dual H� of H := H(P) is called the incidence algebra of P (reducedmodulo �). This algebra can be identi�ed with the set of all maps from P to R.The multiplication in H�, which is dual to the comultiplication in H, is calledconvolution and is given explicitly byhf � g j [P ]i =Xx2Phf j [b0P ; x]i hg j [x;b1P ]i ;for all [P ] in eP. The subset Alg(H;R) of H� consisting of all algebra maps fromHto R can be identi�ed with the set of all maps from eP� to R. This subset is a groupunder convolution, called the group of multiplicative functions on H. The inverse



CHAPTER 1. BACKGROUND 45of any f in Alg(H;R) is given by the composition f � 
, where 
 is the antipodeof H. Given f and g in Alg(H;R), the map (f 
 g) � � in Alg(H;R 
 R) willbe denoted by f ~ g. The correspondence R 7! Alg(H;R) is a covariant functorfrom the category of rings to the category of groups. There are situations, suchas those mentioned in x3.3, when a ring homomorphism � : R ! T is uniquelydetermined by the image of Alg(�) on some function in Alg(H;R).We now present three important examples. Recall the graded commutativerings with identity A� and R� considered in x1.1, and the corresponding umbras� and r.Example 1.7.2 The Fa�a di Bruno Hopf algebra. Consider the family ofposets which are isomorphic to a �nite product of lattices �n. The incidenceHopf algebra (over the integers) of this family modulo isomorphism of posetsis a polynomial algebra in in�nitely many variables. Hence it can be realisedon the set �� by identifying the isomorphism class of the lattice �n+1 with �n.Note that the isomorphism class of an interval [�; �] in �n+1 becomes identi�edwith the type ��(�=�) (as de�ned in x1.5) of the induced partition �=�. Thecomultiplication and counit are speci�ed by�(�n) = X�2�n+1 ��(�)
 �j�j�1 ; "(�n) = 8<: 1 if n = 00 otherwise , (1.7.3)for all n � 0. This Hopf algebra is known as the Fa�a di Bruno Hopf algebra.Now consider the group Alg�(��; A�) of graded multiplicative functions underconvolution. We denote by �� the multiplicative function speci�ed by �i 7! �i,and by �� its convolution inverse. In this context, �� is the identity map, and ��is the antipode of the Hopf algebra ��.Example 1.7.4 The dual of the Landweber-Novikov algebra. Now con-sider the family of posets which are isomorphic to a �nite product of Boolean



CHAPTER 1. BACKGROUND 46algebras e�n. The incidence Hopf algebra (over the integers) of this family mod-ulo isomorphism of posets is a polynomial algebra in in�nitely many variables.Hence it can be realised on the set H� by identifying the isomorphism class of theBoolean algebra e�n+1 with bn. Note that the isomorphism class of an interval[�; �] in e�n+1 becomes identi�ed with � b(�=�). The comultiplication and counitare speci�ed by�(bn) = X�2 e�n+1 � b(�)
 bj�j�1 =Xk�1 Xn1+n2+:::+nk=n+1ni�1  kYi=1 bni�1!
 bk�1 ;(1.7.5)"(bn) =8<: 1 if n = 00 otherwise ,for all n � 0. This Hopf algebra is precisely the dual of the Landweber-Novikovalgebra, which was mentioned in x1.4. It is not di�cult to check that �� can beidenti�ed with a sub-Hopf algebra of H� via the monomorphism �n 7! (n+1)!bn;we will actually present a purely combinatorial way of understanding this factin x4.4. Now consider the group Alg�(H�; R�) of graded multiplicative functionsunder convolution. We denote by �r the multiplicative function speci�ed bybi 7! ri, and by �r its convolution inverse. In this context, �b is the identity map,and �b is the antipode of the Hopf algebra H�.The notation ��, ��, �r, and �r conforms with our conventions. We nowpresent a well-known result (see [12], Theorem 5.1 and [47], Examples 14.1 and14.2), which has a fundamental rôle in translating problems related to substitutionof formal power series into the combinatorial language of incidence Hopf algebras.Theorem 1.7.61. The group Alg�(��; A�) is anti-isomorphic to the group under substitution



CHAPTER 1. BACKGROUND 47of Hurwitz series in A�ffXgg of the form�(X) :=Xi�1 �i�1X(i) ;where � is an umbra in A� (if A� has no torsion, then we can identify X(i)with X i=i!); the anti-isomorphism is speci�ed by �� 7! �(X).2. The group Alg�(H�; R�) is anti-isomorphic to the group under substitutionof formal power series in R�[[X]] of the formr(X) :=Xi�1 ri�1X i ;where r is an umbra in R�; the anti-isomorphism is speci�ed by �r 7! r(X).According to the theorem, we have��(�n) = �n and �r(bn) = rn : (1.7.7)Let us now recall the binomial Hopf algebra ��[x], and the divided powerHopf algebra H�fxg. It is well-known that conjugate Bell polynomials and theBell polynomials in ��[x] can be expressed combinatorially as follows:B�n(x) = x (�� � ��)(�n�1) and B�n(x) = x (�� � ��)(�n�1) for n � 1 ;(1.7.8)where � is the umbra (1; x; x2; : : : ) in ��[x]. Let us writeB�n(x) = nXk=1 s�(n; k)xk and B�n(x) = nXk=1 S�(n; k)xk :The coe�cients s�(n; k) and S�(n; k) in �n�k are known as ��-Stirling numbersof the �rst and second kind, respectively; S�(n; k) are also known as partial Bellpolynomials. The standard notation s(n; k) and S(n; k) for the classical Stirlingnumbers of the �rst and second kind is consistent with our conventions.



CHAPTER 1. BACKGROUND 48Let us now recall the divided conjugate Bell polynomials �bn(x) in H�fxg,which we write as �bn(x) = nXk=1 �bn;kxkk! ;clearly, we have n!�bn;k = k! s�(n; k) in H�. Considering the umbra x = (1; x=2;x2=3!; : : : ) in (�Q)�[x], it is now easy to show that the divided conjugate Bellpolynomials and the divided Bell polynomials can be expressed combinatoriallyas follows:�bn(x) = x (�b � �x)(bn�1) and �bn(x) = x (�b � �x)(bn�1) for n � 1 :(1.7.9)Indeed, we know that �� is a sub-Hopf algebra of H� via the inclusion �n 7!(n + 1)!bn, which we denote by i. Hence the transpose i� : Alg�(H�; (�Q)�[x])! Alg�(��; (�Q)�[x]) of i is a group homomorphism speci�ed by f 7! f � i. Moreexplicitly, we have that i�(�b) = �� and i�(�x) = ��, whence i�(�b) = �� by takinginverses. Finally, we have the relation i�(�b � �x) = �� � ��, which implies (1.7.9)when applied to �n�1 and combined with (1.7.8). The second formula in (1.7.9)follows in a similar way. Passing from (1.7.8) to (1.7.9) turns out to be a specialcase of a more general phenomenon, which is investigated in x2.5 in terms of setsystems and their automorphism groups.Example 1.7.10 The incidence algebra of a poset. Let R be a commutativering with identity, and P a locally �nite poset, that is a poset whose intervals areall �nite. We denote by Int(P ) the set of intervals of P . The incidence algebraR(P ) of P is the free R-module generated by all functions from Int(P ) to R, withpointwise addition, scalar multiplication, and product (or convolution) of f andg in R(P ) de�ned by (f � g)(x; y) := Xx�z�y f(x; z) g(z; y) ;



CHAPTER 1. BACKGROUND 49for all x � y in P . Note that we have followed convention in abbreviatingf([x; y]) to f(x; y), and continue to do so. The identity of R(P ) is the functione which is de�ned, using the Kronecker delta, by e(x; y) := �x;y. We now explainthe connection with incidence Hopf algebras. Let P be the hereditary familyconsisting of arbitrary products of posets in Int(P ), and let � be the smallest(with respect to inclusion) Hopf relation on P for which the monoid P= � iscommutative. We consider the incidence Hopf algebra (over R) of the familyPmodulo �, and denote it by H. As discussed above, the algebra Alg(H;R) isisomorphic to the subalgebra of R(P ) consisting of all functions f taking the value1 on every one-point interval in P . According to the Schmitt formula (1.7.1), theconvolution inverse of such a function exists, and can be expressed as follows:f�1(x; y) =Xk�0 Xx=x0<:::<xk=y(�1)k f(x0; x1) : : : f(xk�1; xk) : (1.7.11)We can also express f�1 recursively, as follows:f�1(x; y) = � Xx�z<y f�1(x; z) f(z; y) : (1.7.12)In fact, the convolution inverse of a function g in R(P ) exists if and only ifg(x; x) is an invertible element of R for every x in P . The general formula forthe convolution inverse can be deduced from (1.7.11).We now present some important special cases of the concepts related to the in-cidence algebra of a poset; these examples will play an important rôle throughoutour work, while other examples will appear in x2.5 and x5.1. The �rst example istheM�obius function of P , which is just the convolution inverse of the zeta function�, taking the value 1 on all intervals of P . The M�obius function is traditionallydenoted by �, or �P if the context is unclear.Now let A� be the ring considered in x1.1, � the corresponding umbra, Va �nite set, and P a subposet of �(V ), ordered by re�nement. Consider the



CHAPTER 1. BACKGROUND 50function �� in A�(P ) de�ned by ��(�; �) := ��(�=�), which we call the zeta typefunction. Its convolution inverse clearly exists, and is denoted by ��P (or just�� if the context is clear, a common situation of this kind being P = �(V )).In order to express the convolution inverse, we de�ne the type ��(
) of a chain
 = f�1 < �2 < : : : < �kg of length l(
) := k � 1 by��(
) := (�1)l(
)�1��(�1; �2) : : : ��(�k�1; �k) ;if k > 1, and by ��(
) := 1, otherwise. According to (1.7.11), we have��P (�; �) = � X
2C(�;�) ��(
) ; (1.7.13)here, and throughout this work, C(Q) denotes the set of chains between a minimaland a maximal element of the poset Q. The function ��P in ��(P ) is called theM�obius type function of P . Observe that both ��(�; �) and ��P (�; �) lie in Aj�j�j�j.It makes no di�erence if we replace the ring A� and umbra � with the ringR� and umbra r in the above paragraph. Let us also note that the functions��; �� 2 A�(�n) and �r; �r 2 R�( e�n) are essentially the same as certain re-strictions of the functions in Alg�(��; A�) and Alg�(H�; R�) for which we haveused the same notation. The only di�erence is that the latter are de�ned onisomorphism classes of intervals rather than intervals; more precisely, we have��(��(�=�)) = ���(V )(�; �) for � � � in �(V ), and similar relations for the otherfunctions. The context will always determine which kind of functions we are us-ing; in fact, functions in Alg�(��; A�) and Alg�(H�; R�) are only used in Chapter3. The notation �� and ��P conforms with our convention. In particular, theclassical M�obius function �P (�; �) is obtained from ��P (�; �) by setting each �i to1. This suggests that we might generalise certain standard properties of �P (�; �)to ��P (�; �). Thus we may establish the following two results by straightforwardadaptation of the proofs in [50].



CHAPTER 1. BACKGROUND 51Proposition 1.7.14 Given the subposets P and Q of �(V ) and �(W ), whereW \ V = ;, we identify the pair (�; �0) 2 P �Q with � [ �0; then we have��P�Q(� [ �0; � [ �0) = ��P (�; �) ��Q(�0; �0) in A� :Proposition 1.7.15 If Q is a subposet of the interval [�; �] in P � �(V ) whichcontains both � and �, then��Q(�; �) =X (�1)k��P (�; �1) : : : ��P (�k; �) ;where the summation ranges over all chains f� < �1 < : : : < �k < �g in C(�; �)for which �i 62 Q.1.8 Invariants of Partition SystemsWe now associate several polynomials and symmetric functions with a partitionsystem P and a set system with automorphism group (S; G) (recall that S mustbe a partition system with singleton atoms). We denote by SymZ�(x) the gradedZ-algebra of symmetric polynomials over the in�nite set of indeterminates x =fx1; x2; : : :g (cf. x1.10). Assuming that V (P) = V (S) = V , we de�ne��(P;x) :=P�2�(P) ��(�)xj�j in �jV j[x] ;c�(P;x) :=P�2�(P) ���(P)(b0; �)xj�j in �jAt(P)j[x] ;e��(P;x) :=P�2�(P) ��(�)B�j�j(x) in �jV j[x] ;X(P;x) :=Pf2�N (P) xf in SymZjV j(x) ;X(S; G;x) :=Pf2T xf in SymZjV j(x) ; (1.8.1)where xf := Qv2V xf(v), and T is an arbitrary transversal of the orbits of Gon �N(S). We call ��(P;x) the partition type polynomial of P, and c�(P;x)the characteristic type polynomial of P. Of course, the �rst three polynomialinvariants in ��[x] are mapped to polynomial invariants in A�[x] by the map g�



CHAPTER 1. BACKGROUND 52in Proposition 1.1.11, for every ring A� of the type considered in x1.1 and everyumbra � in A�.Special cases of these invariants are well-known. For instance, the partitionpolynomial of P investigated in [55] can be retrieved by substituting �i with1 in ��(S;x). The characteristic type polynomial of a poset of partitions of a�nite set appears in [40]; note that we have associated this polynomial with thepartition system P rather than the poset �(P). If P is a simplicial complexand all the maximal partitions of �(P) have cardinality m, then the substitution�i 7! 1 maps c�(P;x) to the characteristic polynomial of �(P), up to a factorxm. The polynomial e��(P;x) was referred to in [40] as the umbral chromaticpolynomial of P, since after umbral substitution by m�, it enumerates by typethe colourings of P with at most m colours. Whenever P is the independencecomplex of a graph H, the polynomial e��(P;x) reduces to the umbral chromaticpolynomial ��(H;x) introduced in [41]. Note that our conventions dictate thatwe write �(H;x) for the classical chromatic polynomial of H, and ��(H;x) forits homogenised version. Considering the latter is natural from the point ofview of graded algebras; the combinatorial signi�cance is the following: afterumbral substitution by m� (which is a special case of umbral substitution bym�), ��(H;x) enumerates colourings of H with at most m colours by the numberof colours. In Chapter 2 we associate with P a new polynomial ��(P;x), and itis this one that we label the umbral chromatic polynomial of P. It turns out thatwhenever P is a simplicial complex (in particular, the independence complex ofa graph), we have ��(P;x) = e��(P;x). There are essentially two reasons forconcentrating on the more complex polynomial ��(P;x), rather than e��(P;x),whose de�nition and combinatorial interpretation are straightforward. The �rstreason is that we are able to generalise Whitney's original formula (in Proposition2.4.1) for expanding the chromatic polynomial as the characteristic polynomial



CHAPTER 1. BACKGROUND 53of an associated poset: �(H;x) = xn(H) c(LH;x); (1.8.2)here n(H) denotes the number of connected components, and LH the lattice ofcontractions (or bond lattice) of H, that is the set of all connected partitions ofH, partially ordered by re�nement. The second reason is that we are able toderive two product formulae for ��(P;x) (in Propositions 2.4.9 and 2.4.15) whichgeneralise the classic �(H1 tH2;x) = �(H1;x)�(H2;x) : (1.8.3)The second formula depends on the context of partition systems for its veryexistence; in terms of application to formal group laws, this formula may best beinterpreted in the context of Hopf algebras, as in Chapter 4.Finally, the symmetric functions X(P;x) and X(S; G;x) are natural exten-sions of Stanley's recently introduced symmetric function generalisation XH ofthe chromatic polynomial of a graph H (see [51]); indeed X(I(H);x) = XH . AsStanley points out and we discuss in detail in x2.2, the symmetric function XHencodes the same information as the umbral chromatic polynomial of H.By way of simple examples, of which the last two are just restating (1.7.8),we remark that��(Nn;x) = c�(Nn;x) = xn ; ��(Kn;x) = B�n(x) ; c�(Kn;x) = B�n(x) :(1.8.4)If we combine the standard isomorphism�(S1 �S2) �= �(S1)��(S2) with Propo-sition 1.7.14, we may immediately deduce the following result.Proposition 1.8.5 For any set systems S1 and S2, we have��(S1 � S2;x) = ��(S1;x) ��(S2;x) ; c�(S1 � S2;x) = c�(S1;x) c�(S2;x) :



CHAPTER 1. BACKGROUND 54We also record a simple property of X(S; G ;x), directly from the de�nition.Proposition 1.8.6 Given set systems with automorphism group (S1; G1) and(S2;G2), thenX(S1 _ S2; G1 �G2 ;x) = X(S1; G1 ;x)X(S2; G2 ;x) ;in particular, X(S1 _ S2 ;x) = X(S1 ;x)X(S2 ;x) .1.9 The Classical Necklace Algebra and Ring ofWitt VectorsIn [29], Metropolis and Rota studied the properties of the so-called necklace poly-nomials, which are de�ned for every n in N byM(x; n) := 1nXdjn ��nd�xd in Q[x] ;here � denotes the number-theoretic M�obius function, which is related to theM�obius function of the lattice D(n) of divisors of n by �(n=d) := �(d; n) =�(1; n=d). For everym inN,M(m;n) represents the number of primitive necklaces(that is asymmetric under rotation) with n coloured beads, where the colours arechosen from a set of size m. Hence, M(x; n) are numerical polynomials (that isthey take integer values for integer x). Metropolis and Rota were lead to de�ne forevery torsion free commutative ring A with identity the necklace algebra Nr(A)(over A). This algebra is the set A1 of in�nite sequences of elements of A withcomponentwise addition, and multiplication de�ned by(� � �)n := X[i;j]=n(i; j)�i �j ;here [i; j] and (i; j) denote, as usual, the least common multiple and greatestcommon divisor of i and j, respectively. Note the convention of writing � for an



CHAPTER 1. BACKGROUND 55element (�1; �2; : : : ) in A1; similarly, if h is a map from a set X to A1, we writeh(x) = (h1(x); h2(x); : : : ). Following [29], we de�ne a map M : AQ! AQ1 byMn(b) :=M(b; n).The algebra Nr(A) has two remarkable operators for every r in N, namely theVerschiebung operator Vr, and the Frobenius operator fr; the former is de�ned byVr;n(�) :=8<: �i if n = ri0 otherwise . (1.9.1)The algebraNr(A) is closely related to the ring ofWitt vectorsW (A) (see e.g. [21]pages 233{234), and the ring of unital formal power series 1+ tA[[t]] under cyclicsum and cyclic product (see [29]). To explain these relationships, we introducethe ghost ring Gh(A), which is just A1 with addition and multiplication de�nedcomponentwise. We also de�ne the following maps:T : W (AQ)! Nr(AQ) ; T (�) :=Pn�1VnM(�n) ;w : W (AQ)! Gh(AQ) ; wn(�) :=Pdjn d�n=dd ;g : Nr(AQ) ! Gh(AQ) ; gn(�) :=Pdjn d�d ;c : Nr(AQ) ! 1 + tAQ[[t]] ; c(�) :=Qn�1 � 11�tn ��n ;E : Gh(AQ) ! 1 + tAQ[[t]] ; E(�) := exp �Pn�1 �nn tn� :Theorem 1.9.2 (cf. [29], [14], [54])1. All the above maps are ring isomorphisms, and the following diagram iscommutative.W (AQ)HHHHHHHHHjw Nr(AQ)?g 1 + tAQ[[t]]-T -cGh(AQ)���������*E (1.9.3)2. The image of W (A) in 1 + tAQ[[t]] is precisely 1 + tA[[t]]. We also havethat T (W (A)) = Nr(A) for A =Z, but not in general.



CHAPTER 1. BACKGROUND 563. We have that (c � T )(�) =Yn�1 11� �ntn :The following generalisation of the cyclotomic identity (due to V. Strehl[52]) holds:Yn�1� 11� ktn�M(m;n) =Yn�1� 11 �mtn�M(k;n) in 1 + tZ[[t]] ;(1.9.4)where k;m 2Z.We conclude this section by recalling that Dress and Siebeneicher interpretedthe necklace algebra Nr(Z) as the Burnside-Grothendieck ring of almost �nitecyclic sets [14]. They also interpreted the map T in this context, and were leadto a combinatorial interpretation of the ring structure of W (Z). This enabledthem to give a surprising generalisation of the ring of Witt vectors W (A) in [13],namely the Witt-Burnside ring WG(A) associated with a pro�nite group G.1.10 Symmetric FunctionsLet A� be the ring considered in x1.1. In this section we give a brief descriptionof the graded A�-algebra SymA� := SymA� (X) of symmetric polynomials over anin�nite set of indeterminatesX = fX1;X2; : : : g. Its graded dual is the A�-algebraSym�A := Sym�A(X) of symmetric formal series over the same alphabet X.There are several remarkable bases for SymA� , which are indexed by partitionsof positive integers. A partition of n is a sequence I = (i1; : : : ; il) with i1 � i2 �: : : � il > 0 and i1 + : : : + il = n. If k occurs rk times in I for 1 � k � n, wewrite I = (1r1 ; : : : ; nrn). We use the notationsl(I) := l ; jIj := i1 + : : :+ il ; I! := i1! : : : il! ; kIk := r1! : : : rn! ;



CHAPTER 1. BACKGROUND 57l(I) is known as the length of I, and jIj as the weight of I. Given a partition �of a set V , we denote by I(�) the partition of jV j whose parts are the sizes ofthe blocks of �. We de�ne a partial order � on the set of partitions of jV j byidentifying this set (in the obvious way) with the poset �n=�n of orbits of thesymmetric group �n on �n. This partial order will be used in x3.2.We use the notation of Lascoux and Sch�utzenberger [22] for symmetric func-tions, which has the advantage of being compatible with the modern interpre-tation of symmetric functions as operators on �-rings and polynomial functors.Thus, we denote the complete symmetric function corresponding to the partitionI by SI := SI(X), the Schur function by SI := SI(X), the elementary symmetricfunction by �I := �I(X), the power sum symmetric function by 	 I := 	 I(X),and the monomial symmetric functions by 	I := 	I(X). We will also use theaugmented monomial symmetric functions, which are de�ned by e	I := kIk	I . Itis well-known that Sn, n � 1, on the one hand, and �n, n � 1, on the other hand,are polynomial generators for SymA� (over A�), while 	n, n � 1, are polynomialgenerators for SymAQ� (over AQ�). The Schur functions and the monomial sym-metric functions form additive bases of SymA� . It is also known that the basisof Schur functions is self-dual, and that the bases of complete and monomialsymmetric functions are dual bases (with respect to the Hall inner product). Letus also recall the forgotten symmetric functions (see [28]), which form the dualbasis to the basis of elementary symmetric functions (with respect to the Hallinner product); alternatively, the forgotten symmetric functions can be de�nedas images of the monomial symmetric functions under the standard involution onSymA� (see [28]). Using the �-ring formalism, the forgotten symmetric functioncorresponding to the partition I can be written as (�1)jIj	I(�X).We can de�ne a comultiplication on SymA� by�(P ) = ��1(P (X;Y )) ;



CHAPTER 1. BACKGROUND 58where � is the canonical isomorphism between SymA� (X) 
 SymA� (X) and thealgebra SymA� (X;Y ) of symmetric polynomials over the disjoint union of thealphabets X and Y . The adjoint of this comultiplication is just the ordinaryproduct in Sym�A. This comultiplication de�nes a Hopf algebra structure onSymA� , which was �rst investigated in [15]. It was shown there that Sn, n � 1,and �n, n � 1, are divided power sequences, while 	n, n � 1, are primitive; thismeans that�(Sn) = nXi=0 Si 
 Sn�i ; �(�n) = nXi=0 �i 
 �n�i ; �(	n) = 	n 
 1 + 1 
 	n :(1.10.1)As far as the antipode 
 is concerned, we have 
(Sn) = (�1)n�n.



Chapter 2Chromatic Polynomials ofPartition SystemsIn this chapter we de�ne the umbral chromatic polynomial of a partition systemand study some of its properties, such as the relation to the characteristic typepolynomial de�ned in (1.8.1). Our results generalise some classical results for thechromatic polynomial of a graph. Apart from the purely combinatorial signi�-cance, some of these results will play an important rôle in Chapters 3 and 4, inthe construction of combinatorial models for certain Hopf algebras in algebraictopology. Throughout this chapter, we let P be a �xed partition system, and wemake extensive use of the concepts and notation related to partition systems, aspresented in x1.5, x1.6, and x1.8.2.1 Colourings of Partition SystemsIn this section we de�ne the concepts of colouring needed for the de�nition of theumbral chromatic polynomial of a partition system.De�nition 2.1.1 59



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 601. A factorised colouring of P with at most m colours is a pair (
; f) consistingof a chain 
 = fb0�(P) = �1 < �2 < : : : < �kg of partitions of V (P) and acolouring f of P with at most m colours, such that the following conditionsare satis�ed:(a) �i 2 �(P), for 1 � i < k;(b) the kernel of f is �k.2. A colouring forest of P with at most m colours is a pair (�; f) consistingof a set � with At(P) � � � Bool(P) n f;g and a colouring f of P with atmost m colours, such that in the poset (�;�) we have:(a) the set of elements covered by U is a division by PjU for all non-atomsU 2 �;(b) the set max(�) of maximal elements of � is a partition of V (P), andthe kernel of f is max(�).The name of the �rst concept comes from viewing the pair (
; f) as a factorisedfunction �0 f1- �1 f2- �2 : : : fk- �k fk+1- [m] ;where �0 is the partition of V (P) into singletons, every function fi with 1 �i � k sends a block of �i�1 to the block of �i containing it, and the compositefk+1 � fk � : : : � f1 coincides with the colouring f (the last condition assumesthat we identify the partition of V (P) into singletons with V (P)). The name ofthe second concept is motivated by the fact that the Hasse diagram of the poset(�;�) is a forest, since every element which is not maximal has a unique cover.Moreover, a colouring forest of P can be viewed as a forest of rooted trees withcoloured roots and leaves labelled with symbols corresponding to the atoms ofP. The ordinary colouring f with kernel ker(f) can be viewed as the factorised



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 61colouring (fb0�(P) � ker(f)g; f), and as the colouring forest (At(P) [ ker(f); f).It is easy to see that all the factorised colourings and all the colouring forestsof a simplicial complex are, in fact, ordinary colourings. We denote by �(P)the collection of sets � with At(P) � � � Bool(P) n f;g satisfying the �rstcondition in the de�nition of a colouring forest of P and max(�) 2 �(P). Givena chain 
 as in the de�nition of a factorised colouring of P, we associate withit the union of all partitions in 
; this collection of sets lies in �(P), and willbe denoted by �(
). We also associate with every factorised colouring (
; f) thecolouring forest (�(
); f). These correspondences are surjective but not injective,as Example 2.1.3 shows.In [31], Mullin and Rota de�ned a reluctant function from S to X to be afunction from S to the disjoint union S t X, such that only a �nite number ofterms of the sequence s; f(s); f(f(s)); : : : are de�ned. Given a factorised colouring(
; f) as in De�nition 2.1.1 (1), we can identify it with the reluctant function bffrom the disjoint union Fki=1 �i to [m], speci�ed by insisting that the restrictionof bf to �i coincide with the function fi+1 discussed above. On the other hand, acolouring forest (�; f) can be identi�ed with the reluctant function f from � to[m] sending a set B to its cover in (�;�) if B is not maximal, and to f(x) forsome x in B otherwise (this is a good de�nition because of the second conditionin De�nition 2.1.1 (2)).There are several reasons for which we concentrate on the enumeration offactorised colourings and colouring forests of partition systems, rather than justordinary colourings. To justify our choice, let us observe �rst that the de�ni-tion of an ordinary colouring of a partition system requires that the maximalmonochromatic blocks lie in the partition system. For simplicial complexes C,this is equivalent to all monochromatic blocks lying in C. However, for non-simplicial complexes P, there might be monochromatic blocks which do not lie



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 62in P; it is precisely these blocks that are taken into account by the two conceptsof colouring de�ned above. Apart from this intuitive reason, we must emphasise,as we have done in x1.8, that certain properties of the classical chromatic polyno-mial of a graph (such as Whitney's formula and the product formula) could onlybe generalised using the new concepts of colouring; indeed, Whitney's formulacannot be generalised even in the classical case (corresponding to the umbra �) ifwe use ordinary colourings of partition systems (in other words, the polynomiale��(P;x)), as Corollary 2.4.2 shows.We now de�ne the type of the objects considered above. For every � in �(P),we de�ne its type ��(�) := (�1)s(�)�k11 �k22 : : : , where s(�) is j� nAt(P) nmax(�)j,and ki is the number of elements of (�;�) which cover precisely i + 1 elements.Let us note that ��(�(
)) = ���(
) : (2.1.2)We de�ne the type of a factorised colouring and of a colouring forest by ��(
; f) :=��(
) and ��(�; f) := ��(�). Both of these de�nitions are compatible with thede�nition of the type of an ordinary colouring.Example 2.1.3 Let us consider vertices [4], and the partition systemsQ := f ;; f1g; f2g; f3g; f4g; f1; 2g; f3; 4g; f1; 2; 3g g and P := Q :There are six trees in �(P). They are listed below, and their types are �3, ��1�2,��1�2, �31, ��1�2, and �31, respectively. All these trees have only one chain ofpartitions associated with them, except for the fourth one, which has the followingthree such chains with types �31, �31, and ��31 , respectively:b0 < f f1; 2g; f3g; f4g g < f f1; 2g; f3; 4g g < f f1; 2; 3; 4g g ;b0 < f f1g; f2g; f3; 4g g < f f1; 2g; f3; 4g g < f f1; 2; 3; 4g g ;b0 < f f1; 2g; f3; 4g g < f f1; 2; 3; 4g g :
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{3}

{2} {3} {4}{1} {1} {1}

{1}{1}{1}

{2} {2}

{2}{2}{2}

{3} {3}

{3}{3}

{4} {4}

{4}{4}{4}

Clearly, the trees and chains discussed above can only be paired with monochro-matic colourings of P in order to obtain colouring forests and factorised colour-ings.Proposition 2.1.4 Given a forest � in �(P), the sum of types of all chains 
with �(
) = � coincides with the type of �.The proposition follows from (2.1.2) and slightly modi�ed versions of twolemmas in [17]. For the sake of completeness, we state these lemmas here, andde�ne the concepts involved. For any �nite poset P , a �ltration F of P is a chainf; = I0 � I1 � : : : � Ik = Pg of lower order ideals such that Ij n Ij�1 is anantichain for all 1 � j � k. The number k is the length of the �ltration, and isdenoted by l(F ). We now assume that the forest � is such that max(�) 6= b0�(P),and denote by C the set of chains 
 associated with �.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 64Lemma 2.1.5 There is a length-preserving bijection between C and the set of�ltrations of the poset (� nAt(P) nmax(�)) [ fV (P)g, ordered by inclusion.Lemma 2.1.6 For any �nite poset P , we have thatXF (�1)l(F )�1 = (�1)jP j�1 ;where the summation is over all �ltrations F of P .2.2 The Umbral Chromatic PolynomialIn this section we de�ne the umbral chromatic polynomial of the partition systemP as a polynomial enumerating factorised colourings and colouring forests bytype.Let Q be another partition system with V (Q) = V (P) and At(Q) = At(P).Given a partition � 2 b�(P), we de�ne its M�obius type ��Q(�) with respect to Qby X� ���(Qj�)(b0; �) ��(�; �) ;where the summation ranges over �(Qj�). We remark that whenever � 6� Q,then ��Q(�) = ����(Qj�)[f�g(b0; �); otherwise, ��Q(�) is 1 if � is contained in At(Q),and 0 if it is not.In fact, the M�obius type can be viewed as a map from b�(P) to the ring ��.We shall refer to any such map w into a commutative ring as a weight, and saythat w is multiplicative if w(�1 [ �2) = w(�1)w(�2) for any �1; �2 2 b�(P) withdisjoint vertex sets.We may now de�ne the umbral chromatic polynomial.Proposition 2.2.1 There exists a polynomial in �jAt(P)j[x] with the property thatafter umbral substitution by m�, it enumerates by type the factorised colourings



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 65and the colouring forests of P with at most m colours. This polynomial can beexpressed in interpolated form as follows:��(P;x) :=X� ��P(�)B�j�j(x) ;where the summation ranges over the poset �(P) of divisions by P.Proof. Let f be a colouring of P whose kernel ker(f) has n blocks. Accordingto (1.7.13), X
 ��(
; f) = ��P(ker(f)) ;where the summation ranges over all chains 
 for which (
; f) is a factorisedcolouring. Since there are m(m� 1) : : : (m� n+1) colourings of P with at mostm colours having the same kernel as f , the proposition follows by using (1.1.7).The fact that the polynomial ��(P;x) also enumerates colouring forests of P bytype follows from Proposition 2.1.4. 2We call ��(P;x) the umbral chromatic polynomial of P. Clearly, if C is asimplicial complex then ��C (�) = ��(�), so ��(C;x) coincides with the polynomiale��(C;x) de�ned in (1.8.1). On the other hand, we can obtain various types ofchromatic polynomials of the partition system P from ��(P;x) by replacing theumbra � with another umbra. In particular, we obtain �(P;x) and ��(P;x),which we will call the classical chromatic polynomial of P, and its homogenisedversion. After appropriate evaluation, the latter enumerates factorised colouringsand colouring forests of P by the type ��.We now present a computational result on M�obius types. Further informationon M�obius types will be given in Theorem 2.3.5 below.Proposition 2.2.21. The weight ��Q is multiplicative.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 662. If � 2 b�(P), and �(Qj�) has a unique maximal element b1 and is non-trivial, then ��Q(�) = 0.3. If � 2 b�(P), then ��P(�) = ��Pc(�).Proof. (1) Let �1; �2 2 b�(P) such that V (�1)\ V (�2) = ;, and denote �1 [ �2by �. Write D1 for �(Qj�1), and D2 for �(Qj�2). Clearly, the poset �(Qj�) isisomorphic to D1 �D2. Using Proposition 1.7.14, we deduce��Q(�) = X(�1;�2)2D1�D2 ��D1�D2(b0D1 [ b0D2 ; �1 [ �2) ��(�1 [ �2; �1 [ �2)=  X�12D1 ��D1(b0D1 ; �1) ��(�1; �1)!  X�22D2 ��D2(b0D2; �2) ��(�2; �2)!= ��Q(�1) ��Q(�2) :(2) We may assume that � 62 b�(Q), since otherwise ��Q(�) = 0. We can paireach chain fb0 < �1 < : : : < �n < �g in �(Qj�) [ f�g for which �n 6= b1 with thechain fb0 < �1 < : : : < �n < b1 < �g. The contribution to ��Q(�) of each pair is 0,whence ��Q(�) = 0.(3) We need the concept of coclosure operator on a poset P (see e.g. [38]),which is a function x 7! x from P into itself such that: (1) x � x, (2) x = x,and (3) x � y implies x � y, for all x; y 2 P . An element x of P is closed ifx = x. Consider the poset P := �(Pj�)[f�g, and de�ne the coclosure operator� 7! � by � = �, and by letting the partition � be obtained from � by splittingevery block B into the sets of vertices of the join-connected components of PjBwhenever � 6= �. Obviously, the subposet of closed elements isQ = �(Pcj�)[f�g.According to [44], we have that ��Q(b0; �) =P��P (�; �), where the summation isover all � such that � = b0 (we have used the fact that ��P (�; �) = uj�j�j�j �P (�; �)).But whenever � = b0 and U 2 �, we have U 2 P and PjU = Bool(At(PjU)).Thus U 2 P, which is possible if and only if U 2 At(P); hence � = b0, whichmeans that ��Q(b0; �) = ��P (b0; �). 2



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 67According to Proposition 2.2.2 (3), we can de�ne the classical chromatic poly-nomial of P and its homogenised version in terms of Pc only. This is useful becauseP may be much larger than Pc, whence a summation ranging over �(P) maycontain many more terms than one ranging over �(Pc). Moreover, we shall seein x2.4 that it is possible to state the analogue of Whitney's result (1.8.2) for��(P;x) in terms of Pc, although we were only able to state it in terms of P for��(P;x).Let C be a simplicial complex. We conclude this section with a referenceto the symmetric function X(C;x) de�ned in (1.8.1), which reduces to Stanley'ssymmetric function generalisation of the chromatic polynomial of a graph H whenC = I(H) (see [51]). Following Stanley, we observe thatX(C;x) = X�2�(C) e	I(�) : (2.2.3)Let us consider the Q-linear map from the space SymQ� (x) of symmetric functionswith rational coe�cients to (�Q)�[x] speci�ed bye	I(�) 7! ��(�)B�j�j(x) ; (2.2.4)where � is a partition of [n]. Clearly, this map preserves the gradings, is injective,but it is neither surjective, nor an algebra map. Comparing (2.2.3) with theformula for the umbral chromatic polynomial in Proposition 2.2.1, we easily seethat the above map sends X(C;x) to ��(C;x).2.3 The Characteristic Type PolynomialIn x2.4 we shall study the properties of the umbral chromatic polynomial byrelating it to the characteristic type polynomial de�ned in (1.8.1); so in thissection we study the latter.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 68We start by presenting a deletion/contraction identity which enables us tocompute c�(P;x) recursively. We use it as our main tool in proofs by induction,such as those of Theorem 2.3.5 and Theorem 2.3.6.Theorem 2.3.1 If U 2 Non(P) is arbitrary, thenc�(P;x) = c�(P n U ;x) + ���(PjU)(b0; fUg) c�(P=U ;x) ;moreover, the identity still holds if we replace contraction by strong contraction.Proof. For simplicity, we write P , Q, R, and S for �(P), �(P nU), �(P=U),and �(PjU) respectively.Consider an arbitrary partition � 2 P , for which three possible cases arise.Firstly, if no block of � contains U , then ��P (b0P ; �) = ��Q(b0P ; �). Secondly, if oneblock of � is U itself, then��P (b0P ; �) = ��S(b0S ;b1S) ��P (b0R; �) = ��P (b0P ;b0R) ��P (b0R; �) ; (2.3.2)as follows from the poset isomorphisms [b0P ; �] �= [b0S;b1S ] � [b0R; �] �= [b0P ;b0R] �[b0R; �] by using Proposition 1.7.14. Thirdly, if one block of � strictly contains U ,then by Proposition 1.7.15��Q(b0P ; �) =X (�1)k��P (b0P ; �1) : : : ��P (�k; �) ; (2.3.3)where �1 < �2 < : : : < �k all have U as a block, and �k < �. Using (2.3.2), wededuce that the terms of the form ��P (b0P ; �1) ��P (�1; �) with �1 6= b0R cancel withterms ��P (b0P ;b0R) ��P (b0R; �1) ��P (�1; �), and so on. Hence, (2.3.3) becomes��Q(b0P ; �) = ��P (b0P ; �)� ��S(b0S;b1S) ��P (b0R; �) : (2.3.4)The required formula follows by considering each of these cases in turn.The last statement of the theorem follows by noting thatc�(P;x) = c�(Sing(P);x) :



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 692We may now give another method for computing ��P(�), where � 2 �(P),which may also be regarded as a complementation formula for the M�obius typefunction. It expresses ��P(�) = ����(Pj�)[f�g(b0; �) in terms of the M�obius typefunction of the poset �(Pj�), and so is valuable when this poset is smaller than�(Pj�) [ f�g.Theorem 2.3.5 Let P be an arbitrary partition system; then for every partition� 2 �(P), we have that ��P(�) = ���(P)(b0; �) :Proof. Write V for V (P). According to Proposition 1.7.14 and Proposition2.2.2 (1), we may assume that � = fV g, which means that V 2 P. We useinduction with respect to jNon(P)j, which starts at 1 (we assume that jAt(P)j >1). If jNon(P)j > 1, we choose U 2 Non(P) n fV g, set Q := P [ fU; V g, andobserve that P n U = P [ fUg, that PjU = PjU , and that P=U = (P [ fUg)=U .We then employ the inductive hypothesis, applying (2.3.4) twice in the process;for clarity, it helps to set !�P(�) := ���(P)(b0; �) for any � 2 �(P), thereby yielding!�P(fV g) = !�PnU(fV g) + !�PjU(fUg)!�P=U (fV g)= ��PnU(fV g) + ��PjU(fUg) ��P=U(fV g)= �!�Q(fV g) + !�QjU (fUg)!�Q=U (fV g)= �!�P[fV g(fV g) = ��P(fV g) ;as sought. 2We now apply Theorem 2.3.1 to prove a complementation formula for the char-acteristic type polynomial, remarking that similar such formulae were obtained ina very general context for the matching polynomial in [56]. Our formula expressesthe characteristic type polynomial of a partition systems Q in terms of divisionsby the complement of Q in a partition system containing it.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 70Theorem 2.3.6 If P and Q are partition systems such that V (P) = V (Q),At(P) = At(Q), and Q � P, thenc�(Q;x) =X� ��Q(�) c�(P=�;x) ;where the summation is taken over the poset of divisions by {PQ.Proof. Let us denote {PQ by R. We will prove our theorem by inductionon jNon(R)j, noting that the induction starts at 0 because then Q = P, whilst�(R) = fAt(P)g, ��P(At(P)) = 1, and P=At(P) = P.If Non(R) 6= ;, we choose W 2 Non(R) to be minimal with respect to inclu-sion, and let W := V (P) nW . Then the inductive hypothesis yieldsc�(Q;x) =X� ��Q(�) c�((P nW )=�;x) ; (2.3.7)where the summation is taken over �(R nW ). Given � 2 �(R nW ), we have(P nW )=� = 8<: (P=�) nW if � � fW;WgP=� otherwise .Consider a partition � 2 �(R nW ) satisfying � � fW;Wg. The choice of Wimplies that �jW = At(P)jW ; hence (P=�)jW = PjW . Combining this fact withTheorem 2.3.1, we deducec�((P=�) nW ;x) = c�(P=�;x)� ���(PjW )(b0; fWg) c�((P=�)=W ;x) :(2.3.8)Now �=W 2 �(R) and (P=�)=W = P=(�=W ). Recalling the choice of W again,we observe that ��Q(�jW ) = 1 and ���(PjW )(b0; fWg) = ���((QjW )[fWg)(b0; fWg) =���Q(fWg). Using these facts, and applying Proposition 2.2.2 (1) twice, we obtain��Q(�) ���(PjW )(b0; fWg) = ���Q(�jW ) ��Q(�jW ) ��Q(fWg) = ���Q(�=W ) :(2.3.9)



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 71According to (2.3.8) and (2.3.9), we may replace each term in the right-hand sideof (2.3.7) corresponding to a partition � � fW;Wg with��Q(�) c�(P=�;x) + ��Q(�=W ) c�(P=(�=W );x) :It remains only to de�ne a bijection between the sets f� 2 �(R n W ) : � �fW;Wgg and f� 2 �(R) : W 2 �g; we take � 7! �=W , with inverse � 7!(At(P)jW ) [ (�jW ), thereby concluding the induction. 22.4 Properties of the Umbral Chromatic Poly-nomialIn this section, we begin by establishing our promised relation between the umbralchromatic polynomial and the characteristic type polynomial, generalising themain result of [40] in passing, and enabling us to investigate further propertiesof the former. All the results in this section follow directly from those in theprevious one, and mainly from Theorem 2.3.6.Proposition 2.4.1 For any partition system P, we have��(P;x) = c�(P;x) :Proof. This follows from Theorem 2.3.6 by considering the partition systemsP � KV (P), and noting that c�(KV (P)=�;x) = c�(Kj�j;x) = B�j�j(x), according to(1.8.4). The right-hand side of the identity in Theorem 2.3.6 is precisely ��(P;x).2 Proposition 2.4.1 reduces to Whitney's formula (1.8.2) after replacing theumbra � with �, as implied by the proof of Corollary 2.4.2. In fact, it reduces toa generalisation of (1.8.2) to a formula for the classical chromatic polynomial ofa partition system (or its homogenised version).



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 72Corollary 2.4.2 For any partition system P, we have��(P;x) = c�(Pc;x) :Proof. Let us de�ne the coclosure operator (cf. the proof of Proposition 2.2.2(3)) � 7! � on �(P), where the partition � is obtained from � by splitting everyblock B into the sets of vertices of the join-connected components of PjB. Usinga similar argument to the one in the proof of Proposition 2.2.2 (3), we obtain���(P)(b0; �) = 8<: ���(Pc)(b0; �) if � 2 Pc0 otherwise .Hence c�(P;x) = c�(Pc;x), so we may now apply Proposition 2.4.1. 2We cannot use the map speci�ed by (2.2.4) to transform the formula in Propo-sition 2.4.1 into a formula for the symmetric function X(C;x) associated with thesimplicial complex C, because this map is not surjective. However, there is ananalogue of Proposition 2.4.1 for X(C;x), which generalises Theorem 2.6 in [51],and which provides a di�erent generalisation of Whitney's formula. We presentthese results below.Proposition 2.4.3 Given a simplicial complex C, we haveX(C;x) = X�2�(Cc)��(Cc)(b0; �)	 I(�) :Proof. We only have to adapt Stanley's proof to the context of simplicialcomplexes. Given � in �(Cc), we de�neX� :=Xf xf ; (2.4.4)where the summation ranges over all functions f from V (C) to N satisfyingker(f) � � � ker(f); here we have used the same coclosure operator as in theproof of Corollary 2.4.2. Given any f : V (C)! N, there is a unique � in �(Cc),



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 73namely ker(f), such that f is one of the maps appearing in the sum (2.4.4). Itfollows that for any � in �(Cc), we have	 I(�) = X���2�(Cc)X� :By M�obius inversion, X� = X���2�(Cc)	 I(�) ��(Cc)(�; �) :But Xb0 = X(C;x) (note that it is essential for C to be a simplicial complex), andthe proof follows. 2Proposition 2.4.5 We have��(C;x) = X�2�(Cc)��(Cc)(b0; �)P �I(�)(x) ;whereP �I(�)(x) :=X��� ��(�; �)xj�j ; ��(�; �) := X����� ��(b0; �)���(V )(�; �) ;and V := V (C). In particular, the umbral chromatic polynomial of a graph canbe expressed in terms of the lattice of contractions of that graph.Proof. We apply the map speci�ed by (2.2.4) to the formula in Proposition2.4.3. To this end, we compute the images of the power sum symmetric functionsunder this map. According to Theorem 1 in [12], we have	 I(�) =X��� e	I(�) :Combining this result with (1.8.4), we �nd that the map speci�ed by (2.2.4) sends	 I(�) toX��� ��(�)B�j�j(x) =X��� ��(b0; �) X��� ���(V )(�; �)xj�j!=X��� xj�j X����� ��(b0; �)���(V )(�; �)! = P �I(�)(x) :



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 742 Let us note that ��(�; �) = ��(�) and ��(�; �) = 0 unless � = �, because wecan pair the chains from � to � contributing to � �(�; �) such that the contributionof each pair is 0. Hence, after replacing � by �, Proposition 2.4.5 reduces to aspecial case of Corollary 2.4.2, and to Whitney's formula if C is the independencecomplex of a graph.We can immediately deduce from Theorem 2.3.5 another formula relating theumbral chromatic polynomial to the characteristic type polynomial of a partitionsystem. To state our formula in a nice way, we recall from [31] the umbralnotation, according to which we write p(B�(x)) for the image of the polynomialp(x) under the ��-linear operator on ��[x] mapping xn to B�n(x).Proposition 2.4.6 For any partition system P, we have��(P;x) = c�(P ;B�(x)) :A deletion/contraction procedure for the umbral chromatic polynomial followseasily from Proposition 2.4.1.Proposition 2.4.7 Given any set U 2 Non(P), we have��(P;x) = ��(P n U ;x) + ��P(fUg) ��(P=U ;x) ;moreover, the identity still holds if we replace contraction by strong contraction.Proof. Apply Proposition 2.4.1, Theorem 2.3.1, and the fact that P n U =P [ fUg and P=U = (P [ fUg)=U . 2Proposition 2.4.7 provides an analogue of the well-known addition-contrac-tion procedure for graphs (see [37]). There is no known deletion-contractionformula for the umbral chromatic polynomial of a graph H, which we could use toobtain a similar formula for Stanley's symmetric function XH . Not even X(C;x)with C a simplicial complex has an obvious deletion-contraction formula which



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 75would only involve simplicial complexes (deducible from Proposition 2.4.7, forinstance). One way around this problem is to allow arbitrary partition systems,in which case (2.2.3) still holds, with summation now ranging over �(P). Since�(P) is the disjoint union of �(P nnU) and �(P=U) for arbitrary U in Non(P),we have X(P;x) = X(P nnU ;x) +X(P=U ;x) : (2.4.8)As was observed in [41], formula (1.8.3) does not extend in a straightforwardway to the umbral chromatic polynomial of a graph, although such a generalisa-tion was attempted in [37]. We o�er here a superior version, as a special case offormula (2.4.10) for the umbral chromatic polynomial of a join of two partitionsystems (which corresponds to the disjoint union of graphs, after identi�cationvia the independence complex). Simultaneously, we replace � by �, and showthat (1.8.3) does generalise to the classical chromatic polynomial for partitionsystems (in homogeneous form).Proposition 2.4.9 For arbitrary partition systems P1 and P2, we have��(P1 _ P2;x) = ��(P1;x)��(P2;x)�X� ��P1�P2(�)��((P1 _ P2)=�;x) ;(2.4.10)where the summation is taken over non-b0 divisions by the complement of thedisjoint union P1 � P2 in P1 � P2. After replacing � by �, formula (2.4.10)reduces to ��(P1 _ P2;x) = ��(P1;x)��(P2;x) : (2.4.11)Proof. According to Proposition 2.4.1 and (1.8.5), we have��(P1 _ P2;x) = c�(P1 �P2;x) and (2.4.12)��(P1;x) ��(P2;x) = c�(P1;x) c�(P2;x) = c�(P1 � P2;x) : (2.4.13)



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 76Substituting P1 � P2 for Q and P1 �P2 for P in Theorem 2.3.6, we getc�(P1 � P2;x) =X� ��P1�P2(�) c�((P1 �P2)=�;x) ;where the summation is taken over divisions by the complement of P1 � P2in P1 � P2. Identity (2.4.10) follows from the above relations by noting that(P1 �P2)=� = (P1 _ P2)=�, and then applying Proposition 2.4.1 once more.We now deduce (2.4.11) from (2.4.10). Given a non-b0 division � by the com-plement of P1 � P2 in P1 � P2, we will show that ��P1�P2(�) = 0. According toProposition 2.2.2 (1), we have��P1�P2(�) = YU2� ��P1�P2(fUg) :Clearly, every block U of � is either an atom of P1�P2 or intersects both V (P1) andV (P2). Since � 6= b0, we may �nd a block U = U1[U2, where Ui 2 Bool(Pi) n f;gfor i = 1; 2. We cannot have U1 2 P1 and U2 2 P2 because U 2 Non(P1 _ P2);hence, we may assume that U1 2 Non(P1), for instance. We now consider allchains contributing to ��P1�P2(fUg), and pair every chainfb0 < �1 < : : : < �k < fUggfor which U1 62 �k with the chainfb0 < �1 < : : : < �k < fU1g [ (�kjU2) < fUgg :The contribution of each pair is 0, whence ��P1�P2(fUg) = 0.2We may apply Proposition 2.4.9 to recover a more systematic version of aresult of [37]. Consider graphs H1 and H2, and denote their disjoint union byH1 tH2 and I(Hi) by A(Hi). For every non-b0 division � by the complement ofA(H1)�A(H2) in A(H1 tH2), construct the graph M�(H1;H2) with vertices theblocks of �, and with edges joining either a non-singleton block to another block,or two singleton blocks if the corresponding vertices of H1 tH2 are adjacent.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 77Corollary 2.4.14 The umbral chromatic polynomial of H1 tH2 is given by��(H1 tH2;x) = ��(H1;x) ��(H2;x)�X� ��A(H1)�A(H2)(�) ��(M�(H1;H2);x) ;where the summation is taken over all divisions � speci�ed in the construction.Proof. The stated formula follows from (2.4.10) by replacing Pi with I(Hi),and observing thatI(H1 tH2) = I(H1) _ I(H2) ; A(H1 tH2) = A(H1)�A(H2) ;and Sing (I(H1 tH2)=�) = I(M�(H1;H2))for any division � of the stated form. 2We recall that in [37] the divisions by A(H) were called the admissible parti-tions of V (H), and those by the appropriate � were labelled as mixed partitionsof V (H1 tH2).We have seen that the umbral chromatic polynomial does not behave wellwith respect to the join of partition systems. However, according to the followingresult, the umbral chromatic polynomial is multiplicative with respect to theoperation (multiplication) � de�ned in x1.5. Note that neither the family ofgraphs (identi�ed with their independence complexes), nor the family of simplicialcomplexes are closed with respect to this operation. Let us also note that P1 _P2 � P1 �P2.Proposition 2.4.15 We have that��(P1 �P2;x) = ��(P1;x)��(P2;x) :Proof. This result is an immediate consequence of Proposition 2.4.1 and (1.8.5).2 This product formula for the the umbral chromatic polynomial of partitionsystems clearly reduces to (2.4.11), after replacing the umbra � with �.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 782.5 Polynomial Invariants of Set Systems withAutomorphism GroupThroughout this section, we let (S; G) be a �xed set system with automorphismgroup (recall that S must be a partition system with singleton atoms). We intendto give a combinatorial interpretation for the normalised polynomial ��(S;x)=jGjin (�Q)�[x]. It will turn out that all such polynomials (of which the dividedconjugate Bell polynomials �bn(x) are a special case) lie in HjV (S)jfxg. Therefore,these polynomials will be used in Chapter 4 for constructing combinatorial modelsfor divided power Hopf algebras and covariant bialgebras of formal group laws.It is important to understand that whenever the universal ring H� is replacedby a ring with torsion, we can no longer embed the corresponding divided poweralgebra in its rationalisation. Thus we must replace the polynomials B�n(x)=n! bypurely formal quotients, and the polynomials ��(S;x)=jGj by linear combinationsof the formal quotients; it is these formal quotients and linear combinations ofthem that we realise combinatorially by considering set systems equipped withan automorphism group.For our promised combinatorial interpretation, we need the additional conceptof ordered colouring; we note that the corresponding concept for graphs di�ersfrom the one already appearing in the literature. For us, an ordered colouringof S is a pair (f; !), where f is a colouring of S, ! is a bijection from [jV (S)j]to V (S), and f � ! is non-decreasing. We can interpret an ordered colouringas proceeding step-by-step, so that the colours are used in increasing order. Anordered factorised colouring of S is a triple (
; f; !), where (f; !) is an orderedcolouring, and (
; f) is a factorised colouring for which !�1(U) is an interval (inN) for any block U of a partition in the chain 
. The type of such a colouringis de�ned by � b(
; f; !) := � b(
; f) 2 H�. All the ordered factorised colourings



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 79of a simplicial complex are, of course, ordered colourings. We can de�ne orderedcolouring forests in a similar way, and we can view them as colourings based onforests of plane trees.For any factorised colouring (
; f) with ��(
; f) = ��k11 �k22 : : : , there are(2!)k1(3!)k2 : : : ways of choosing ! such that (
; f; !) is ordered. The types ofall these colourings are equal, and their sum is ��(
; f). Hence, when we regard��(S ;m�) as an element of H�, it enumerates by type the ordered factorisedcolourings of S with at most m colours. The group G acts on these colouringsby (g; (
; f; !)) 7! (g
; f � g�1; g � !), and each orbit has precisely jGj elements.Therefore, ��(S ;m�)=jGj 2 H� enumerates by type � b the orbits of G on the setof ordered factorised colourings of S with at most m colours. It also enumeratesorbits on the set of ordered colouring forests.We may give an alternative statement of these facts in terms of the orbits ofG simply on the set of factorised colourings. Given such a colouring (
; f) with��(
; f) = ��k11 �k22 : : : , there are(2!)k1(3!)k2 : : : jG(
; f)j=jGj = (2!)k1(3!)k2 : : : =jG(
;f)jorbits of G on the set of ordered factorised colourings which map to G(
; f) viathe map G(
; f; !) 7! G(
; f). Hence, ��(S ;m�)=jGj enumerates the orbits of Gon the set of factorised colourings of S with at most m colours, each orbit G(
; f)giving a contribution of ��(
; f)=jG(
;f)j. If 
 = fb0 < �g, then G(
;f) = Gj�; if,in addition, Gj� is the direct product of symmetric groups acting on the blocksof �, then the contribution of the orbit G(
; f) to ��(S ;m�)=jGj is � b(
; f). Weremark that since ��(S ;m�)=jGj lies inH� for allm, the polynomial ��(S;x)=jGjmust lie in HjV (S)jh�bi (x)i, which is the same as HjV (S)jfxg.Example 2.5.1 LetS := f;; f1g; f2g; f3g; f4g; f1; 2g; f2; 3g; f1; 3g; f1; 4g; f2; 4g; f3; 4g; f1; 2; 3gg ;



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 80and G := h(1; 2); (2; 3)i �= �3. We have ��(S;x)=jGj = (B�4 (x)+6�1B�3 (x)+(�2+3�21)B�2 (x))=6. Hence, ��(S; 2�)=jGj = (2�2 + 6�21)=6 = 2b2 + 4b21. A transversalof the orbits of G on the set of ordered colourings of S with at most 2 colours isrepresented byf(1112; 1234); (2221; 4123); (1122; 1234); (1122; 2143); (2211; 3412); (2211; 4321)g ;where we expressed the map ! by the word !(1)!(2)!(3)!(4), and f by f(1)f(2)f(3)f(4).Our next goal is to give a combinatorial interpretation for the coe�cientsof the polynomial ��(S;x)=jGj with respect to the bases f�bi (x) : i � 0g andfxi=i! : i � 0g of H�fxg. Our interpretation uses preferential arrangements ofV (S).Lemma 2.5.2 Given a sequence of polynomials pn(x) in (�Q)�[x], a map w :�(S) ! (�Q)�, which is constant on the orbits of G on �(S), and an arbitrarytransversal T of A(S)=G, we have thatX(�;!)2T w(�)jGj�j pj�j(x)j�j! = 1jGj X�2�(S)w(�) pj�j(x) :Proof. It su�ces to observe thatX(�;!)2T w(�)jGj�j pj�j(x)j�j! = 1jGj X(�;!)2T jG(�; !)jw(�) pj�j(x)j�j!= 1jGj X(�;!)2A(S)w(�) pj�j(x)j�j!= 1jGj X�2�(S)w(�) pj�j(x) :2 Now consider an arbitrary poset P of partitions of V , assume that P containsthe partition into singletons, and let G be a permutation group on V which alsopermutes P (via the obvious action on �(V )). Consider the poset A(P ) of all



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 81preferential arrangements (�; !) of V with � 2 P . Let bA(P ) := A(P ) t fb0g.Clearly, A(�(S)) = A(S), and we denote A(S)t fb0g by bA(S). By insisting thatG(b0) = fb0g, we obtain a poset action of G on bA(P ), and hence an induced posetstructure on the set of orbits bA(P )=G.Consider the incidence algebra over H� of the poset bA(P )=G, and the element�b in this algebra which is de�ned by �b(G(�; !0); G(�; !)) := �b(�; �), �b(b0;b0) :=1, and �b(b0; G(�; !)) :=8<: �1 if � = b0P0 otherwise .It is easy to see that the convolution inverse of �b exists; it will be denoted by�bbA(P )=G , or simply �b when the context is clear.Theorem 2.5.3 For any (�; !) 2 A(P ), we have that��P (b0; �)jGj�j = �bbA(P )=G(b0; G(�; !)) ;so the former lies in H�.Proof. We proceed by induction on the maximum length of chains in C(b0; �),the case 0 being clear. For � 6= b0, we have��P (b0; �)jGj�j = � 1jGj�j Xb0��<� ��P (b0; �) ��(�; �)= � 1jGj�j Xb0��<� jGj�j�b(b0; G(�; !�)) ��(�; �)= � 1jGj�j X(�0 ;!0)<(�;!) jGj�0j�b(b0; G(�0; !0)) �b(G(�0; !0); G(�; !))= � X(�00;!00)2T �b(b0; G(�00; !00)) �b(G(�00; !00); G(�; !)) = �b(b0; G(�; !)) ;where !� gives an ordering of the blocks of � such that (�; !�) < (�; !), and Tis a transversal of the set of orbits fO 2 A(P )=G : O < G(�; !)g. The �rst and



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 82the last equality follow from the de�nition of �� and �b as convolution inverses.The second follows by induction, and the third is a consequence of the fact that��(�0; �) = X!0: (�0;!0)<(�;!) �b(�0; �) :For each (�0; !0) < (�; !) we have j(Gj�)(�0; !0)j = jGj�j=jGj�0j; therefore, thefourth equality follows from showing that the map from the set of orbits of Gj�on f(�0; !0) : (�0; !0) < (�; !)g to the set fO 2 A(P )=G : O < G(�; !)g, givenby (Gj�)(�0; !0) 7! G(�0; !0), is a bijection. Injectivity follows from the fact that(�01; !01); (�02; !02) < (�; !) and g(�01; !01) = (�02; !02) imply g 2 Gj�. Surjectivityfollows from the chain of implications: G(�00; !00) < G(�; !) ) g(�00; !00) < (�; !)for some g 2 G ) (Gj�)(g(�00; !00)) 7! G(�00; !00) . 2Given � 2 �(S), we de�ne an analogue of the M�obius type by�bS;G(�) := ��b( bA(S)[G(�;!))=G(b0; G(�; !)) ;where ! gives an arbitrary ordering of the blocks of �. Lemma 2.5.2 and Theorem2.5.3 immediately imply the following result.Corollary 2.5.4 If T is an arbitrary transversal of A(S)=G, then��(S;x)jGj = X(�;!)2T �bS ;G(�)�bj�j(x) and (2.5.5)c�(S;x)jGj = X(�;!)2T �bbA(S)=G(b0; G(�; !)) xj�jj�j! (2.5.6)in HjV (S)jfxg .We can now combine (2.5.6) with Proposition 2.4.1 in order to express the poly-nomial ��(S;x)=jGj in terms of divided powers of x. On the other hand, formula(2.5.6) provides the promised generalisation of (1.7.9). Indeed, the latter can berecovered simply by taking S = Kn, G = �n, and using the fact that the posetA(Kn)=�n is isomorphic to �(In) . Hence, we have reproved (1.7.9), which wenow state in the following more explicit form.



CHAPTER 2. INVARIANTS OF PARTITION SYSTEMS 83Corollary 2.5.7 We have�bn(x) = X�2�(In)�b�(In)(b0; �) xj�jj�j! :Since the Boolean algebra In, which is isomorphic to (Kn�1;�), is muchsmaller than the lattice �n = �(Kn) for large n, the above corollary provides anexpression for the conjugate Bell polynomials with less terms than (1.8.4).



Chapter 3Some Applications of IncidenceHopf Algebras to Formal GroupTheory and Algebraic TopologyIn this chapter we present applications of the combinatorial framework in x1.7and of our results in Chapter 2 to formal group theory and algebraic topology. Itturns out that certain objects in these areas have a rich combinatorial structure,which can be expressed in terms of incidence Hopf algebras of partition lattices.The importance of this new point of view is illustrated with various computationalexamples. More applications to algebraic topology, which also involve symmetricfunctions, appear in Chapter 6. Since most of this chapter is devoted to topo-logical applications, we prefer to use here the classical topological notation forthose topological structures which have already been introduced in Chapter 1 inanother guise; the relevant isomorphisms are explained in x1.4.
84



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 853.1 Applications to the Universal Formal GroupLawLet us recall from x1.2 the universal Hurwitz group law (over ��) and the universalformal group law (over L�)F �(X;Y ) 2 �1ffX;Y gg and f b(X;Y ) 2 L1[[X;Y ]] :We start by o�ering a combinatorial interpretation for the coe�cient F �;ln1;::: ;nkof kYi=1 Xniini! in 1l!  kXi=1 �Xi!l :Here, and throughout this section, ni are positive integers, n := n1 + : : : + nk,and � is the partition of [n] with blocks [n1], n1 + [n2], : : : , n� nk + [nk].Proposition 3.1.1 The element F �;ln1;::: ;nk in �� may be expressed asF �;ln1;::: ;nk =X� ��Kn1;::: ;nk (�) ; (3.1.2)where the summation ranges over those divisions by the complement of Kn1;::: ;nkwhich have cardinality l. In particular,F �n;l = ��Kn;l(f[n+ l]g) ; (3.1.3)and F �n1 ;::: ;nk = X���2�n ��(b0; �) ��(�;b1) : (3.1.4)Proof. Using the iterated version of (1.2.9), (1.8.4), Proposition 1.8.5, andProposition 2.4.1 successively, we haveF �;ln1;::: ;nk = h�(D)l=l! j kYi=1 B�ni(x)i = h�(D)l=l! j kYi=1 c�(Kni ;x)i= h�(D)l=l! j c�(Kn1;::: ;nk ;x)i = h�(D)l=l! j ��(Kn1;::: ;nk ;x)i :



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 86This establishes 3.1.2, directly from the de�nition of ��(Kn1 ;::: ;nk ;x). 2We are going to present a similar expression (3.1.9) for f bn1;::: ;nk . Several cancel-lations occur in (3.1.4) and (3.1.9). However, we are able to give a combinatorialinterpretation for the coe�cients of the monomials in F �n1;::: ;nk and f bn1;::: ;nk interms of trees, by using the Haiman-Schmitt form of Lagrange inversion [17]. Todo this, we need to choose other polynomial generators for �� and H�, namely�1; �2; : : : , and m1;m2; : : : , respectively. We consider two kinds of rooted treeswith n leaves, namely rooted trees with leaves labelled 1; 2; : : : ; n, and rootedplane trees with a k-colouring of the leaves of type (n1; : : : ; nk) (that is a colour-ing with colours 1; : : : ; k such that exactly ni leaves are coloured i). We alsoassume that no vertex has only one descendant. The number of vertices of a treeT is denoted by jT j. A vertex of a tree is called peripheral if all its descendantsare leaves; the set of descendants of a peripheral vertex will be called a peripheralclass. The type ��(T 0) of a tree T 0 of the �rst kind is de�ned as �i11 �i22 : : : , whereij is the number of vertices of T 0 with j + 1 descendants. The type �m(T 00) of atree T 00 of the second kind is de�ned similarly, as a monomial in m1;m2; : : : . Wecan now state the combinatorial interpretation mentioned earlier.Theorem 3.1.5 We have thatF �n1;::: ;nk =XT 0 (�1)jT 0j�n ��(T 0) ; (3.1.6)f bn1;::: ;nk =XT 00 (�1)jT 00j�n �m(T 00) ; (3.1.7)the �rst sum ranges over those trees T 0 of the �rst kind for which none of thesets of labels corresponding to a peripheral class are contained in a block of thepartition �; the second sum ranges over those trees of the second kind for whichno peripheral class is monochromatic. Furthermore, we have thatF �n1;::: ;nk =Xk�1(�1)k eBn+k�1;k ; (3.1.8)



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 87here eBi;k := P� ��(�), with summation ranging over those partitions � 2 �i;kwith no singleton blocks, for which none of the blocks are contained in a block ofthe partition �.Proof. We denote by Li the set of rooted trees with i leaves labelled1; 2; : : : ; i; for T 2 Li, we denote by p(T ) the partition of [i] whose blocks areeither peripheral classes or singletons. We write k�k for the number of non-singleton blocks of the partition �. We also de�ne a new partial order � on �nby insisting that � � � if and only if � is obtained from � by amalgamating onlysingleton blocks. With these notations, and using the expression for Lagrangeinversion in terms of rooted leaf-labelled trees (see [17] Corollary 1), we have:F �n1;::: ;nk = X���2�n ��(b0; �)��(�;b1)= X���2�n ��(b0; �) 0@ XT2Lj�j(�1)jT j�j�j ��(T )1A= X���2�n XT 02Ln:��p(T 0)(�1)jT 0j�n�k�k ��(T 0)= XT 02Ln(�1)jT 0j�n ��(T 0)0@ X���; ��p(T 0)(�1)k�k1A :To compute the last sum, assume that there are l (possibly l = 0) non-singletonblocks of p(T 0) which are contained in some block of �; then the only partitions� satisfying � � � and � � p(T 0) are those obtained from p(T 0) by splittingall blocks into singletons, except some of the l blocks mentioned above. Hencethe last sum is PI�[l](�1)jIj = �l;0, which proves (3.1.6). Formula (3.1.8) nowfollows by using the bijection between leaf-labelled rooted trees and partitionsestablished in [17], Theorem 5.To prove (3.1.7), we must �rst �nd an analogue of (3.1.4). We do this byusing Theorem 2.5.3, which provides an expression for the M�obius type function��P of a subposet P of �n, when there is a permutation group G on [n] which also



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 88permutes P (via the obvious action on �n). We choose P to be [b0; �] [ fb1�ng,and G to be the direct product of symmetric groups on the blocks of �. In x2.5we have considered the poset A(P ) of preferential arrangements (�; !) of [n] with� 2 P , and by bA(P ) the poset obtained by adjoining a least element b0 to A(P ).We also let A(P ) := A(P ) n fb1g. By insisting that G(b0) = fb0g, we obtain aposet action of G on bA(P ), and hence an induced poset structure on the set oforbits bA(P )=G. Let us also recall from x2.5 the function �b and its convolutioninverse �bbA(P )=G in the incidence algebra over H� of the poset bA(P )=G. Accordingto Theorem 2.5.3, we havef bn1;::: ;nk = F �n1;::: ;nkn1! : : : nk! = ���P (b0;b1)jGj (3.1.9)= ��bbA(P )=G(b0;b1) = X(�;!)2T �bbA(P )=G(b0; G(�; !)) �b(�;b1) ;where T is an arbitrary transversal of A(P )=G. We can view A(P )=G as thesubposet of A(�n) consisting of \shu�es" of preferential arrangements of thesets [n1], n1 + [n2], ..., n� nk + [nk], whose blocks are intervals (in N) ordered inthe natural way. If we do this, we can establish a bijection between A(P )=G andthe set of pairs (�; c), where c is a k-colouring of [n] of type (n1; : : : ; nk), and � isa partition of [n] with monochromatic blocks which are intervals (in N). Indeed,if (�; !) is the shu�e (Bi1j1; Bi2j2; : : : ) of (B11; B12; : : : ), ..., (Bk1; Bk2; : : : ), thenthe associated partition � is f[jBi1j1 j]; jBi1j1 j+ [jBi2j2 j]; : : :g, and all the elementsin the r-th block of � are coloured ir. Finally, we denote by Pi the set of rootedplane trees with i leaves. If we label the leaves of T 2 Pi with 1; : : : ; i, we cande�ne p(T ) as before. Using (3.1.9) and the expression for Lagrange inversion in



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 89terms of rooted plane trees (the analogue of Corollary 1 in [17]), we �nally have:f bn1;::: ;nk = X(�;!)2T �m(b0; �)�me�j�j(b0;b1)= X(�;!)2T �m(b0; �) 0@ XT2Pj�j(�1)jT j�j�j �m(T )1A=X(�;c) XT 002Pn:��p(T 00)(�1)jT 00j�n�k�k �m(T 00)= X(T 00;c)(�1)jT 00j�n �m(T 00)0@ X(�;c): ��p(T 00)(�1)k�k1A :The last sum is computed as before, and (3.1.7) follows. 2Note that for n1 = : : : = nk = 1, the theorem is just the Haiman-Schmittform of Lagrange inversion.Example 3.1.10 In order to express f b1;3, f b2;2, and f b1;1;2, we consider all theplane trees with 4 leaves, as shown below. The trees on the �rst line have typem31; those on the second line have type m1m2, except for the last one, whose typeis m3. The three numbers corresponding to a tree represent the number of 2-colourings of type (1; 3), of 2-colourings of type (2; 2), and of 3-colourings of type(1; 1; 2) for the leaves, which satisfy the condition in Theorem 3.1.5. Accordingto the theorem, we havef b1;3 = �8m31 + 12m1m2 � 4m3 ; f b2;2 = �20m31 + 24m1m2 � 6m3 ;f b1;1;2 = �48m31 + 54m1m2 � 12m3 :We now present applications of Proposition 3.1.1 to combinatorial proofs offormal group law identities. We prove two such identities in Propositions 3.1.11and 3.1.13. The �rst identity is a familiar one, and is usually proved by formalpower series manipulations (see e.g. [33]).
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4, 6, 12

2, 4, 10 2, 4, 10 2, 4, 10 2, 4, 10 0, 4, 8

3, 6, 12 3, 6, 12 2, 4, 10 2, 4, 10 2, 4, 10Proposition 3.1.11 In ��ffXgg, we have that� 0(X) = �@F �@Y (X; 0)��1 ;where � 0(X) and @F�@Y (X;Y ) denote the formal derivatives of the correspondingpower series, and ( � )�1 denotes the multiplicative inverse.Proof. The given formula may easily be seen to be equivalent to the set ofidentities � �n = n�1Xi=0 �ni��i F �1;n�i ; n > 0 : (3.1.12)Fix n > 0. By (1.7.7) and (1.7.13), we have��n = X
2C(�n+1) ��(
) ;so it su�ces to establish that the right-hand side of (3.1.12) also enumerates bytype the chains in C(�n+1).We �rst partition these chains into classes C(A), with f1g � A $ [n+ 1], byassigning the chain fb0 < �1 < : : : < �r < b1g to C(A) if and only if A 2 �r. As1 � jAj � n, and there are � nk�1� ways of choosing A of cardinality k, we see thatit is enough to prove that if jAj = k then P
2C(A) ��(
) = �k�1 F �1;n�k+1 . We dothis as follows, by using (1.7.13), Proposition 1.7.14 twice, (1.7.7), and (3.1.3);



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 91for clarity, it helps to set A := [n + 1] n A, eA := A [ f1g, and ! := ff1g; Ag,thereby yieldingX
2C(A) ��(
) = � X�2�(KA)0@ X
2C(�(K�[fAg)) ��(
)1A ��(� [ fAg;b1)= X�2�(KA)��(b0; � [ fAg) ��(� [ fAg;b1)= �k�1 X!��2�( eA)��(b0; �) ��(�;b1)= �k�1 ��K1�KA(f eAg) = �k�1 F �1;n+1�k ;as sought. 2Proposition 3.1.13 We have thatnmn�1 = XjIj=n(�1)l(I)�1 n(l(I)� 1)!kIk f bI :Proof. According to (3.1.4), we haveX�2�n F �I(�) �(�;b1) = X�2�n X��� ��(b0; �) ��(�;b1)! �(�;b1)= X�2�n ��(b0; �) ��(�;b1)  X��� �(�;b1)!= ��(b0;b1) = �n�1 ;according to our conventions, � denotes here the classical M�obius function of�n. It is well-known that �(�;b1) = (�1)j�j�1(j�j � 1)!, and that the number ofpartitions � of [n] with I(�) = I is n!=(I!kIk). Hencenmn�1 = �n�1(n � 1)! = 1(n� 1)! XjIj=n(�1)l(I)�1 n!I!kIk F �I (l(I)� 1)! ;which implies the identity to be proved. 2



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 92Let us note that the number n(l(I) � 1)!=kIk is an integer. Indeed, if I =(1r1 ; : : : ; krk), we have that(r1 + 2r2 + : : :+ krk) (r1 + : : :+ rk � 1)!r1! : : : rk! = �r1 + : : :+ rk � 1r1 � 1; r2; : : : rk�+2�r1 + : : :+ rk � 1r1; r2 � 1; : : : rk�+ : : :+ k�r1 + : : :+ rk � 1r1; r2; : : : rk � 1� :Hence, Proposition 3.1.13 provides another expression of nmn�1 as an integerlinear combination of elements in the Lazard ring.3.2 Combinatorial Models for p-typical FormalGroup LawsOur results so far, as well as those in Chapter 4, are concerned mainly with alge-braic structures and combinatorial invariants associated with the universal formalgroup law. This section is intended to be a starting point for understanding thecombinatorics of p-typical formal group laws, by constructing more appropriatecombinatorial models in this case. We concentrate once again on the universalcase, by considering the umbra � in the ring �p�, where p is a �xed prime.We start by discussing the way in which the formula de�ning the characteristictype polynomial c�(S;x) of a partition system with singleton atoms S simpli�eswhen we consider the image c�(S;x) of this polynomial under the projection��[x]! �p�[x]. Let us associate with S the following partition system:Sp := S n fU 2 S : jU j 6= pk; k � 1; and SjU = KUg :Proposition 3.2.1 We have thatc�(S;x) = c�(Sp;x) :In particular, ���(S)(b0; �) = ���(Sp)(b0; �) for every partition � in �(Sp).



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 93Proof. We use the deletion/contraction identity in Theorem 2.3.1. Since���(KU )(b0;b1) = �jU j�1 = 0 for jU j 6= pk, the characteristic type polynomial isnot a�ected by successively removing from S all the sets U satisfying jU j 6= pkand SjU = KU . The only thing we have to ensure is that these sets are removedin decreasing order of their cardinalities. The statement about �� follows byconsidering the set system Sj�. 2According to the above result, we can express the polynomial B�n(x) in termsof the poset �(Kpn), which is much smaller than �(Kn) for large n; in otherwords, we can restrict ourselves to partitions for which the block sizes are powersof p. For instance, for p = 2, we have the simpler expressionB�4 (x) = x4 � 6�1x3 + 3�21x2 + (�3�31 + 6�1�2 � �3)x ;instead of the usual formula provided by (1.7.8):B�4 (x) = x4 � 6�1x3 + (15�21 � 4�2)x2 + (�15�31 + 10�1�2 � �3)x :But we know that the ring �p� is polynomial in �p�1; �p2�1; : : : , so the coe�cientsof the polynomials B�n(x) are expressible only in terms of these generators. Forp = 2 we have �2 = 3�21 (because �2 = 3�21 � �2 = 0), which means that we havein fact B�4 (x) = x4 � 6�1x3 + 3�21x2 + (15�31 � �3)x :Thus we have arrived at the crucial problem of expressing the elements �i, fori 6= pk � 1, in terms of the polynomial generators of �p�. This turns out to be adi�cult problem, and is closely related to the open problem of characterising thesubgroup of the group of Hurwitz series X+r1X2=2!+r2X3=3!+ : : : (where ri liein some torsion free ring R) under substitution, which is generated by Hurwitzseries of the form X+q1Xp=p!+q2Xp2=p2!+ : : : . The �rst problem can in fact bereduced to understanding how Lagrange inversion works for the Hurwitz series�(X) and �(X) (which were reinterpreted in x1.2 as the exp and log series of



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 94the universal p-typical formal group law). Note that expressing the coe�cientsof �(X) in terms of those of �(X) is just a special case of Lagrange inversion;however, the converse requires more, if we want to express �p�1; �p2�1; : : : only interms of �p�1; �p2�1; : : : . Before investigating this problem, we show how it helpsus express the elements �i, for i 6= pk � 1, in terms of �p�1; �p2�1; : : : .Let us start with a few de�nitions and notations. We say that a partitionI = (i1; : : : ; il) of n is p-typical if all its parts ij are of the form pk � 1. Allpartitions considered from now on in this section are assumed to be p-typical.We set �I := �i1 : : : �il, and denote the coe�cient of �I in the expression of anelement z in �p� by c(�I ; z); we do the same thing for �I , �I , and �I , where inthe last two cases the element z lies in ��. Note that c(�I ; �J) = c(�I ; �J) byLagrange inversion; however, this equality does not hold when we replace theumbra � with �, as we have discussed in the previous paragraph. Let us considerthe set P (n) of p-typical partitions of n with the partial order de�ned in x1.10.Note that c(�I ; �J), c(�I ; �J), and c(�I ; �J ) can only be non-zero if I � J . Wehave �n = XJ2P (n) c(�J ; �n)�J = XI2P (n)0@ XI�J2P (n) c(�I ; �J ) c(�J ; �n)1A�I ; (3.2.2)whence c(�I ; �n) = XI�J2P (n) c(�I ; �J ) c(�J ; �n) : (3.2.3)Formula (3.2.3) answers our original question of expressing �n in terms of �p�1;�p2�1; : : : , provided that we are able to determine the coe�cients c(�I ; �J ).We now �x n = pk � 1 for the rest of this section. We have the followinganalogue of (3.2.2):�n = XJ2P (n) c(�J ; �n)�J = XI2P (n)0@ XI�J2P (n) c(�I ; �J ) c(�J ; �n)1A�I ;



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 95which provides XI�J2P (n) c(�I ; �J) c(�J ; �n) = �I;(n) : (3.2.4)We can interpret this formula in terms of the incidence algebra (over Z) of theposet P (n). Indeed, let us de�ne the function f in this algebra by f(I; J) :=c(�I ; �J). Its convolution inverse f�1 exists because f(I; I) = (�1)l(I) is invert-ible, and (3.2.4) tells us that c(�I ; �n) = f�1(I; (n)).Let us consider an example for p = 2. We have seen above that �3 = 15�31��3,so let us now compute �7. The poset P (7) is totally ordered, and we have (17) <(3; 14) < (32; 1) < (7). First of all, we have c(�1�23; �7) = �c(�1�23; �7) = 1575(this holds in general, for all the monomials �I with I a maximal element inP (n) n f(n)g). Secondly, we havec(�41�3; �7) = �c(�31�3; �23) c(�1�23; �7)� c(�41�3; �7)= �30 � 1575 � (�51975) = 4725 :Finally, we havec(�71; �7) = c(�31; �3) c(�41�3; �7)� c(�61; �23) c(�1�23; �7)� c(�71; �7)= (�15) � 4725 � 225 � 1575 � (�135135) = �290115 :We now apply (3.2.3) and obtain�2 = 3�21 ; �4 = �120�41 + 15�1�3 ; �5 = �2205�51 + 210�21�3 ;�6 = �28980�61 + 2100�31�3 + 35�23 :Returning to the expression of �7 in terms of �1, �3, and �7, let us note that thesign of a monomial is no longer determined by the number of its factors, like inLagrange inversion.Although it is easy to implement, the above procedure does not o�er us anyindication about the combinatorial signi�cance of the coe�cients c(�I ; �n), as



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 96Lagrange inversion does about the coe�cients c(�I ; �n) (here we use the formof Lagrange inversion in terms of leaf-labelled rooted trees, which was proved in[17]). We now intend to show that �nding the convolution inverse of the functionf in Z(P (n)) discussed above reduces to several classical M�obius inversions oncertain posets of trees. Moreover, we can easily recover the Haiman-Schmitt formof Lagrange inversion.We need a few more de�nitions and notations. In what follows, a tree meansa rooted tree with n + 1 leaves labelled 1; 2; : : : ; n + 1, and no vertex havingonly one descendant (such trees were called \of the �rst kind" in x3.1). We onlyconsider trees for which the number of descendants of every vertex is a power ofp; we call these trees p-typical, and denote their set by 
(n+ 1). We recall thede�nition of the type ��(T ) of a tree T from x3.1. We de�ne a partial order on
(n+ 1) as follows: T1 � T2 if and only if T2 is obtained from T1 by contractingcertain internal edges (that is edges not incident to leaves). This poset clearlyhas a unique maximal element, namely the tree of type �n, and several minimalelements, namely the trees of type �n=(p�1)p�1 . Let us also note that the map from
(n+1) to P (n) speci�ed by T 7! I, where ��(T ) = �I , is order preserving. Weare now able to state our main result.Proposition 3.2.5 We have thatc(�I ; �n) = � X��(T )=�I �(T;b1) ;where � denotes the M�obius function of the poset 
(n+ 1).Proof. We prove this result by induction on l(I), which clearly starts at 1.Now assume that it holds for l(i) < k, and consider a p-typical partition I of nwith l(I) = k. The idea is to sum the relations�(T;b1) + XT 0>T �(T 0;b1) = 0 ; ��(T ) = �I ;



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 97prove that X��(T )=�I XT 0>T �(T 0;b1) = (�1)l(I)�1XJ>I c(�I ; �J) c(�J ; �n) ; (3.2.6)and use (3.2.4). Hence, let us concentrate on (3.2.6). We clearly haveX��(T )=�I XT 0>T �(T 0;b1) =XJ>I X��(T 0)=�J �(T 0;b1)N(I; T 0) ;where N(I; T 0) denotes the number of trees T satisfying T < T 0 and ��(T ) = �I .It is easy to see that this number only depends on the type of T 0, not on thetree T 0 itself. Furthermore, by a slightly more general form of the Lagrangeinversion formula due to Haiman and Schmitt, N(I; T 0) = (�1)l(I)c(�I ; ��(T 0)).Thus (3.2.6) follows by induction. 2Let us make a few remarks. The poset 
(n+1) is not a lattice, and it seemsto admit no obvious closure or coclosure operator. This means that we cannotapply the standard techniques for computing the M�obius function, which makesthis problem quite di�cult. On the other hand, we notice that if we let our posetof trees contain all trees with n+ 1 leaves, then we obtain a Boolean algebra. Inconsequence, �(T;b1) = (�1)l(I)�1 for all trees with ��(T ) = �I , and Proposition3.2.5 still holds (with � replaced by �), by reducing to the Haiman-Schmitt formof Lagrange inversion.We now consider an example, again for p = 2 and n = 7. We present belowthe value of �(T;b1) for several (binary) trees which contribute to the expressionof c(�71; �7). For simplicity, we have drawn these trees with edges incident toleaves removed, and without distinguishing the root; we will refer below to thetree obtained in this way as the skeleton of the original tree. We notice thatthe values of the M�obius function are greater than 0, which explains the factthat �c(�71; �7) is more than twice �c(�71; �7). This leads us to the followingconjecture.
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53 41 1 1Conjecture 3.2.7 We have �(T;b1) � 1 for all binary trees T with 2k leaves,where k � 3.Note that this is not true for the trees contributing to the expression ofc(�41�3; �7), for instance. We computed �(T;b1) for the trees with 2k leaves whoseskeleton is a path, for k = 3; 4; 5; 6; 7; 8.k 3 4 5 6 7 8�(T;b1) 1 7 769 14678615 � 7741�1012 � 2954�1030log2(�(T;b1)) 0 2.80735 9.58684 23.8072 52.7816 111.187These computations suggest that the value of �(T;b1) for trees with 2k leaveswhose skeleton is a path might be of the order 22k�1.If Conjecture 3.2.7 is true, it con�rms the importance of Proposition 3.2.5,and suggests that we might be able to �nd some objects which are counted by�(T;b1).



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 993.3 Classical Results in Algebraic Topology Re-statedIn this section we express several classical coactions in algebraic topology in thelanguage of incidence Hopf algebras. The main instrument for translating topo-logical formulae into this language is Theorem 1.7.6, which establishes the con-nection between substitution of formal power series and the convolution productin the incidence Hopf algebras �� and H�. Sometimes we prefer to write formu-lae using the incidence algebras ��(�n) and H�( e�n) of the lattices �n and e�n.The context will always determine which algebras we are using. The principle onwhich our formalism is based is the one already discussed in x1.7; namely, thatin some cases, such as those considered below, a ring homomorphism � : R� ! T�is uniquely determined by the image of Alg(�) on some function in Alg�(��; R�)or Alg�(H�; R�).Let us consider the Hopf algebroid (see [33])MU�(MU) �=MU�[bMU1 ; bMU2 ; : : : ]�= MU� 
H�, where H� is the dual of the Landweber-Novikov algebra (see Ex-ample 1.7.4). Let �L, �R be the left and right units, � the comultiplication, and
 the conjugation of MU�(MU). We write �MUn for (n+ 1)!bMUn , �Rn for �R(�n),and consider the umbras bMU := (1; bMU1 ; bMU2 ; : : : ), �MU := (1; �MU1 ; �MU2 ; : : : ),and �R := (1; �R1 ; �R2 ; : : : ). The right unit �R is usually expressed via the formula�R(X) = �(�MU(X)) :By Theorem 1.7.6 (1) this is equivalent to specifying �R as follows:�R : �� 7! ��R= ��MU � �� or �� 7! ��R= �� � ��MU ; (3.3.1)



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 100by taking inverses. If we work in (H ^MU)�(MU), we can also write�R : �b 7! �bR = �bMU � �b or �b 7! �bR = �b � �bMU ; (3.3.2)where bRn := �R(bn), and bR := (1; bR1 ; bR2 ; : : : ). The comultiplication � can bespeci�ed using the notation in x1.7 in either of following ways:� : �bMU 7! �bMU~ �bMU or ��MU 7! ��MU~ ��MU : (3.3.3)Similarly, the conjugation 
 is speci�ed by
 : �bMU 7! �bMU or ��MU 7! ��MU : (3.3.4)We will present in x3.4 and x3.5 more substantial applications, demonstratingthe computational advantages of this new point of view. For now, we considera few simple applications, demonstrating the advantages in simplifying notationand proofs. For our applications, we need the umbra � := (1; u; u2; : : : ) in K� �=Z[u; u�1] and �R := (1; v; v2; : : : ) in K�(K), where v = �KR (u). Let us recallthat the image of K�(K) in K�(K)
Q consists precisely of those �nite Laurentseries f(u; v) satisfying f(it; jt) 2 Z[t; t�1; 1ij ] for all i; j 2 Zn f0g. We alsoneed the standard map of ring spectra g : MU ! K representing the universalThom class in K0(MU); the map g� : MU� ! K� is the Todd genus, mapping �nto un. Finally, let us recall the fact that K�(MU) �= Z[u; u�1; bK1 ; bK2 ; : : : ], andthat g� : MU�(MU) ! K�(MU) maps bMUn to bKn . We will also need the umbrasbK := (1; bK1 ; bK2 ; : : : ) and �K := (1; �K1 ; �K2 ; : : : ), where �Kn := (n+ 1)!bKn .Example 3.3.5 Let us �rst check that the elements �Rn are primitive inMU�(MU). Indeed, we have� : ��R= �����MU 7! ��� � ��MU�~��MU= ��R~��MU = 1
��� � ��MU� = 1
��R:



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 101Example 3.3.6 It is well-known that the map f� : MU�(CP1) ! MU�(MU)induced by the inclusion f : CP1 ' MU(1) ,! �2MU is speci�ed by �MUn 7!bMUn�1. Let us identify MU�(CP1) with its image in (H ^MU)�(CP1 ), and tryto determine the map f�. It is an immediate consequence of (1.7.8), and it is alsoa well-known fact in umbral calculus thatxn = X�2�n ��(b0; �)B�n(x) :Applying the map f�, we immediately obtain from (3.3.1)f�(xn) = (�� � ��MU)(�n�1) = �Rn�1 : (3.3.7)Hence, the map f� can be interpreted as umbral substitution by �R.Formula (3.3.7) and the following commutative diagram show that the el-ements xn are primitive under the coaction MU�(CP1) ! MU�(MU) 
MU�MU�(CP1).MU�(CP1)?f� MU�(MU)
MU� MU�(CP1)?I
f�-MU�(MU) MU�(MU) 
MU� MU�(MU)-� :It is shown in [8] that K�(MU) is isomorphic to the direct limitMU�(CP1) �x- MU�(CP1) �x- MU�(CP1) �x- : : : ;where the maps are \multiplication by x". This means that there is a Z-linearmap MU�(CP1) ! K�(MU) sending xn to un�1. We deduce that xn is notdivisible (by integers) in MU�(CP1), whence the ring of primitive elements inMU�(CP1) is precisely Z[x]. This is a simpli�ed proof of the result which was�rst proved by D. Segal in [48], Theorem 2.1.



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 102Example 3.3.8 The Hurewicz homomorphism h� : MU� ! K�(MU) can be eas-ily determined using the following commutative diagram:MU� HHHHHHHHHjh� MU�(MU)?g�-�R K�(MU) :Hence, we can specify h� as follows:h� : �� 7! �� � ��K or �� 7! ��K � �� ;which means that h�(�n) = nXk=0 S(n+ 1; k + 1)�Kk un�k ; (3.3.9)and h�(�n) = nXk=0(�1)kk! s�K(n+ 1; k + 1)uk : (3.3.10)Example 3.3.11 We would now like to give a more explicit expression (thanthe usual one) for the coaction �K : K�(MU) ! K�(K) 
K� K�(MU). Letus present �rst a simple way of computing the image of bMUn under the map(g ^ g)� : MU�(MU) ! K�(K). Since g is a map of ring spectra, we have thecommutative diagramMU�?g� MU�(MU)?(g^g)�-�RK� K�(K)-�KR :Hence (g ^ g)�(�Rn ) = vn. On the other hand, from (3.3.1) we obtain ��MU =�� � ��R. By applying (g ^ g)�, we deduce(g ^ g)� : ��MU 7! �� � ��R ; (3.3.12)



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 103which means that(g ^ g)�(bMUn ) = B�n+1(�R)(n+ 1)! = (v � u) : : : (v � nu)(n+ 1)! :Let us now recall the commutative diagramMU�(MU)?g� MU�(MU) 
MU� MU�(MU)?(g^g)�
g�-�K�(MU) K�(K)
K� K�(MU)-�K :Hence, by combining (3.3.3) and (3.3.12), we have�K : ��K 7! ��� � ��R�~ ��K ;which means that�K(bKn ) = n+1Xk=1 k!(n+ 1)! 0@ X���2�n+1;k ��(b0; �) ��R(�; �)1A
 bKk�1= n+1Xk=1 k!(n+ 1)! 0@n+1Xi=k X�2�n+1;i ��(b0; �)0@ X���2�n+1;k ��R(�; �)1A1A
 bKk�1 :Finally, we have the following result:�K(bKn ) = n+1Xk=1 k!(n+ 1)!  n+1Xi=k s(n+ 1; i)S(i; k)un+1�i vi�k!
 bKk�1 :(3.3.13)3.4 The K-theory Hurewicz HomomorphismIn this section, we intend to compute the images of the coe�cients f bn;l of the uni-versal formal group law under the Hurewicz homorphism h� : MU� ! K�(MU).According to (1.2.13), these coe�cients are related to the coe�cients F �n;l of theuniversal Hurwitz group law by F �n;l = n!l!f bn;l. An algorithm for this computationappears in [1], but no closed formula is given. All the set partitions considered in



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 104this section lie in the lattice �n+l, with meet denoted by ^. According to 3.1.4,we have F �n;l = X���0 ��(b0; �) ��(�;b1) ;where �0 is the partition f[n]; n+ [l]g of [n + l]. Using (3.3.9) and (3.3.10), wehaveh�(F �n;l) = X����!; ���0 ��K(b0; �)��(�; �) ��(�; !) ��K(!;b1)= X�����0^! ��K(b0; �)��(�; �) ��(�; �0 ^ !) ��(�0 ^ !; !) ��K(!;b1) :If we sum only over � < �0^! we get 0, since we have the factor (�� � ��)(�; �0^!) = 0. Henceh�(F �n;l) =X! ��K(b0; �0 ^ !) ��(�0 ^ !; !) ��K(!;b1)= X���0 ��K(b0; �)  X! :�0^!=� ��K(!;b1)uj�j�j!j!= X���0 ��K(b0; �) 0@minfn� ;l�gXk=0 k!�n�k ��l�k��Kj�j�k�1uk1A= nXi=1 lXj=1 s�K(n; i) s�K(l; j) 0@minfi;jgXk=0 k!�ik��jk��Ki+j�k�1 uk1A ;where n� and l� denote the number of blocks of the partition � � �0 contained in[n] and n+ [l], respectively; the third equality follows by counting the partitions! with �0 ^ ! = �: concentrating on such partitions with precisely k blocksintersecting both [n] and n + [l], there are �n�k ��l�k � ways of choosing the blocksof � to be amalgamated, and k! ways of matching them. Dividing both sides byn!l!, we �nally obtain the formula for h�(f bn;l).



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 105Proposition 3.4.1 The images of the coe�cients of the universal formal grouplaw f bn;l under the Hurewicz homomorphism h� are speci�ed byh�(f bn;l) = nXi=1 lXj=1 �bKn;i �bKl;j 0@minfi;jgXk=0 � i+ j � kk; i� k; j � k� bKi+j�k�1 uk1A :3.5 Congruences in MU�In this section, we prove some congruences for the ��-Stirling numbers S�(n; k)in MU2(n�k) modulo a prime p. The main tool will be the Hattori-Stong theoremand the periodicity modulo p of the classical Stirling numbers of the second kind,for which there is a nice proof using group actions (see [45]):S(n; k) � S(n� p+ 1; k) mod p ; for n > p � 1 : (3.5.1)The Hattori-Stong theorem essentially says that the Hurewicz homomorphismh� : MU� ! K�(MU) is integrality preserving, that is for all z 2 MU� 
 Q wehave that z 2MU� if and only if (h� 
 1)(z) 2 K�(MU). This turns out to be apurely algebraic statement, and such a proof can be found in [8].Proposition 3.5.2 We have the following congruences in MU�:S�(n; p� 1) � 8<: 0 mod p if n 6� 0 mod p � 1�n�p+1 mod p otherwise, (3.5.3)in MU2(n�p+1);S�(n; p� 2) � 8<: 0 mod p if n 6� 0 mod p � 1�n�p+2 mod p otherwise, (3.5.4)



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 106in MU2(n�p+2), if p � 3;S�(n; p � 3) �8>>>>>>><>>>>>>>: 0 mod p if n 6� 0;�1;�2 mod p� 1�n�p+3 mod p if n � �2 mod p � 13�n�p+3 mod p if n � �1 mod p � 13�1�n�p+2 � �n�p+3 mod p if n � 0 mod p� 1, (3.5.5)in MU2(n�p+3), if p � 5.Proof. Let us compute the image of S�(n; k) under the Hurewicz homo-morphism h� : MU� ! K�(MU). By (3.3.9) we haveh�(S�(n; k)) = X���2�n;k ��(b0; �) ��K(�; �)= nXi=k X�2�n;i ��(b0; �) 0@ X���2�n;k ��K(�; �)1A= nXi=k S(n; i)S�K(i; k)un�i :We will �rst show that if i � p and k � p � 1, then S�K(i; k) � 0 mod p.Consider a partition � 2 �i;k with k � p� 1 blocks and type ��K(�) = (�K1 )r2 : : :(�Kj�1)rj . If j � p, then ��K(�) is divisible by p in K�(MU) since �Kp�1 is. If j < p,then there are i!(2!)r2 : : : (j!)rj(k � r2 � : : :� rj)!r2! : : : rj !partitions in �i;k having the same type as �; but this number is divisible by punder the above hypothesis.Now consider the image of �l under h� given by (3.3.9). Using (3.5.1), wededuce thath�(�l) �8>>><>>>: ul mod p if l � 0 mod p � 1ul + �K1 ul�1 mod p if l � 1 mod p � 1ul + 3�K1 ul�1 + �K2 ul�2 mod p if l � 2 mod p � 1, (3.5.6)



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 107in K2l(MU).According to the above remarks, and using (3.5.1) again, we have the followingcongruences, implying (3.5.3), (3.5.4), and (3.5.5), respectively:h�(S�(n; p� 1)) � S(n; p� 1)un�p+1 �8<: 0 mod p if n 6� 0 mod p� 1un�p+1 mod p otherwise;h�(S�(n; p � 2)) � S(n; p � 2)un�p+2 + S(n; p� 1)S(p � 1; p � 2)�K1 un�p+1�8>>><>>>: 0 mod p if n 6� 0;�1 mod p � 1un�p+2 mod p if n � �1 mod p � 1un�p+2 + �K1 un�p+1 mod p if n � 0 mod p � 1;h�(S�(n; p � 3)) � S(n; p � 3)un�p+3 + S(n; p� 2)S(p � 2; p � 3)�K1 un�p+2+S(n; p� 1)S�K(p� 1; p � 3)un�p+1�8>>>>>>><>>>>>>>: 0 mod p if n 6� 0;�1;�2un�p+3 mod p if n � �23un�p+3 + 3�K1 un�p+2 mod p if n � �12un�p+3 + 3�K1 un�p+2 + (3(�K1 )2 � �K2 )un�p+1 mod p if n � 0,where all the congruences for n are mod p� 1. We have used the following facts:S(p� 1; p� 2) = �p� 12 � � 1 mod p ; S(p� 2; p� 3) = �p� 22 � � 3 mod p;S�K(p� 1; p� 3) = 12�p� 12 ��p� 32 �(�K1 )2+�p � 13 ��K2 � 3(�K1 )2��K2 mod pin K4(MU). 2Congruence (3.5.3) was proved in [34] using arguments related to the universalformal group law; it had an essential rôle therein for proving the universal vonStaudt theorems. We believe that our technique is more powerful, since it alsoprovides (3.5.4) and (3.5.5), which seem to be new.



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 1083.6 Combinatorial Models for the Dual of theSteenrod AlgebraIn this section, we discuss some connections between the Hopf algebras �� andH�,and the dual of the Steenrod algebra. Some of the results are known; nevertheless,we believe that the combinatorial proofs presented here provide new insights.Consider a prime p, and let �(n) := �pn�1. In [39] it is shown that the subal-gebra Z=(p)[�(1); �(2); : : : ] of the mod p Fa�a di Bruno Hopf algebra �� 
Z=(p) isactually a sub-Hopf algebra, isomorphic to the polynomial part of the dual of themod p Steenrod algebra; the proof is based on number-theoretical arguments. Wepresent here an alternative proof, which is purely combinatorial and was inspiredfrom [45].Consider the cyclic group Cpn acting on [pn], and hence on the partition lattice�pn . We want to determine the partitions �xed by every element of Cpn. If � issuch a partition, then Cpn acts on its blocks. Let g be the cycle (1; 2; : : : ; pn),let B be the block of � containing 1, and let hgpki be the stabiliser of B. FromgpkB = B, we deduce that f1; 1 + pk; : : : ; 1 + (pn�k � 1)pkg � B. Furthermore,the sets fi; i + pk; : : : ; i + (pn�k � 1)pkg, for i = 1; 2; : : : ; pk, all lie in di�erentblocks of �, whence they are precisely the blocks of �. In consequence, we haven+1 partitions �xed by every element of Cpn, namely one for each k = 0; 1; : : : ; n.The orbit of every partition which is not of the above type has pi elements, wherei > 0. Finally, since all partitions in the same orbit have the same type, (1.7.3)becomes �(�(n)) = nXk=0 �pk(n�k) 
 �(k) in Z=(p)[�(1); �(2); : : : ] : (3.6.1)Let us now consider the Hopf algebra P� := H� 
 Z=(p), and the ideal J�generated by the elements bi, i 6= pn � 1. Writing b(n) for bpn�1, we clearlyhave an isomorphism of algebras P�=J� �=Z=(p)[b(1); b(2); : : : ]. We intend to show



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 109that J� is also a coideal (and hence a Hopf ideal), and that in the Hopf algebraZ=(p)[b(1); b(2); : : : ] we have�(b(n)) = nXk=0 bpk(n�k) 
 b(k) : (3.6.2)We will prove these statements together. Consider arbitrary integers m;k �1 such that m � pk. A partition in e�m;pk can be represented by a pk-tuple(i1; : : : ; ipk) with ij � 1 and Ppkj=1 ij = m. The cyclic group Cpk acts on e�m;pkin the obvious way, and there is at most one partition �xed by each element ofCpk , namely the one with equal block sizes, if pk divides m; the sizes of all theother orbits are non-zero powers of p. This shows that if k0 is highest power of pdividing m, then �(bm�1) 2 P� 
 J� + k0Xk=0 bpkm=pk�1 
 b(k) ;whence the desired statements follow.In consequence, we have proved:Proposition 3.6.3 The polynomial part of the dual of the mod p Steenrod algebrais isomorphic to the sub-Hopf algebra Z=(p)[�(1); �(2); : : : ] of the mod p Fa�a diBruno Hopf algebra �� 
Z=(p), as well as to the quotient of H� 
Z=(p) (that isthe dual of the Landweber-Novikov algebra tensored with Z=(p)) by the Hopf idealJ�. Let R� be an evenly graded commutative ring of characteristic p. Since P�=J�is a Hopf algebra, then the set Alg�(P�=J�; R�) is a group under convolution. Wecan now derive an analogue of Theorem 1.7.6 (2).Proposition 3.6.4 The set of formal power series in R�[[X]] of the formr(X) =Xk�1 rpk�1Xpk



CHAPTER 3. APPLICATIONS OF INCIDENCE HOPF ALGEBRAS 110(that is p-typical power series) form a group under substitution. There is ananti-isomorphism from Alg�(Z=(p)[b(1); b(2); : : : ]; R�) to this group, speci�ed by�r 7! r(X).In consequence, Lagrange inversion for p-typical power series in R�[[X]] isequivalent to computing the antipode of Alg�(Z=(p)[b(1); b(2); : : : ]; R�), which ismuch easier than computing the antipode of Alg�(H�; R�).



Chapter 4Hopf Algebras of Set SystemsIn this chapter we construct and study several Hopf algebras/algebroids of setsystems which map onto the Hopf algebras/algebroids presented in Chapter 1via the polynomial/symmetric function invariants de�ned in x1.8 and Chapter 2.All our constructions concern the universal cases, namely the rings of scalars ��and H�, with corresponding umbras � and b. Purely as a matter of algebra, ourconstructions may be carried over to the setting corresponding to any other ringand umbra of the types discussed in x1.1. A notational consequence also deservescomment; since the rings �� and H� are both torsion free, we choose to rewritedivided powers such as �(D)(n) and x(n) in the more explicit forms �(D)n=n! andxn=n!, respectively.4.1 Cocommutative Hopf Algebras of Set Sys-temsConsider the free ��-module S� := ��hSi spanned by the set S de�ned in x1.5.In this section we de�ne several graded Hopf algebra structures on S�, followingthe general method in [47] (which was summarised in x1.7) for constructing the111



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 112incidence Hopf algebra of a hereditary family of posets with a Hopf relation. Theresulting Hopf algebras map onto ��[x] in a variety of ways, and so providecombinatorial generalisations of the algebraic phenomena associated with theuniversal Hurwitz group law.As pointed out in x1.5, we shall not attempt to distinguish notationally be-tween a set system and its isomorphism class, since in those cases where it matters,we have taken care to ensure that the context is clear.Let P be the hereditary family consisting of all �nite products of intervalsfrom the posets (KV (S);�), for arbitrary set systems S. Intervals correspondingto di�erent set systems are considered distinct, even if they consist of identicalsets, so we index by S the elements of KV (S) determining an interval. We de�ne amap fromPtoS as follows: given set systems Si for i 2 [n] and intervals [USi;WSi]in KV (Si), we map [US1;WS1 ]� : : : � [USn ;WSn] to the isomorphism class of theset system S1j(WS1 nUS1) � : : : � Snj(WSn nUSn). Let � be the kernel of this map.The proof of the order compatibility of � is mainly based on the fact that disjointunion interacts with restriction such that (S1 � S2)j(U1 t U2) = (S1jU1) � (S2jU2),where Ui � V (Si) for i = 1; 2. This proof can be divided into two steps, as shownbelow: [US1;WS1 ]� [US2 ;WS2] � [(US1 t US2)S1�S2; (WS1 tWS2)S1�S2] ;(AS1; AS2) 7! (AS1 tAS2)S1�S2 ;[US ;WS ] � [;Sj(WSnUS); (WS n US)Sj(WSnUS)] ; AS 7! (AS n US)Sj(WSnUS) ;the two maps indicated are the corresponding order compatible bijections. Sinceisomorphism of set systems is a congruence with respect to disjoint union, therelation � is a Hopf relation.Let H(P) be the ��-incidence Hopf algebra of the family Pmodulo the Hopfrelation �. The bijection from P=� to S induced by the map above can be



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 113extended by linearity to a bijection from H(P) to S�. We use this bijection totransfer the Hopf algebra structure of H(P) to S�. Comultiplication in S� isspeci�ed by �(S) := XW�V (S)SjW 
SjW ;where W := V (S) nW . The counit is determined by"(S) := 8<: 1 if S = f;g0 otherwise .Multiplication is disjoint union, and the unit is the map � speci�ed by �(1) := f;g.The antipode is determined by
(S) = X�2�(V (S))(�1)j�j j�j!Sj� : (4.1.1)Clearly, the Hopf algebra S� is commutative and cocommutative. It is alsograded, by setting the degree of S equal to jV (S)j, and it has �nite type. Theindecomposables in S� are the isomorphism classes of connected set systems, sothat S� is isomorphic, as an algebra, to the polynomial algebra ��[S�]. Since eachposet in the family P is a Boolean algebra, we can apply Theorem 10.2 in [47] toobtain further information about the structure of S�, as in Theorem 4.1.2 below.For this purpose, we recall from [47] the projection p of S� onto its primitiveelements, speci�ed byp(S) := X�2�(V (S))(�1)j�j�1 (j�j � 1)!Sj� :Theorem 4.1.2 The Hopf algebra S� is isomorphic to the polynomial Hopf al-gebra ��[p(S�)], having primitive indeterminates.We can de�ne similar Hopf algebra structures on S� by basing the multiplicationon _ or �, rather than disjoint union; this is possible because both operationsinteract with restriction in similar fashion to disjoint union, and isomorphism



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 114of set systems is still a congruence. The resulting Hopf algebras are likewisepolynomial, and have primitive indeterminates. Complementation of set systemsinduces a Hopf algebra isomorphism between (S�; �) and (S�;�). In what follows,by S� we always mean (S�; �).We now consider the graded dual S� of the coalgebra S�, which has pseu-dobasis fDS : S 2 Sg dual to S. As a left-invariant operator, DS acts on S�according to the rule DS T =XW T jW ;where W := V (T ) nW , and the summation ranges over those subsets of V (T )for which T jW = S. The multiplication in S� is given byDS1 DS2 =XS2S(S;S1;S2)DS ;where (S;S1;S2) denotes the coe�cient of S1
S2 in �(S). We now utilise Theo-rem 4.1.2 to view S� as the polynomial algebra ��[p(S�)] with primitive indeter-minates, and write Dp(S) for the partial di�erentiation operator with respect tothe variable p(S), where S lies in S� . It is now easy to see that S� is isomorphicto the ��-algebra of Hurwitz series in the variables Dp(S).Perceptive readers may have noticed that, thus far, we could have restrictedour scalars to Z. We now impose deletion/contraction relations on S� whichinvolve the scalars �� in an essential manner. Let R� be the graded submoduleof S� spanned by all elements of the formS � S n U � �jU j�1 S==U ; (4.1.3)where U is a maximal element of the poset (S;�) with jU j > 1, and let Q� bethe graded submodule spanned by all elements of the formS � S n U � ���(SjU)(b0; fUg)S==U ;



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 115with U as before. Then writing ��, c�, and �� for the ��-linear maps from S� to��[x] obtained by respectively assigning ��(S;x), c�(S;x), and ��(S;x) to theisomorphism class of the set system S, it is not di�cult to check, using Theorem2.3.1, that ker �� = R� and ker c� = Q�. Our �rst realisation result for polynomialinvariants can now be proven.Proposition 4.1.4 The maps ��, c� : S� ! ��[x] and �� : (S�;�)! ��[x] aresurjective maps of graded Hopf algebras.Proof. Surjectivity follows from (1.8.4), whilst �� and c� are algebra maps byProposition 1.8.5. It therefore su�ces to prove that they are coalgebra maps aswell, since any bialgebra map of Hopf algebras is a Hopf algebra map. We willshow that R� and Q� are coideals in the corresponding coalgebras, concentratingon the former.Obviously, "(R�) = f0g. Now consider an element of the form (4.1.3), andW � V (S). If U �W , then (SnU)jW = SjW . IfW � U , then (SnU)jW = SjW .If none of the above hold, then (S nU)jW = SjW and (S nU)jW = SjW . Finally,since deletion commutes with restriction, we have�(S �S nU) = XW�U(SjW � (SjW )nU)
SjW + XW�U SjW 
 (SjW � (SjW )nU) :Since U is a maximal element of (S;�), then S==U is isomorphic to N1 � SjU and�(S==U) = (N1 
 f;g+ f;g 
 N1) �0@XW�U SjW 
 Sj(U nW )1A= XW�U(SjW )==U 
 SjW + XW�U SjW 
 (SjW )==U :These relations show that �(R�) � R� 
 S� + S� 
R�, whence R� is a coideal.The proof for Q� is similar, and the result for �� follows from that for c�,using Proposition 2.4.1. 2



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 116Now consider the algebra SymZ�(x) of symmetric functions with integer co-e�cients, with the Hopf algebra structure described in x1.10. We give here analternative description of the comultiplication (cf. [15]), which will be used in theproofs of Proposition 4.1.5 and Theorem 4.2.4. GivenA � N and t(x) 2 SymZ� (x),let t(xA) denote the symmetric function obtained from t(x) by substituting 0for xi whenever i 62 A. If t(x) has degree n, then its image under comultipli-cation can be computed by examining the image of t(x[2n]) under the naturalisomorphismZ[x1; : : : ; x2n] �= Z[x1; : : : ; xn]
Z[xn+1; : : : ; x2n]. This observationenables us to establish an analogous result to Proposition 4.1.4 for the Z-linearmap X : ZhSi ! SymZ� (x) speci�ed by S 7! X(S;x), where X(S;x) is de�nedin x1.8.Proposition 4.1.5 The map X : (ZhSi;_) ! SymZ�(x) is a map of graded Hopfalgebras.Proof. According to Proposition 1.8.6, we have only to prove that X is acoalgebra map. Consider a set system S with d vertices. It su�ces to show thatX(S;x[2d ]) = XW�V (S)X(SjW ;x[d ])X(SjW ;xd+[d ]) :Now there is an obvious bijection from �[2d ](S) to[W�V (S)�[d ](SjW )� �d+[d ](SjW ) ;namely f 7! (f 0; f 00), where f 0 = f jf�1([d ]) and f 00 = f jf�1(d+ [d ]) ; moreover,we clearly have xf = xf 0xf 00, from which the formula follows. 2Inspection of the comultiplication in S� reveals that the sequences (Nn) and(Kn) are binomial in the sense of (1.1.8), and according to (1.8.4) they map (asthey must) to familiar binomial sequences in ��[x] under ��, c�, and ��. It istherefore of interest to determine all binomial sequences in S�, and especially



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 117those whose elements lie entirely within the generating set S. For this purpose,we de�ne the set systemKn(A) := fU � [n] : jU j 2 Agfor every n 2 N [ f0g, and every set A � N [ f0g containing 0 and 1. Obviously,Kn(f0; 1g) = Nn, and Kn(N [ f0g) = Kn.Proposition 4.1.6 The only binomial sequences whose elements lie in S arethose of the form (Kn(A)) for f0; 1g � A � N [ f0g.Proof. Clearly, all sequences (Kn(A)) are binomial. Now let (Bn) be an arbi-trary binomial sequence whose elements lie inS. Assume for induction that thereis a set An � [n] [ f0g such that Bi = Ki(An) for all 0 � i � n; this certainlyholds for n = 0. Then de�neAn+1 :=8<: An [ fn+ 1g if V (Bn+1) 2 Bn+1An otherwise .Choose an arbitrary subset U of V (Bn+1) with 1 � jU j � n, and x 2 V (Bn+1)nU .The binomial property implies that Bn+1j(V (Bn+1) n fxg) is isomorphic to Bn. Itfollows by the inductive hypothesis that U 2 Bn+1 if and only if jU j 2 An � An+1.We conclude the proof by setting A := Sn�0An. 2It is now time to embellish our Hopf algebras with delta operators.Let � : S� ! ��[x] be a surjective map of graded coalgebras. Then its trans-pose �� : ��ffDgg ! S� is an injective algebra map. Hence �� induces an algebraisomorphism from ��ffDgg to the subalgebra ��ffD�gg of S�, where D� := ��(D).Therefore, given a delta operator �(D) 2 �1ffDgg, we may write the delta oper-ator ��(�(D)) as �(D�).Proposition 4.1.7 The map � : (S�; �(D�))! (��[x]; �(D)) is a map of coalge-bras with delta operator.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 118Proof. The fact that �(D) � � = � ��(D�) follows immediately from (1.1.4) bysetting p = �, f = h�(D) j �i. 2Clearly, we can take � to be any one of the maps ��, �� or c�, and combinethe results of Proposition 4.1.7 and Proposition 4.1.4. By way of example, werecord thatD�S = XW2Snf;g�jW j�1 SjW ; DcS = XW2Snf;g���(SjW )(b0; fWg)SjW ;and �(Dc)S = XW2Snf;g��SjW (fWg)SjW (by Proposition 2.4.1)in S�. In particular, we haveD�Nn = DcNn = nNn�1 and �(Dc)Kn = nKn�1 : (4.1.8)Let � be an arbitrary delta operator on S�. Let T� be a subcoalgebra of S�such that S� = T� � ��ffDN1gg? (see [53]). Then � acts on T� non-trivially,and ��ff�gg may be viewed as its dual. In this context, it is consistent to referto the basis of T� dual to the pseudobasis �n=n! as the associated sequenceof � in T�; such sequences are obviously binomial. Of special interest are thesubcoalgebras C(A)� spanned by the binomial sequences (Kn(A)) of Proposition4.1.6. Note that (Kn(A)) is the associated sequence of DN1 in C(A)�, but that itis also the associated sequence of other delta operators, as exempli�ed by 4.1.8.There is an isomorphism of coalgebras with delta operator between (C(A)�;�)and (��[x]; �(D)), speci�ed by Kn(A) 7! xn, where �n�1 = h� j Kn(A)i. Thedetermination of the associated sequences of � therefore reduces to the classicalcase.We conclude this section by explaining how the identities (1.2.11) and (1.2.12),which hold in ��[x], can be lifted to S�.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 119Proposition 4.1.9 Let � be an arbitrary umbra in ��, and � a delta operatoron S� which is a derivation; then the following identities hold in S�:�(�) (S1 � S2) = Xi;j�0F �i;j (�(�)i=i! S1) � (�(�)j=j! S2) (4.1.10)�(�) 
(S) =Xk�1 ��k 
(�(�)k=k! S) : (4.1.11)Given any map � : S� ! ��[x] of graded Hopf algebras, D� is a derivation, so theabove identities hold for it.Proof. Let p denote the multiplication in S�. We have that � � p = p � (�
I + I 
�) ; whence, by Proposition 1.2.5,�(�) � p = p � �(�
 I + I 
�) = p � F �(�
 I; I 
�) :This proves (4.1.10). On the other hand, we know from (1.1.4) that � � 
 =
 � �h��
 j �i. For all S, S1 and S2 in S with S1;S2 6= f;g, we have that
(S) = �S + decomposables in S� (see (4.1.1)) ;and h� j S1 � S2i = h� 
 I + I 
� j S1 
 S2i = 0 :This implies h��
j�i = h��j�i, whence the linear operator corresponding h��
j�iis ��, and ��
 = �
��. Using Proposition 1.2.5 again, we immediately obtain�(�) � 
 = 
 � �(��) = 
 � ��(�(�)) ;which proves (4.1.11).If � is the map speci�ed above, then, by using (1.1.4) once again, we havethat D� � p = p � �hD��p j �i. For all S1 and S2 in S, we havehD� � p j S1 
S2i = hD j �(S1 � S2)i = hD j �(S1) �(S2)i= hD 
 I + I 
D j �(S1)
 �(S2)i= hD� 
 I + I 
D� j S1 
 S2i :



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 120In consequence, the operator corresponding to hD� � p j �i is D� 
 I + I
D� , andD� � p = p � (D� 
 I + I 
D�). 2We may take � = �� and � = c� in Proposition 4.1.9 to obtain identitiesconcerning the interaction of �(D�) and �(Dc) with the multiplication and theantipode in S�. Analogous identities hold for �(D�) in (S�;�).4.2 Cocommutative Hopf Algebras of Set Sys-tems with Automorphism GroupIn this section, we de�ne cocommutative Hopf algebra structures on the freemodules H�hCi and L�hPi spanned by the sets C and P de�ned in x1.6; we alsostudy certain quotients of these Hopf algebras.As pointed out in x1.6, we shall not attempt to distinguish notationally be-tween a set system with automorphism group and its isomorphism class, since inthose cases where it matters, we have taken care to ensure that the context isclear.The obvious idea for constructing a Hopf algebra structure on H�hCi wouldbe to extend the procedure in the previous section. Thus, we would have toconsider the hereditary family P consisting of all �nite products of intervals inthe posets (KV (S)=G;�), for set systems with automorphism group (S; G) whoseisomorphism classes lie in C. However, the kernel of the map fromPto C extendingthe map de�ned in the previous section is not an order compatible relation. Thisis the reason for which we adopt a direct approach, de�ning the comultiplicationin H�hCi by �(S; G) = XW2T (S; G)jW 
 (S; G)jW ;



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 121where T is an arbitrary transversal of KV (S)=G. The counit is speci�ed by"(S; G) = 8<: 1 if (S; G) = (f;g; f1g)0 otherwise .Multiplication is induced by disjoint union, as de�ned by (1.6.2), and the unit isthe map � speci�ed by �(1) = (f;g; f1g) . It is not di�cult to check that the abovemaps de�ne a Hopf algebra structure on H�hCi. In particular, coassociativityfollows by observing thatjGj �(S; G) = XW�V (S) jGW j (S; G)jW 
 (S; G)jW (4.2.1)= XW�V (S) �jGjW j (S; G)jW �
 �jGjW j (S; G)jW � ;here we have used the standard fact that jG(W )j = jGj=jGW j, as well as the factthat G is cycle-closed, which implies GW �= GjW �GjW . We can also use (4.2.1)to prove that the antipode of H�hCi is speci�ed byjGj 
(S; G) = X(�;!)2A(KV (S))(�1)j�jYB2� �jGjBj (S; G)jB� :Using once again the fact that G is cycle-closed, we deduce that
(S; G) = X(�;!)2T (�1)j�jYB2�(S; G)jB ;where T is an arbitrary transversal of A(KV (S))=G. Note that considering cycle-closed automorphism groups is essential; indeed, the obvious extensions of theabove maps do not de�ne a Hopf algebra structure on H�hAi. Clearly, the Hopfalgebra H�hCi is commutative, cocommutative, graded (in a similar way to S�),and has �nite type. We may de�ne similar Hopf algebra structures on H�hCi bybasing the multiplication on _ or �, rather than disjoint union. We can alsoreplace the ring H� of scalars with other rings, such as Z.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 122We would now like to factor the Hopf algebra H�hCi by relations of the formS � jGj (S; G). Let I� be the graded ideal of H�hCi generated by the setfS � jGj (S; G) : (S; G) 2 Cg : (4.2.2)Proposition 4.2.3 The ideal I� is a Hopf ideal.Proof. According to (4.2.1), we have�(S � jGj (S; G)) = XW�V (S) �SjW � jGjW j (SjW;GjW )�
 SjW+ XW�V (S) jGjW j (S; G)jW 
 �SjW � jGjW j (SjW;GjW )� ;which lies in H�hCi 
 I� + I� 
H�hCi. 2According to the above result, we have the graded Hopf algebra H�hCi=I�,which we denote by C�. We will denote the element (S; G) + I� of C� by [S; G].Note that H�hSi can be regarded as a sub-Hopf algebra of C�. Let us alsonote that for a given set system S, the elements [S; G] in C� which are notdivisible by integers correspond to the maximal cycle-closed subgroups G of theautomorphism group of S. In general, there is more than one such subgroup.Indeed, let S be the set system on 7 vertices corresponding to the projectivegeometry PG2(2), with automorphism group GL3(2); it is not di�cult to seethat the maximal cycle-closed subgroups of GL3(2) are its Sylow subgroups.Let �b; cb : C� ! H�fxg be the H�-linear maps speci�ed by[S; G] 7! ��(S;x)=jGj and [S; G] 7! c�(S;x)=jGj ;respectively; note that these maps are well-de�ned, and that we can choose thecodomains to be H�fxg by Lemma 2.5.2 and (2.5.6). Similarly, we consider theZ-linear map X : ZhCi ! SymZ�(x) speci�ed by (S; G) 7! X(S; G;x).Theorem 4.2.4 The maps �b; cb : C� ! H�fxg and X : (ZhCi;_) ! SymZ�(x)are surjective maps of graded Hopf algebras.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 123Proof. Surjectivity follows from (1.8.4) and the fact that X(Nn; �n;x) is theelementary symmetric function �n. According to Propositions 1.8.5 and 1.8.6,it only remains to prove that the given maps preserve comultiplication. For �band cb, this follows immediately from Proposition 4.1.4 by regarding H�hSi as asub-Hopf algebra of C�, and by using the relation [S] = jGj [S; G], which holds inC�. In order to prove that X is a coalgebra map, it su�ces to show thatX(S; G;x[2d ]) = XW2T X(SjW;GjW ;x[d ])X(SjW;GjW ;xd+[d ]) ; (4.2.5)where T is an arbitrary transversal of KV (S)=G. Let us denote �[d ](SjW ) ��d+[d ](SjW ) by �W , for simplicity. Recall the bijection from �[2d ](S) toSW�V (S) �W constructed in the proof of Proposition 4.1.5. The group G acts onthe second set via this bijection, and we have a restricted action of GW on �W .There is a second bijection, from SW2T �W=GW to �SW�V (S)�W� =G, given byGW (f 0; f 00) 7! G(f 0; f 00). Since G is cycle-closed we have GW �= GjW �GjW , andhence a third bijection, from �W =GW to(�[d ](SjW )=(GjW ))� (�d+[d ](SjW )=(GjW )) :These three bijections together yield a fourth one, from �[2d ](S)=G to[W2T (�[d ](SjW )=(GjW ))� (�d+[d ](SjW )=(GjW )) ;with the property that if G(f) 7! ((GjW )(f 0); (GjW )(f 00)), then xf = xf 0 xf 00.This proves (4.2.5). 2Now let � : C� ! H�fxg be a surjective map of graded coalgebras, such as �bor cb. As in the previous section, we may employ �� to associate a delta operatora(D�) on C� with the delta operator a(D) on H�fxg, and check that the map� : (C�; a(D�))! (H�fxg; a(D)) becomes a map of coalgebras with delta operator.This result then yields a suitably strengthened version of Theorem 4.2.4.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 124As an analogue of (4.1.8), we haveD�(Nn; �n) = Dc(Nn; �n) = (Nn�1; �n�1) ; b(Dc) (Kn; �n) = (Kn�1; �n�1) :With reference to the binomial sequences (Kn(A)) de�ned in the previous section,we remark that the sequence (Kn(A); �n) is a divided power sequence, in the senseof (1.1.12); furthermore, every divided power sequence in C� is of this form.We also obtain an analogue of Proposition 4.1.9, whose proof is similar.Proposition 4.2.6 Let a be an arbitrary umbra in H�, and � a delta operatoron C� which is a derivation; then the following identities hold in C�:a(�) ((S1; G1) � (S2; G2)) = Xi;j�0 fai;j (a(�)i (S1; G1)) � (a(�)j (S2; G2))and a(�) 
(S; G) =Xk�1 iak 
(a(�)k (S; G))Given any map � : C� ! H�fxg of graded Hopf algebras, D� is a derivation onC�, so the above identities hold for it.All our results for the map cb may be reformulated by complementation forthe map �b : (H�hCi=I�;�)! H�fxg, speci�ed by [S; G] 7! ��(S;x)=jGj.In conclusion, we address the problem of �nding a model for the covariantbialgebra L�h�bi (x)i of the universal formal group law. To this end, we considerthe free L�-module L�hPi spanned by the set P de�ned in x1.6; clearly, thismodule is a sub-Hopf algebra of L�hCi. If I� is now the ideal of L�hCi generatedby the set in (4.2.2), we have the graded Hopf algebra P� := L�hPi=(I�\L�hPi),by a similar argument to Proposition 4.2.3. Note that there are inclusions of Hopfalgebras L�hSi ,! P� ,! L�hCi=I� :Theorem 4.2.7 The restriction of cb to P� is a map of graded Hopf algebrasonto L�h�bi (x)i.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 125Proof. We establish that cb(P) � L�h�bi (x)i, from which the result follows byProposition 4.1.4 and (1.8.4). Consider (S; G) 2 P, and let � be the associatedpartition. We will prove that c�(S;x)=jGj 2 L�h�bi (x)i by induction with respectto jS nK�j; the induction starts successfully at 0, by the de�nition of L�h�bi (x)i. IfjS nK�j > 0, choose a set U 2 SnK� minimal with respect to inclusion, and recallthe deletion/contraction formula Theorem 2.3.1. We clearly haveG �= GjU�GjU ,and (S nU;G) 2 P. Also, GjU can be viewed as an automorphism group of S==Uin the obvious way, whence (S==U;GjU ) lies in P (the corresponding partition isobtained from �jU by adjoining the block consisting of the singleton fUg). Usingthese facts, formula (2.3.1) can be rewritten asc�(S;x)jGj = c�(S n U ;x)jGj + ���(SjU)(b0; fUg)jGjU j c�(S==U ;x)jGjU j :Given the choice of U , we have���(SjU)(b0; fUg)jGjU j = �r F �n1;::: ;nkn1! : : : nk! in L� ;by (3.1.2) and (1.2.13), where ni are the sizes of the blocks of �jU , and r is somepositive integer. The induction is now complete. 24.3 A Non-cocommutative Hopf Algebroid ofSet SystemsRecall that we denoted by bS the set of weak isomorphism classes of set systemsfor which the poset of divisions has a unique maximal element. In this sectionwe de�ne a non-cocommutative structure on the free ��-module bS� := ��hbSispanned by the set bS; this structure is not a Hopf algebra, but a Hopf algebroid.However, its construction starts by de�ning a similar structure on the free Z-module ZhbSi, and this is a Hopf algebra. This construction is analogous to the



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 126one for S�, being also based on the general method of constructing incidence Hopfalgebras described in [47].As pointed out in x1.5, we shall not attempt to distinguish notationally be-tween a set system and its weak isomorphism class, since in those cases where itmatters, we have taken care to ensure that the context is clear.Let Pbe the hereditary family consisting of all �nite products of intervals fromthe posets �(S) ordered by re�nement, for set systems S with weak isomorphismclasses lying in bS. Intervals corresponding to di�erent set systems are considereddistinct, even if they consist of identical sets, so we index by S the elements of�(S) determining an interval. We de�ne a map from P to bS as follows: givenset systems Si for i 2 [n] and intervals [�Si; �Si] in �(Si), we map [�S1; �S1] �: : : � [�Sn; �Sn] to the weak isomorphism class of the set system ((S1j�S1)==�S1) �: : : � ((Snj�Sn)==�Sn). Let � be the kernel of this map. The proof of the ordercompatibility of � is mainly based on the fact that disjoint union interacts withrestriction and strong contraction such that((S1 � S2)j(�1 t �2))==(�1 t �2) = ((S1j�1)==�1) � ((S2j�2)==�2) ;where [�i; �i] are intervals in �(Si) for i = 1; 2. This proof can be divided intotwo steps, as shown below:[�S1; �S1 ]�[�S2; �S2] � [(�S1t�S2)S1 �S2; (�S1t�S2)S1�S2]; (�S1 ; �S2) 7! (�S1t�S2)S1�S2[�S; �S ] � [(�S=�S)(Sj�S)==�S ; (�S=�S)(Sj�S)==�S ] ; �S 7! (�S=�S)(Sj�S)==�S ;the two maps indicated are the corresponding order compatible bijections. Sinceisomorphism of set systems is a congruence with respect to disjoint union, andsince � is a reduced congruence (this is the reason for considering weak isomor-phism classes of set systems), the relation � is a Hopf relation.Let H(P) be the Z-incidence Hopf algebra of the family Pmodulo the Hopfrelation �, as de�ned in [47]. The bijection from P=� to bS induced by the map



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 127above can be extended by linearity to a bijection from H(P) to ZhbSi. We usethis bijection to transfer the Hopf algebra structure of H(P) to ZhbSi. Comulti-plication in ZhbSi is speci�ed by�(S) := X�2�(S)Sj� 
 S==� :The counit is determined by"(S) := 8<: 1 if S = f;g0 otherwise .Multiplication is disjoint union, and the unit is the map � speci�ed by �(1) := f;g.The antipode can be expressed using the Schmitt formula (1.7.1). Note the rôleof the non-standard convention �(f;g) := ff;gg; also note the fact that we haveno counit if we replace bS with the set of weak isomorphism classes of all setsystems.Clearly, the Hopf algebra ZhbSi is commutative and non-cocommutative. Ithas �nite type, and is graded by setting the degree of the weak isomorphism classof S equal to jb0�(S)j�jb1�(S)j. On the other hand, this Hopf algebra is isomorphic,as an algebra, to the polynomial algebra Z[bS�].Let us denote by bK the set of weak isomorphism classes of Kn, n � 0. Thisset generates a sub-Hopf algebra of bS�, which is easily seen to be isomorphic tothe Fa�a di Bruno Hopf algebra discussed in Chapter 1; a slight variation of theabove combinatorial model for this algebra appears in [47] Example 14.1, and isbased on complete graphs.We now de�ne the Hopf algebroid (��; bS�). The left ��-module structureon bS�, which is expressed by the map �L, is the usual one; we will identify theelements of �� with their images via �L. The maps � and " are de�ned by thesame relations as the corresponding ones for ZhbSi, plus the constraint to be left



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 128module maps. The right unit �R is de�ned by�R(�n) := X�2�n+1 ��(�)Kj�j : (4.3.1)The conjugation 
 is de�ned as before for weak isomorphism classes of set systems,while we are constrained to set 
(�n) := �R(�n). In order to check that (��; bS�)with the above structure maps is indeed a Hopf algebroid, as well as in view oflater applications, we de�ne the algebra map bc� : bS� ! �� 
 �� by specifying itsimage on weak isomorphism classes of connected set systems S:bc�(S) := h�R(D) j c�(S;x)i :It is not di�cult to see that the map bc� restricts to an algebra isomorphismbetween ��[bK] and �� 
 ��, which commutes with the restrictions of the struc-ture maps de�ned above. Hence (��; ��[bK]) is a Hopf algebroid isomorphic to(��; �� 
 ��). In particular, we havebc�(Kn+1) = h�R(D) jB�n+1(x)i = X�2�n+1 ��(b0; �) ��R(�;b1) =  n ; (4.3.2)and �(z) = 1
 z for z 2 �R(��) � bS� : (4.3.3)Furthermore, all the axioms of a Hopf algebroid can now be easily checked for(��; bS�) either directly, or using the above isomorphism and the fact that ZhbSiis a Hopf algebra.In order to write computations in a concise form, it helps to consider the func-tions ��; �� in ��(�n+1), ��R; ��R in (�� 
 ��)(�n+1), and �K; �K; ��R(�); ��R(�)in bS�(�n+1); as the notation suggests, K is the umbra (K1;K2; : : : ), and �R(�)is the umbra (1; �R(�1); �R(�2); : : : ). Throughout this section, we let b0 := b0�n+1and b1 := b1�n+1 , unless there is some other poset in sight. The de�nition (4.3.1)



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 129of �R can now be rewritten as �R(�n) := (�� � �K)(b0;b1), which is equivalent toKn+1 = (�� � ��R(�))(b0;b1).The Hopf algebroid (��; bS�) clearly has the same properties as the Hopf alge-bra ZhbSi of being commutative, non-cocommutative, graded, and isomorphic toa polynomial algebra.Proposition 4.3.4 The map (I;bc�) : (��; bS�) ! (��; �� 
 ��) is a surjectivemap of graded Hopf algebroids.Proof. The map bc� clearly preserves gradings, while surjectivity follows from(4.3.2). Now let S be an arbitrary connected set system with weak isomorphismclasses lying in bS. First, we need to show that (" � bc�)(S) = 0. By expressingc�(S;x) according to Proposition 2.4.1 and by using (4.3.2) once again, we obtainbc�(S) = X�2�(S) ��S(�) j�j�1 :Since all partitions in �(S) have at least two blocks, we have "(bc�(S)) = 0.The fact that bc� � �R = �R has been already observed, when we discussed therestriction of bc� to ��[bK].The fact that � � bc� = (bc� 
 bc�) � � follows from((bc� 
 bc�) � �)(S) = X�2�(S)(���(S) � ��R)(b0; �)
 (���(S) � ��R)(�;b1) (4.3.5)= X�2�(S)���(S)(b0; �)
 (�� � (���(S) � ��R))(�;b1)= X�2�(S)���(S)(b0; �)
 ��R(�;b1)= �0@ X�2�(S)���(S)(b0; �) ��R(�;b1)1A = (� � bc�)(S) :As far as the relation bc� � 
 = 
 � bc� is concerned, it is easily checked whenapplied to �n. Hence, we only need to prove that the above relation holds when



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 130applied to S in bS. We do this by induction on jV (S)j, which starts at 1. ForjV (S)j � 2, we use induction and the de�nition of 
 to prove that0 = bc�0@ X�2�(S)Sj� � 
(S==�)1A= bc�(
(S))� 
(bc�(S)) + X�2�(S)bc�(Sj�) 
(bc�(S==�))= bc�(
(S))� 
(bc�(S)) + ((I � 
) � (bc� 
 bc�) � �)(S)= bc�(
(S))� 
(bc�(S)) ;the last equality follows from the axioms of a Hopf algebroid:(I � 
) � (bc� 
 bc�) � � = (I � 
) � � � bc� = �L � " � bc� = �L � " :2 Note that the map bc� allows us to de�ne a right �� 
 ��-comodule algebrastructure on bS� via the map� : bS� ! bS� 
�� (�� 
 ��) ; � := (I 
 bc�) � � :Recall that an element z of this comodule algebra is called primitive if �(z) =z
1. The set of primitive elements is a ��-subalgebra of bS�, and will be denotedby P (bS�). Our next goal is to apply the following structure theorem to the map(I;bc�).Theorem 4.3.6 (cf. [33] Corollary A1.1.19) Let (I; f) : (A�; ��)! (A�; ��) bea map of graded connected Hopf algebroids. Suppose1. f : �� ! �� is onto, and2. P (��) is an A�-module and there is a A�-linear map p : �� ! P (��) splitby the inclusion of P (��) in ��.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 131Then there is a map � : �� ! P (��)
A���, de�ned by � := (p
f)��, which is anisomorphism of P (��)-modules and ��-comodules (� denotes the comultiplicationof (A�; ��)).To apply the above theorem, we need to construct a projection p : bS� ! P (bS�).We believe that it is possible to construct a projection which is an algebra map;thus, the map � in the above theorem would be an isomorphism of algebras and�� 
 ��-comodules. For the moment, we have only been able to de�ne such aprojection on a sub-Hopf algebroid of (��; bS�). Let bD denote the set of those weakisomorphism classes in bS which correspond to set systems S with S n max S asimplicial complex (here max S denotes the set of maximal elements in the poset(S;�)). Clearly, the free ��-module bD� := ��hbDi generated by bD is a sub-Hopfalgebroid and a sub-�� 
 ��-comodule algebra of bS�. We de�ne the algebra mapp : bD� ! bD� by specifying its image on weak isomorphism classes of connectedset systems S: p(S) := S � X�2�(S) ��S (�)Kj�j :Theorem 4.3.7 The algebra map p is a projection onto P ( bD�). Hence, the map� : bD� ! P ( bD�) 
�� (�� 
 ��) de�ned by � := (p 
 bc�) � � is an isomorphism ofalgebras and �� 
 ��-comodules.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 132Proof. We have�(S)� S 
 1 = X16=�2�(S)K� 
 bc�(S==�)= X16=�2�(S)(�� � ��R(�))(b0; �)
 (���(S) � ��R)(�;b1)= X���<b1;�;�2�(S)���(S)(b0; �)
 (�� � ���(S))(�; �) ��R(�;b1)+ X���<b1;�;�2�(S)���(S)(b0; �)
 ��(�; �)���(S)(�;b1)= Xb1 6=�2�(S) ���(S)(b0; �)
 ��R(�;b1)� Xb1 6=�2�(S) ���(S)(b0; �)
 ��(�;b1)= X�2�(S)���(S)(b0; �)
 (��R(�;b1)� ��(�;b1)) :Let K := (���(S) � ��R(�))(b0;b1). Combining the above result with (4.3.3), weobtain �(K) = X�2�(S)���(S)(b0; �)
 ��R(�;b1)= K 
 1 + X�2�(S)���(S)(b0; �)
 (��R(�;b1)� ��(�;b1))= K 
 1 +�(S)�S 
 1 ;hence �(S � K) = (S �K) 
 1. On the other hand, according to Proposition2.4.1, we haveK = X�2�(S) ��S (�) (�� � ��R(�))(b0�j�j ;b1�j�j) = X�2�(S) ��S(�)Kj�j :We conclude the proof by noting that p(Kn) = 0 for n � 1, whence p is indeed aprojection. 2Let us note that bD� is the direct sum of ��[bK] and P ( bD�); on the other hand,P ( bD�) is easily seen to be a polynomial algebra in the set of variables p(bD� n bK),where bD� denotes, as expected, the subset of bD consisting of weak isomorphismclasses of connected set systems.



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 1334.4 Non-cocommutative Hopf Algebroids of SetSystems with Automorphism GroupIn this section, we de�ne non-cocommutative Hopf algebroid structures on certainquotients of the free modules H�hbAi and L�hbPi spanned by the sets bA and bPde�ned in x1.6. We also relate our constructions to the cocommutative Hopfalgebras of set systems with automorphism group constructed previously.As pointed out in x1.6, we shall not attempt to distinguish notationally be-tween a set system with automorphism group and its weak isomorphism class,since in those cases where it matters, we have taken care to ensure that thecontext is clear.Let us consider the algebraZhbAi with multiplication induced by disjoint union,as de�ned by (1.6.2), and unit map � speci�ed by �(1) = (f;g; f1g) . Clearly,this algebra is commutative, graded (in a similar way to ZhbSi), and has �nitetype. Note that if the weak isomorphism class of (S; G) lies in bA, then the weakisomorphism classes of (S; G)j� and (S; G)=� also lie in bA, for every � 2 �(S);later we will need the fact that bP is also closed with respect to restriction andcontraction (in the sense mentioned above), which is again easy to check. Hence,we may de�ne the following comultiplication:�(S; G) =X�2T (S; G)j� 
 (S; G)=� ;where T is an arbitrary transversal of �(S)=G. This comultiplication is notcoassociative (indeed, ((I 
 �) � �)(K4; �4) 6= ((� 
 I) � �)(K4; �4)), but it has acounit determined by"(S; G) = 8<: 1 if (S; G) = (f;g; f1g)0 otherwise .We would now like to factor the algebraZhbAi by the graded ideal J� generated



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 134by the set fS � jGj (S; G) : (S; G) 2 bAg : (4.4.1)Proposition 4.4.2 The ideal J� is also a coideal.Proof. Consider (S; G) with weak isomorphism class in bA. Using the fact thatjG(�)j = jGj=jG�j, we obtainjGj �(S; G) = X�2�(S) jG�j (S; G)j� 
 (S; G)=� :Using (1.6.1), we have�(S � jGj (S; G)) = X�2�(S) �Sj� � jGj�j (Sj�;Gj�)�
 S==�+ X�2�(S) jGj�j (S; G)j� 
 �S==� � jG=�j (S==�;G=�)� ;which lies in ZhbAi 
 J� + J� 
ZhbAi. 2According to the above result, we can de�ne the comultiplication � on thegraded quotientZhbAi=J�. The element (S; G)+J� of this quotient will be denotedby [S; G]. Note that ZhbSi can be regarded as a sub-Hopf algebra of ZhbAi=J�.Furthermore, we can use the fact that ZhbSi is a Hopf algebra to prove thatZhbAi=J� is also a Hopf algebra. Let us also note that for a given set system S,there is a unique element [S; G] inZhbAi=J� which is not divisible by integers, andthis corresponds to G being the automorphism group of S.The elements [Kn; �n], n � 1, generate a sub-Hopf algebra of ZhbAi=J�. Thisis isomorphic to the dual of the Landweber-Novikov algebra, which was discussed



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 135in Example 1.7.4. Indeed, we haven! �([Kn; �n]) = X(�;!)2A(Kn) j�n;�jj�j! [Knj�;�nj�]
 [Kn==�;�n=�]= X(�;!)2A(Kn) j�nj�j [Knj�;�nj�]
 [Kj�j; �j�j]= n! X�2�(In) YU2�[KjU j; �jU j]!
 [Kj�j; �j�j] ;here we have used the following facts:jG�j = jGj=jG(�)j ; j�nj�j = j�n;�j=j�n=�j ; and A(Kn)=�n �= �(In) :Let us now consider the embedding Kn 7! [Kn] = n! [Kn; �n] of the Hopf algebraZhbKi in the sub-Hopf algebra of ZhbAi=J� generated by [Kn; �n], n � 1. Thisis a purely combinatorial way of understanding the fact that the Fa�a di BrunoHopf algebra �� embeds in the dual of the Landweber-Novikov algebra H� via�n�1 7! n!bn�1 (see Example 1.7.4). Another combinatorial model for the dualof the Landweber-Novikov algebra appears in [47] Example 14.2, and is based onpaths; however, this model does not help us understand the embedding �� ,! H�.Now let bA� be the quotient of the algebra H�hbAi by the graded ideal generatedby the set in (4.4.1). We can extend the map bc� de�ned in the previous sectionto an algebra map bcb from bA� to H� 
H� as follows: [S; G] 7! bc�(S)=jGj. Notethat bcb is well-de�ned; furthermore, bcb does indeed take values in H� 
H� since,assuming S to be connected, we know from (2.5.6) that c�(S;x)=jGj lies inH�fxg,and that h�R(D) j xn=n!i = bRn�1. Let us also note that bcb sends [Kn; �n] tocn�1. Using a similar approach to the one in the previous section, we de�nethe Hopf algebroid (H�; bA�), and prove that (I;bcb) is a surjective map of gradedHopf algebroids. All the de�nitions and proofs are easily adapted to the newcontext. The only slight di�erence appears in the de�nition of the right unit,



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 136which becomes �R(bn) := X�2�(In+1) � b(�) [Kj�j; �j�j] :This de�nition is actually equivalent to the condition bcb � �R = �R.We now address the problem of �nding a model for the Hopf algebroid (L�;L� 
H�). To this end, we consider the free L�-module L�hbPi spanned by the setbP de�ned in x1.6. Clearly, (L�; L�hbPi) is a sub-Hopf algebroid of (L�; L�hbAi).Now let J� be the ideal of L�hbAi generated by the set in (4.4.1). By a similarargument to Proposition 4.4.2, we have the graded Hopf algebroid (L�; bP�), wherebP� := L�hbPi=(J� \ L�hbPi). Note that there are inclusions of Hopf algebroids(L�; L�hbSi) ,! (L�; bP�) ,! (L�; L�hbAi=J�) :Theorem 4.4.3 The restriction of (I;bcb) to (L�; bP�) is a surjective map of gradedHopf algebroids onto (L�; L� 
H�).Proof. This is an immediate consequence of Theorem 4.2.7, and the fact thatbcb([Kn; �n]) = h�R(D) jB�n(x)=n!i = cn�1 :2 In conclusion, we present a combinatorial model for the map h�R(D) j �i fromthe covariant bialgebra of the universal formal group law L�h�bi (x)i, which isisomorphic toMU�(CP1), to L� 
H�, which is isomorphic toMU�(MU). Recallfrom Example 3.3.6 that the above map is induced by the topological inclusionCP1 ' MU(1) ,! �2MU . The map h�R(D) j �i is neither an algebra nor acoalgebra map. We lift this map to a purely combinatorial map s from a certainsub-Hopf algebra P 0� of P� to bP�. Let us �rst introduce the following notation:bS := S [ fV (S)g ; P 0� := L�hP0i=(I� \ L�hP0i) ;here P0 denotes the subset of P consisting of isomorphism classes of set systemswith automorphism group (S; G) for which �(S) has a unique maximal element,



CHAPTER 4. HOPF ALGEBRAS OF SET SYSTEMS 137and I� is the ideal of L�hCi generated by the set in (4.2.2). We now de�ne themap s : P 0� ! bP� as follows:s([S; G]) :=8<: [S; G] if S 2 S�h bS; Gi� ���( bS)(b0;b1)=jGj otherwise .This map is well-de�ned as long as we show that ���(bS)(b0;b1)=jGj lies in L�. Thisis indeed the case, since���(bS)(b0;b1)jGj x = c�( bS;x)jGj � c�(S;x)jGj ; (4.4.4)and we know from Theorem 4.2.7 that both of these polynomials lie in L�h�bi (x)i.By using (4.4.4) once again, we prove our �nal result, which states that s is alifting of h�R(D) j �i.Proposition 4.4.5 The following diagram is commutative:P 0�?cb bP�?bcb-sL�h�bi (x)i L� 
H�-h�R(D) j �iThe above diagram captures the essence of the results contained in this chap-ter, namely that the universal objects L�h�bi (x)i and L� 
H� are images of somecombinatorial structures via maps of Hopf algebras/algebroids, which are com-patible with the embedding L�h�bi (x)i ,! L� 
H�.



Chapter 5Necklace Algebras and WittVectors Associated with FormalGroup LawsIn this chapter, we generalise the constructions in x1.9 in the context of formalgroup laws. Thus, we obtain combinatorial models for Witt vectors associatedwith a formal group law. We shall see that the classical necklace algebra ofMetropolis and Rota corresponds to the multiplicative formal group law. Otherspecial cases are also investigated, including a family of formal group laws notmentioned in [18] for which there are ring structures on the associated Wittvectors and curves.5.1 Constructing the Generalised Necklace Al-gebraWe start this section with a brief survey of Witt vectors associated with formalgroup laws (cf. [18] Chapter 3). 138



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 139Throughout this chapter, we let F (X;Y ) be a formal group law over a torsionfree ring A with logF (X) =Xn�1 anXn ; a1 = 1 ; an 2 AQ :Unlike the rest of this work, here we do not require A to be graded. In particular,for every integer q, we consider the formal group lawFq(X;Y ) := X + Y � (q + 1)XY1 � qXY in Z[[X;Y ]] (5.1.1)with logarithm logq(X) =Xn�1 [n]qn Xn in Q[[X]] ;where [n]q := 1 + q + : : : + qn�1. Note that we have written logq(X) instead oflogFq (X), for simplicity; actually, throughout this chapter, we replace every sub-script or superscript Fq by q. Let us also note that F0(X;Y ) is the multiplicativeformal group law, while F�1(X;Y ) gives the addition formula for the hyperbolictangent. It is worth mentioning that the formal group law Fq(X;Y ) is relevantto algebraic topology in the following sense: the ring homomorphism from theLazard ring, which we identify with MU�, to Zmapping the coe�cients of theuniversal formal group law to the coe�cients of Fq(X;Y ) is precisely the Eulercharacteristic for q = 1, the Todd genus for q = 0, and the L-genus for q = �1(see e.g. [30]).Recall that in x1.9 we have de�ned A1 to be the set of in�nite sequencesof elements of A, as well as the ghost ring Gh(A). Given the formal group lawF (X;Y ) over A, we follow [18] by de�ning the mapwF : AQ1 ! Gh(AQ) ; wFn (�) :=Xdjn an=d �n=dd :The group of Witt vectors W F (AQ) has underlying set AQ1, and is de�ned byinsisting that wF be a group homomorphism. Let C(F;A) denote the group of



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 140curves in the formal group law F (X;Y ), that is the group tA[[t]] with additionspeci�ed by �(t) +F �(t) := F (�(t); �(t)) (cf. (1.2.2)).We de�ne the mapEF : Gh(AQ) ! C(F;AQ) ; EF (�) := expF (�(t)) ;where �(t) :=Pn�1 �ntn. The mapHF : W F (AQ)! C(F;AQ) de�ned byHF :=EF � wF is known as an Artin-Hasse type exponential map associated with theformal group law F (X;Y ). It is easy to check thatHF (�) =Xn�1F �ntn :For every positive integer r, the Verschiebung operator Vr is de�ned onW F (AQ) and on Gh(AQ) as in (1.9.1), and on C(F;AQ) byVr �(t) = �(tr) : (5.1.2)The Frobenius operator fr is de�ned on Gh(AQ) and C(F;AQ) byfr;n � = r�rn and fr �(t) = �(�t1=r) +F �(�2t1=r) +F : : :+F �(�rt1=r) ;(5.1.3)respectively, where � is a primitive r-th root of unity (see [18]). The Frobeniusoperator is also de�ned on W F (AQ) such that it commutes with HF . Clearly, Vracts on W F (A), Gh(A) and C(F;A), while fr acts on Gh(A) and C(F;A).W F (AQ)HHHHHHHHHjwF C(F;AQ)-HFGh(AQ)���������*EF (5.1.4)



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 141Theorem 5.1.5 (cf. [18] x25.1 and Theorem 6.5.8)1. Addition in W F (AQ) is de�ned by polynomials with coe�cients in A, whichmeans that A1 is a subgroup of W F (AQ) (this is the group of Witt vectorsW F (A)).2. The maps wF , EF , and HF are isomorphisms of abelian groups.3. The image of W F (A) in C(F;AQ) is precisely C(F;A).4. The Frobenius operator fr acts on W F (A). The maps wF , EF , and HFcommute with the actions of the operators Vr and fr.Note that if F (X;Y ) is the multiplicative formal group law F0(X;Y ) overA, then W F (A) coincides with the additive group of W (A). As pointed out in[18], it is quite remarkable that in this case we are able to de�ne a multiplicativestructure on W F (A) as well, such that � � gF is a ring homomorphism, for somemap � : Gh(AQ) ! Gh(AQ) of the form �n(�) = kn�n with kn 2 Q (for F0(X;Y )we have �n(�) = n�n, as discussed at the end of this section). In x5.4 we provethat this actually happens for every formal group law Fq(X;Y ).We now de�ne and study the necklace algebra associated with the formalgroup law F (X;Y ). In general, we are only able to de�ne it over AQ, so wewill denote it by NrF (AQ). The module structure of NrF (AQ) is the same asthat of Nr(AQ). In order to de�ne the multiplicative structure and to relateNrF (AQ) to the other structures in diagram 5.1.4, we need to associate withF (X;Y ) generalised necklace polynomials. Let us consider the incidence algebraover AQ of the latticeD(n) of divisors of n. Let �F be the element of this algebrade�ned by �F (d1; d2) := ad2=d1 ;for every d1; d2 2 D(n) with d1jd2. Since a1 = 1, the element �F has a convo-lution inverse, which will be denoted by �F . It is easy to see that �0(d1; d2) =



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 142d1=d2 �(d1; d2) = d1=d2 �(d2=d1), and that �1(d1; d2) = �(d1; d2) = �(d2=d1). Wenow de�ne the polynomialsMF (x; n) :=Xdjn �F (d; n) ad xd in AQ[x] :Clearly, M0(x; n) = M(x; n), and MF (1; n) = 0 for n > 1. In order to give acombinatorial interpretation for the polynomials MF (x; n), we recall from [29]the polynomials S(x; n) := nM(x; n). Let us also recall that n in N is a period ofthe word w (on a given alphabet), if there is a word u such that w = ujwj=n, wherejwj denotes the length of w; the smallest period is called the primitive period. Aword with primitive period equal to its length is called aperiodic. It is not di�cultto prove, via M�obius inversion, that S(m;n) represents the number of aperiodicwords of length n on an alphabet with m letters. Necklaces can be de�ned asequivalence classes of words under the conjugacy relation (that is w � w0 if andonly if there are words u; v such that w = uv and w0 = vu); moreover, primitivenecklaces can be de�ned as equivalence classes of aperiodic words.Proposition 5.1.6 The polynomials MF (x; n) can be expressed in the basisfS(x; i)g of the AQ-module AQ[x] by the following formula:MF (x; n) =Xdjn �F �nd ; n� S(x; d) ;where �F (i; n) :=Pjji �F (1; j) �F (j; n) .It turns out that this proposition is a special case of Theorem 5.2.3, so wepostpone the proof until then. Let us note that �F (n; n) = 0 for n > 1, andthat � 0(i; n) = � 1(i; n) = 0 unless i = 1; indeed, we can pair the chains in D(n)contributing to � 0(i; n) such that each pair consists of a chain containing i, andthe same chain with i removed. We now explain the combinatorial signi�cance ofthe above formula in terms of a combinatorial object which we call a factorised



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 143word. This is a word w (on a given alphabet), together with an expression of thefollowing form: w = (: : : ((wi10 )i2) : : : )ik :Clearly, jw0j = jwj=(i1 : : : ik). The word w0 will be called the root of the fac-torised word. We de�ne the type of the factorised word to be the element(�1)kajw0jai1 : : : aik in AQ. In this section, as well as in x5.2 and x5.3, we usuallythink of the formal group law F (X;Y ) as being the universal one; then the typeof a factorised word is a signed monomial in the polynomial generators mi of LQ.With these de�nitions, we can now state the following corollary of Proposition5.1.6.Corollary 5.1.7 For all m;n in N, MF (m;n) in AQ enumerates by type thefactorised words of length n on an alphabet with m letters.Proof. A factorised word w = (: : : ((wi10 )i2) : : : )ik of length n on an alphabetwith m letters is uniquely determined by the primitive period u of w (and w0)and the chain f1 = d0jd1j : : : jdkjng in D(n) with dk dividing n=juj. Indeed, weset w0 := un=(jujdk), and ij := dk�j+1=dk�j for 1 � j � k. We can choose u oflength d dividing n in S(m;d) ways. According to the above remark, the sum oftypes of the factorised words of length n and primitive period u isX(�1)k �F (d0; d1) : : : �F (dk; n) = Xdk jn=d�F (1; dk) �F (dk; n) = �F �nd ; n� ;where the �rst summation ranges over all chains which can be associated with uas above; the �rst equality follows from the generalisation of the formula for theM�obius function of a poset. 2We now relate NrF (AQ) to the other groups in diagram 5.1.4, by de�ning the



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 144following maps:T F : W F (AQ)! NrF (AQ) ; T F (�) :=Xn�1 VnMF (�n) ;gF : NrF (AQ)! Gh(AQ) ; gFn (�) :=Xdjn an=d �d ;cF : NrF (AQ)! C(F;AQ) ; cF (�) :=Xn�1F [�n]F tn ;here MFn (b) := MF (b; n), the Verschiebung operator Vr on NrF (AQ) is de�nedas in (1.9.1), and[b]F (�(t)) := expF (b logF (�(t))) for b 2 AQ :Note that the last de�nition is compatible with (1.2.3).For every map � : Gh(AQ) ! Gh(AQ) of the form �n(�) = kn�n with kn 2Q, we de�ne a multiplication in NrF (AQ) by insisting that � � gF be a ringhomomorphism. For F (X;Y ) = F0(X;Y ) and kn = n, we obtain the necklacealgebra de�ned by Metropolis and Rota. The ring structure of NrF (AQ) willonly be important in x5.4; until then, we regard NrF (AQ) only as an abeliangroup.Proposition 5.1.8 All the above maps are isomorphisms of abelian groups, com-muting with the action of the Verschiebung operator, and the following diagramis commutative.W F (AQ)HHHHHHHHHjwF NrF (AQ)?gF C(F;AQ)-TF -cFGh(AQ)���������*EF (5.1.9)Proof. We note �rst that gF is invertible, and that its inverse is de�ned by(gF )�1n (�) =Xdjn �F (d; n)�d : (5.1.10)



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 145We now have((gF )�1 � wF )n(�) =Xijn �F (i; n)0@Xjji aj �ji=j1A ;T Fn (�) =Xijn MF ��i; ni � =Xijn Xjjn=i �F �j; ni � aj �ji=Xijn Xijjn �F (ij; n) aj �ji =Xkjn Xjjk �F (k; n) aj �jk=j ;the last equality follows by setting k := ij. Hence gF � T F = wF . To check thecommutativity of the second triangle, we note that(logF �EF � gF )(�) = (gF (�))(t) and (logF �cF )(�) =Xi�1 �i logF (ti) :The coe�cients of tn in both power series above are equal toPijn an=i �i, whenceEF � gF = cF .The map gF is clearly an isomorphism of abelian groups, and commutes withthe Verschiebung operator. By using the commutativity of diagram 5.1.9 andTheorem 5.1.5, we deduce that T F and cF have the same properties as gF . Notethat the inverse of T F can be found by using an algorithm similar to the clearingalgorithm in [29]. 2Diagram 5.1.9 for F (X;Y ) = F0(X;Y ) is not exactly the same as diagram1.9.3. In order to explain the relation between them, we de�ne the followinghomomorphisms:! : Gh(AQ)! Gh(AQ) ; !n(�) := n�n ; (5.1.11)� : C(F0; AQ)! 1 + tAQ[[t]] ; �(�(t)) := 11� �(t) :We can easily check thatw = ! � w0 ; g = ! � g0 ; c = � � c0 ; E = � � E0 � !�1 :A �rst result which validates our constructions is a formal group-theoreticgeneralisation of the cyclotomic identity; in some cases, we are able to derivefrom it nice explicit identities.



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 146Proposition 5.1.12 The following formal group-theoretic generalisation of thecyclotomic identity (V. Strehl's form) holds:Xn�1F [MF (u; n)]F (vtn) =Xn�1F [MF (v; n)]F (utn) in C(F;AQ) ;(5.1.13)where u; v 2 AQ. In particular, for F0(X;Y ) we obtain (1.9.4), and forF�1(X;Y ) we obtain 
(t; k; m) = 
(t; m; k) ; (5.1.14)where k;m 2Z, and
(t; i; j) := Qn�1(1 + it2n�1)M(j;2n�1) �Qn�1(1� it2n�1)M(j;2n�1)Qn�1(1 + it2n�1)M(j;2n�1) +Qn�1(1 � it2n�1)M(j;2n�1) in Z[[t]] :Proof. For the �rst part, we use the following identity which holds inNrF (AQ): Xn�1MF (u; n) VnMF (v) =Xn�1MF (v; n) VnMF (u) ;indeed, the n-th term in both sequences isXdjn MF (u; d)MF �v; nd� :We apply cF to this identity, using the following facts:cF (VnMF (u)) = Vn cF (MF (u)) = VnHF (u; 0; 0; : : : ) = utn andcF (u�) =Xn�1F [u�n]F (tn) =Xn�1F [u]F ([�n]F (tn)) = [u]F (cF (�)) ;here u 2 AQ and � 2 AQ1.In order to derive (5.1.14) from (5.1.13), we note �rst that we haveXm�1�1Xm = Qm�1(1 +Xm)�Qm�1(1�Xm)Qm�1(1 +Xm) +Qm�1(1 �Xm) : (5.1.15)



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 147This is easy to prove by induction when we have a �nite sum on the left-handside; we then take the limit in the �ltration topology of Z[[X1;X2; : : : ]]. Since[k]F (X) = X1�i�jkjF [sign(k)]F (X)for any formal group law F and integer k, and since[�1]�1(X) = �X = (1 +X)�1 � (1�X)�1(1 +X)�1 + (1 �X)�1 ;formula (5.1.15) generalises toXm�1�1[km]�1(Xm) = Qm�1(1 +Xm)km �Qm�1(1 �Xm)kmQm�1(1 +Xm)km +Qm�1(1�Xm)km ; km 2Z:Finally, we note thatM�1(i;m) = 8<: M(i;m) if m odd0 otherwise ,since log�1(X) = X +X3=3 +X5=5 + : : : . 25.2 Verschiebung and Frobenius OperatorsIn the previous section, we have de�ned for all positive integers r the Verschiebungoperator Vr and the Frobenius operator fr on Gh(R), W F (R), and C(F;R), whereR is one of the rings AQ or A. We have also de�ned Vr on NrF (AQ) and NrF (A).We have seen that the isomorphisms in diagram 5.1.9 commute with the actionsof these operators. It is natural to de�ne fr on NrF (AQ) in a compatible waywith the isomorphisms mentioned above. It turns out that, in general, fr is notan operator on NrF (A). Let us recall the well-known identities concerning theinteraction of the Verschiebung and Frobenius operators on any of the rings on



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 148which they act (see [18], [29], [14], [54]):VrVs = Vrs ; frfs = frs ;frVr = r I ;frVs = (r; s) fr=(r;s)Vs=(r;s) = (r; s)Vs=(r;s)fr=(r;s) ; (5.2.1)these identities are most easily checked in Gh(AQ). In this section, we intendto express and interpret combinatorially the action of the Frobenius operator onNrF (AQ).Theorem 5.2.2 The Frobenius operator fr acts on NrF (AQ) as follows:fr;n � = rXdjrn �F � rn[r; d]; rnd � �d :Proof. By (5.1.10), we havefr;n � = (gF )�1n (fr gF (�)) = rXijn �F (i; n)0@Xdjri ari=d �d1A= rXdjrn0@ Xdjri; ijn�F �1; ni � �F �ni ; rnd �1A �d= rXdjrn0@ Xjjrn=[r;d]�F (1; j) �F �j; rnd �1A �d = rXdjrn �F � rn[r; d]; rnd � �d :The fourth equality follows by setting j := n=i and noting that the conditionsdjrn=j and jjn are equivalent to jjrn=[r; d]. 2Note that if rjd and d 6= rn, then �F (rn=[r; d]; rn=d) = 0. On the otherhand, according to the observations about �0 and � 0 in x5.1, we have that� 0(rn=[r; d]; rn=d) = 0 unless [r; d] = rn, in which case it is equal to d=rn; hence,we recover the formula in [29] for the action of fr on Nr(A), namelyfr;n � =Xd dn �d ;



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 149where the summation ranges over the set fd : [r; d] = rng.We now interpret combinatorially the action of fr on NrF (AQ) by computingfr;nMF (m) for m;n 2 N .Theorem 5.2.3 We have thatfr;nMF (x) = rXdjn �F (d; n) ard xrd : (5.2.4)The above polynomial can be expressed in the basis fS(x; i)g of the AQ-moduleAQ[x] by the following formulafr;nMF (x) = rXdjn �F �nd ; rn� S(xr; d) : (5.2.5)Proof. Formula (5.2.4) follows easily:fr;nMF (x) = (gF )�1n (fr wF (x; 0; 0; : : : )) = r (gF )�1n (arxr; a2rx2r; : : : )= rXdjn �F (d; n) ard xrd :Formula (5.2.5) follows by rewriting its right-hand side:Xdjn �F �nd ; rn� S(xr; d) =Xdjn 0@Xijn=d�F (1; i) �F (i; rn)1A 0@Xjjd �(j; d)xrj1A=Xjjn Xijn=j �F (1; i) �F (i; rn)xrj 0@Xjjdjn=i�(j; d)1A=Xjjn �F �1; nj� �F �nj ; rn� xrj=Xjjn �F (j; n) arj xrj = fr;nMF (x) :2 Let us note that frVsMF (x) can be easily computed now, by using (5.2.1).Proposition 5.1.6 follows from (5.2.5) by setting r := 1. Let us also note that� 0(n=d; rn) = 0 unless d = n, in which case it is equal to 1=(rn); hence, (5.2.5)implies Theorem 4 (p. 100) in [29], namely the fact that fr;nM(x) =M(xr; n).



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 150We now de�ne the repetition factor of a word w to be the quotient of jwj bythe primitive period of w. With this de�nition, we can interpret (5.2.5) as follows.Corollary 5.2.6 For all m;n 2 N, 1=r fr;nMF (m) in AQ enumerates by typethose factorised words of length rn on an alphabet with mr letters, for which rdivides the repetition factor of the root.Proof. Let us recall from the proof of Corollary 5.1.7 the correspondencebetween factorised words w = (: : : ((wi10 )i2) : : : )ik and pairs consisting of an ape-riodic word u and a chain f1 = d0jd1j : : : jdkg with dk dividing jwj=juj. In thiscase, the alphabet has size mr, the words w have length rn, the length of theirprimitive period u divides n, and dk = rn=jw0j divides n=juj. The last conditionis equivalent to \r divides jw0j=juj", and this implies the fact that juj divides n.25.3 The p-typi�cation IdempotentLet A(p) := A 
Z(p). Recall from [18] that a curve �(t) in C(F;A) is called p-typical if logF (�(t)) is of the formPn�0 �ntpn. There is a remarkable idempotent"p on C(F;A(p)), which is a projection onto the subgroup of p-typical curves; wewill call it the p-typi�cation idempotent. It is expressed in terms of Vr and fr asfollows: "p = X(r;p)=1 1r�(r)Vr fr :The p-typi�cation idempotent has an important rôle in formal group theory, sincethe curve "p t is an isomorphism over the localisation of the Lazard ring L(p)between the universal formal group law and the universal p-typical formal grouplaw (see [18] or [33]). We can de�ne "p on Gh(A) (not just Gh(A(p))), W F (A(p)),



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 151and NrF (AQ). The action on Gh(A) is very easy to describe, namely:"p;n � = 8<: �n if n = pk0 otherwise .In order to describe the action of "p on NrF (AQ), we need some additionalnotation. First, we denote by vp(n) the p-valuation of n (that is the largest integerk such that pkjn). Now assume that m 6= pk, k > 0, and consider the poset Dp(m)obtained from the lattice of divisors of m by removing all non-zero powers of p.Let �Fp denote the convolution inverse of �F in the incidence algebra (over AQ)of this poset. We will write �Fp (m) for �Fp (1;m) if m 6= pk, k > 0; otherwise, weset �Fp (m) = 0.Theorem 5.3.1 The idempotent "p acts on NrF (AQ) as follows"p;n � = vp(n)Xk=0 �Fp � npk� �pk : (5.3.2)In particular, the idempotent "p acts on Nr(A(p)) by"p;n � = pvp(n)n �� npvp(n)� �pvp(n) : (5.3.3)Proof. From gF ("p �) = "p gF (�), it follows thatXdjn an=d "p;d � = 8<: Pki=0 apk�i �pi if n = pk0 otherwise . (5.3.4)An easy induction provides "p;pk � = �pk ; hence (5.3.2) holds in this case, accord-ing to the convention �Fp (pk) = 0 for k > 0. We now use induction once more



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 152and (5.3.4) to prove (5.3.2) for n 6= pk, k > 0:"p;n � = � Xdjn; d6=n an=d "p;d� = � Xdjn; d6=n an=d0@vp(d)Xl=0 �Fp � dpl��pl1A= vp(n)Xl=0 0@� Xpljdjn; d6=n an=d �Fp � dpl�1A�pl= vp(n)Xl=0 0@� Xijn=pl; i 6=n=pl �Fp (1; i) �F �i; npl�1A�pl= vp(n)Xl=0 �Fp � npl� �pl :We now compute �p(n) := n�0p(n) by using Proposition 1.7.15. Assumingthat n 6= pk, k > 0, we have�p(n) = �Dp(n)(1; n) = vp(n)Xl=0 X0=l0<l1<:::<lr=l(�1)r �(1; pl1) : : : �(plr�1 ; pl)�(pl; n)= vp(n)Xl=0 �� npl� :Here we have used �(pk) = 8<: 0 if k > 1�1 if k = 1 .Recalling the additional fact that �(rs) = �(r)�(s) if (r; s) = 1, we �nally have�p(n) = 8<: 0 if pjn�(n) otherwise .This is clearly true for n = pk as well, whence (5.3.3) holds. 2Finally, we interpret combinatorially the action of "p on NrF (AQ) by com-puting "p;nMF (m) for m;n 2 N.Theorem 5.3.5 We have that"p;nMF (x) = vp(n)Xk=0 �F (pk; n) apk xpk in AQ[x] : (5.3.6)



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 153The above polynomial can be expressed in the basis fS(x; i)g of the AQ-moduleAQ[x] by the following formula"p;nMF (x) = vp(n)Xk=0 0@vp(n)�kXi=0 �F �1; npi+k� api+k1A S(x; pk) : (5.3.7)Proof. Formula (5.3.6) follows easily:"p;nMF (x) = (gFn )�1("pwF (x; 0; 0; : : : ))= (gFn )�1(x; 0; : : : ; 0; apxp; 0; : : : ; 0; ap2xp2; 0; : : : )= vp(n)Xk=0 �F (pk; n) apk xpk :Formula (5.3.7) follows by noting that its right-hand side can be written asvp(n)Xi=0 �F �1; npi� api x+ vp(n)Xk=1 0@vp(n)�kXi=0 �F �1; npi+k� api+k1A (xpk � xpk�1) :Hence the coe�cient of xpk (with 0 � k � vp(n)) in the right-hand side is equalto vp(n)�kXi=0 �F �1; npi+k� api+k � vp(n)�k�1Xi=0 �F �1; npi+k+1� api+k+1 = �F (pk; n) apk ;here the second sum does not appear if k = vp(n). 2We can interpret (5.3.7) combinatorially as follows.Corollary 5.3.8 For all m;n 2 N, "p;nMF (m) in AQ enumerates by type thosefactorised words of length n on an alphabet with m letters for which the root lengthis a power of p.Proof. We recall once again from the proof of Corollary 5.1.7 the correspon-dence between factorised words w = (: : : ((wi10 )i2) : : : )il and pairs consisting of anaperiodic word u and a chain f1 = d0jd1j : : : jdlg with dl dividing jwj=juj. In thiscase the alphabet has size m, the words w have length n, their primitive period



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 154u has length pk for some 0 � k � vp(n), and n=jw0j = dl = n=pi+k for some0 � i � vp(n) � k. The last two conditions are equivalent to jw0j being a powerof p. 25.4 Special CasesThe main special case which we consider is the family of formal group lawsFq(X;Y ), q 2 Z, over Zde�ned in (5.1.1). Recall that the classical ring of Wittvectors and the necklace algebra of Metropolis and Rota correspond to q = 0 (inother words, to the multiplicative formal group law). According to the generalconstructions, we have the group of Witt vectorsW q(Z) and the necklace algebraNrq(Q), where the multiplicative structure of the latter depends on the choice ofa map � : Gh(Q)! Gh(Q) of the form �n(�) = kn�n with kn 2 Q; more precisely,this structure is de�ned by insisting that � � gq be an algebra map.Let us consider �rst the case q = 1 and � = I. We have thatg1n(�) =Xdjn �d :Hence, according to [54], Z1 is a subring of Nr1(Q), and this is precisely theaperiodic ring Ap(Z). Multiplication in Ap(Z) is de�ned by(� � �)n = X[i;j]=n�i �j :From now on, we let � := !, where ! was de�ned in (5.1.11). In orderto simplify notation, we set egq := � � gq and e� q(d; n) := n� q(d; n). Theorem5.4.8 represents the main result of this section, generalising the classical necklacealgebra construction (which can be recovered for q = 0); its proof is based on thefollowing two lemmas.Lemma 5.4.1



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 1551. If q � 1 mod p for a given prime p, then [plm]q is divisible by pl for anypositive integers l;m.2. The polynomials n=d � q(d; n) in Q[q] are numerical polynomials for all pos-itive integers d; n with djn.Proof. We �x q in Z, and divide the proof into three steps.Step 1. Clearly, it is enough to consider m = 1, and q = pr + 1 with r 6= 0.In this case we have[pl]q = (pr + 1)pl � 1pr = plXi=1 �pli�pi�1ri�1 :It would be enough to show that pl divides �pli �pi�1 for all i = 1; : : : ; pl. Leti = pkj with (p; j) = 1 be such a number, and denote � plpkj�ppkj�1 by N . We usethe formula vp(n!) =P1s=1[n=ps], where [�] denotes the greatest integer which isless or equal to �. The crucial observation is that[pl=ps] � [pkj=ps] + [(pl � pkj)=ps] ;and that this inequality is strict for all integers s with k + 1 � s � l. Hencevp(N) � l � k + pk � 1 � l :Step 2. We now show that pk divides e� q(pk; pkn), where p is a prime and n apositive integer. If q � 1 mod p, then this is clearly true by step 1, since everyterm of e� q(pk; pkn) is of the form �[pl1]q : : : [pls]q[pls+1n]q with l1+ : : :+ ls+1 = k.If q 6� 1 mod p, we use induction on k, which obviously starts at 0. Partitioningthe terms in e� q(pk; pkn) according to the smallest element di�erent from 1 in thechains from 1 to pkn in D(pkn) corresponding to them, we obtaine� q(pk; pkn) = [pkn]q � kXi=1 [pi]q e� q(pk�i; pk�in) : (5.4.2)



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 156We know that pl divides qplm� qpl�1m for all positive integers l;m, sinceM(x; pl)is a numerical polynomial; hence pl divides [plm]q � [pl�1m]q, by the assumptionon q. Applying this fact and induction to (5.4.2), we deduce that e� q(pk; pkn) iscongruent modulo pk to[pk�1n]q � e� q(pk�1; pk�1n) � kXi=2 [pi�1]q e� q(pk�i; pk�in) :But this is equal to 0, by using (5.4.2) once again.Step 3. We prove that d divides e� q(d; n) for every djn. Given a prime pdividing d, we have d = pkm and n = pkmr for some positive integers k;m; rwith (p;m) = 1. We now use the following identity:e� q(pkm; pkmr) =X(�1)s�1 e� q(pi1 ; pi1j1) : : : e� q(pis; pisjs) ; (5.4.3)where the summation ranges over all it � 0, jt > 1 with i1 + i2 + : : : + is = k,j1j2 : : : js = mr, and rjjs. According to the previous step, we have pkje� q(d; n).To prove (5.4.3), we consider the sets C(i1; : : : ; is; j1; : : : ; js), with it; jt as above,consisting of all chains from 1 to n in D(n) of the form1jpi11 j : : : pi1l1 jpi1j1jpi1+i21j1j : : : pi1+i2l2 j1jpi1+i2j1j2j : : : pi1+:::+is�1+isls j1 : : : js�1jn:These sets determine a partition of the chains from 1 to n in D(n) contribut-ing to e� q(d; n). Furthermore, the sum of terms corresponding to the chains inC(i1; : : : ; is; j1; : : : ; js) is precisely (�1)s�1 e� q(pi1 ; pi1j1) : : : e� q(pis; pisjs), whence(5.4.3) is proved. 2Lemma 5.4.4 For every q 6= 1, we have thatei � ej = jV[i;j]0@ Xdjn; d6=1 � q�nd ; [i; j]i n� S(q[i;j]=j; d)q � 1 + � q�n; [i; j]i n�� [i; j]j �q1An�1where er;s = �r;s.



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 157Proof. We base our computation of ei � ej on the following formula:ei � ej = (egq)�1(egq(ei) � egq(ej)) : (5.4.5)In order to make the map egq : Nrq(Q)! Gh(Q) commute with the Verschiebungoperator, we have to consider the operator V0r := rVr on Gh(Q). We haveegq(ei) � egq(ej) = (V0i egq(e1)) � (V0j egq(e1)) ;and egqn(e1) = [n]q, whenceegq(ei) � egq(ej) = ijV[i;j] � = (i; j)V0[i;j] � ;where �n := [kn]q[ln]q, and k := [i; j]=i, l := [i; j]=j. By (5.4.5), we haveei � ej = (i; j)V[i;j] (egq)�1(�) : (5.4.6)On the other hand, by (5.1.10) and (5.2.4) we have(egq)�1n (�) =Xdjn �q(d; n) �dd = kXdjn �q(d; n) [kd]qkd [ld]q= fk;nM q(x) ; xkr � [lr]q ;the \umbral notation" xkr � [lr]q means that xkr is replaced by [lr]q after collect-ing powers of x in fk;nM q(x). Furthermore, combining this result with (5.2.5),we have (egq)�1n (�) = kXdjn � q �nd ; kn� S(xk; d) ; xkr � [lr]q : (5.4.7)Finally, since S(1; d) = 0 for d > 1, we can rewrite (5.4.7) as(egq)�1n (�) = k Xdjn; d6=1 � q �nd ; kn� S(ql; d)q � 1 + k � q(n; kn) [l]q :The lemma now follows by combining this result with (5.4.6). 2Theorem 5.4.8



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 1581. The polynomials M q(x; n) are numerical polynomials in x and q.2. Multiplication in Nrq(Q) is de�ned by numerical polynomials Pn;i;j(q) inQ[q], with [i; j] dividing n, in the sense that(� � �)n = X[i;j]jn(i; j)Pn;i;j(q)�i �j :Hence, there is a Z-algebra structure on Nrq(Z).3. The Frobenius operator fr acts on Nrq(Z).4. The map T q induces a group isomorphism between W q(Z) and Nrq(Z).Proof. (1) According to Proposition 5.1.6, we haveM q(x; n) =Xdjn � q �nd ; n� S(x; d) :The claim now follows from Lemma 5.4.1 (2), and the fact that M(x; d) =S(x; d)=d are numerical polynomials.(2) It su�ces to show that ei � ej is obtained by applying V[i;j] to a sequenceof integers divisible by (i; j). This is clearly true for q = 1, since formula (5.4.7)still holds. We now �x the integers q 6= 1 and i; j; n > 0, and use Lemma 5.4.4.By Lemma 5.4.1 (2) j(i; j) � q�n; [i; j]i n� = [i; j]i � q�n; [i; j]i n�is an integer. Hence it su�ces to show that the following number is an integerj(i; j) � q�nd ; [i; j]i n� S(q[i;j]=j; d)q � 1 = Nn ;where N := e� q�nd ; [i; j]i n� S(q[i;j]=j; d)q � 1 ;and d 6= 1 is a divisor of n. Note that q�1 divides S(q[i;j]=j; d), since S(1; d) = 0 ford 6= 1. On the other hand, n divides (q� 1)N , sinceM(q[i;j]=j; d) = S(q[i;j]=j; d)=d



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 159is a numerical polynomial and n=d divides e� q(n=d; [i; j]n=i) by Lemma 5.4.1 (2).We now show that every prime power pk dividing n also divides N . If q 6� 1 modp, this claim follows from the fact that n divides (q � 1)N ; otherwise, pk dividese� q(n=d; [i; j]n=i) by Lemma 5.4.1 (1).(3) This follows from Lemma 5.4.1 (2) and Theorem 5.2.2.(4) This follows from the fact that M q(x; n) are integral polynomials, andfrom the construction of the inverse of T q via an algorithm similar to the clearingalgorithm in [29]. 2The main thrust of Theorem 5.4.8 is the existence of necklace algebras Nrq(Z)for all q 2Z. We now use the maps T q and Hq to de�ne multiplicative structureson W q(Z) and C(F q;Z).Corollary 5.4.9 There are ring structures on W q(Z) and C(F q;Z) such that therestrictions of the maps T q, Hq and cq are ring isomorphisms, and the restrictionof ! � wq is a ring homomorphism.Thus, we have identi�ed a family of formal group laws not mentioned in [18],for which the corresponding groups of Witt vectors and curves have ring structurescompatible with the maps in diagram 5.1.9.Recall the formula fr;nM(x) = M(xr; n) in [29], which holds in Nr(A), andwhich was generalised to NrF (AQ) in (5.2.5). We present here a conjecture,which attempts to provide a di�erent generalisation of the original formula ofMetropolis and Rota.Conjecture 5.4.10 We have thatfr;nM q(x) =Xdjn Qr;n;d(q)M q(xr; d) in Q[x; q] ;where Qr;n;d(q) in Q[q] are numerical polynomials.



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 160If q is a prime power pk, we are able to give a combinatorial interpretation forthe polynomials M q(x; n). Our ingredients are: the �eld GF(q), an alphabet �with m letters, and the free monoid (� � GF(q))� generated by � �GF(q). Welet GF(q) n f0g act on this monoid by(�; (c1; �1) : : : (cs; �s)) 7! (c1; ��1) : : : (cs; ��s) :Note that the equivalence relation determined by the orbits of this action is nota congruence. We de�ne a q-word as an orbit in (� �GF(q))� n (� � f0g)�. Wecall s 2 N a period of the q-word [w] if there is w0 in (� � GF(q))� of length sand �1; : : : ; �t in GF(q) such that [w] = [(�1w0) : : : (�tw0)] (here 0w0 is de�nedin the obvious way). The primitive period of w, aperiodic q-words, q-necklaces,and primitive q-necklaces can now be de�ned in the usual way. Let us denotenM q(x; n) by Sq(x; n). We claim that these polynomials are uniquely de�ned bythe relations Xdjn [n=d]q Sq(x; d) = [n]q xn ; (5.4.11)indeed, we have that(! � gq �M q)n(x) = (! � wq)n(x; 0; 0; : : : ) = [n]q xn :Examining (5.4.11), we obtain the combinatorial interpretation mentioned above.Proposition 5.4.12 For every m;n 2 N, Sq(m;n) represents the number ofaperiodic q-words of length n, and M q(m;n) represents the number of aperiodicq-necklaces of length n on the given alphabet � with m letters.We suggest that the constructions of Dress and Siebeneicher [14], [13] couldbe extended to the above setting.We conclude this section by brie
y investigating the case when F (X;Y ) is theuniversal p-typical formal group law corresponding to the prime p, which we have



CHAPTER 5. GENERALISED NECKLACE ALGEBRAS 161seen that is de�ned over a certain summand V of the Lazard ring L. The corre-sponding group W F (V Q) is de�ned as a certain subgroup of the group of Wittvectors (with underlying set LQ1) associated with the universal formal group law;more precisely, it is the subgroup consisting of those in�nite sequences � of ele-ments of VQ for which �k = 0 whenever k is not a power of p. We de�neNrF (VQ)similarly, and abbreviate the sequence (�1; 0; : : : ; 0; �p; 0; : : : ; 0; �p2; 0; : : : ) inW F (VQ), NrF (VQ), or GhF (V Q) to (�1; �p; �p2; : : : ).Recall from (1.2.8) Hazewinkel's generators of V and Araki's generators of V(p),which were de�ned recursively in terms of the coe�cientsm(i) of the logarithm ofthe universal p-typical formal group law (m(i) is the coe�cient of Xpi). It turnsout that we can express these generators very easily by using the necklace algebraNrF (V Q) associated with the universal p-typical formal group law.Proposition 5.4.13 We have thatT F (v1; v2; : : : ) = fp (1; 0; 0; : : : ) and T F (w0; w1; w2; : : : ) = (p; 0; 0; : : : ) :Proof. According to the de�ning relations (1.2.8), we havewF (v1; v2; : : : ) = p (m(1);m(2); : : : ) ; wF (w0; w1; w2; : : : ) = p (m(0);m(1); : : : ) :On the other hand, we havegF (1; 0; 0; : : : ) = (m(0);m(1); : : : ) ; fp (m(0);m(1); : : : ) = p (m(1);m(2); : : : ) :The propositions now follows from the fact that gF is an isomorphism and gF �T F = wF . 2



Chapter 6Formal Group Laws andSymmetric FunctionsThis chapter is devoted to a brief study of the interaction between formal grouptheory and the theory of symmetric functions. This interaction is reciprocal, inthe sense that we are able to use concepts/results in one of the two areas in orderto obtain results in the other area. We rely heavily on the notation and commentsin x1.1, x1.2, and x1.10, which we use without further comment.6.1 A Remarkable Homomorphism and Its Ge-ometrical InterpretationConsider a ring A� as in x1.1, and an umbra a in AQ� such that the formal grouplaw fa(X;Y ) lies in A1[[X;Y ]]. Let us de�ne the map of graded Hopf algebrasd� : SymA� ! U(fa)� by d�(Sn) = �an(x) :This is indeed a Hopf algebra map since we know from (1.1.12) and (1.10.1) thatfSng and f�an(x)g are divided power sequences. In particular, considering the162



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 163multiplicative formal group law fk(X;Y ) over k�, the map d� : Symk� ! U(fk)�is de�ned by d�(Sn) = x(x� u) : : : (x� (n� 1)u)n! :We now present a geometrical interpretation for the map d�. This shows thatalgebraic topology has a great deal to o�er in enlightening and guiding our un-derstanding of symmetric functions, as well as of the covariant and contravariantbialgebras of a formal group law.Let E�(�) be the multiplicative cohomology theory with complex orientationZ in E2(C P1) which was considered in x1.4. It is well-known that E�(BU) �=E�[[c1; c2; : : : ]], where cn are the generalised Chern classes. It is also known thatthe mapE�(BU(n))! E�(C P1 � : : :� C P1) �= E�(C P1)b
 : : : b
E�(C P1)induced by the classifying map of the direct product of n copies of the Hopf bundleover C P1 is a monomorphism mapping ci, with i � n, to the i-th elementarysymmetric function inX1 := Z
1
: : :
1, X2 := 1
Z
: : :
1, ...,Xn := 1
1
: : :
Z. On the other hand, we have that E�(BU) �= E�[b1; b2; : : : ], and that cn isdual to bn1 with respect to the monomial basis of E�[b1; b2; : : : ]. The multiplicativestructure of E�(BU) is determined by the map BU �BU ! BU classifying theWhitney sum of vector bundles. The diagonal map BU ! BU � BU induces acomultiplication � : E�(BU)! E�(BU �BU) �= E�(BU)
 E�(BU) satisfying�(bn) = nXi=0 bi 
 bn�i ;which turns E�(BU) into a Hopf algebra. The standard inclusion C P1 =BU(1) ,! BU induces a monomorphism E�(C P1) ,! E�(BU) mapping �n tobn. The determinant map det : U ! S1 de�ned on unitary matrices gives riseto a map Bdet: BU ! BS1 = C P1; furthermore, the composite of the inclu-sion C P1 ,! BU with Bdet is the identity on C P1, whence Bdet� : E�(BU)!



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 164E�(C P1) maps bn to �n. Since the determinant map is a group homomorphism,the map Bdet� is a ring homomorphism; moreover, it is a Hopf algebra map.It follows from the above topological arguments that we may identify the Hopfalgebras E�(BU) and E�(BU) with the Hopf algebras SymE� and Sym�E respec-tively, in such a way that bn is identi�ed with Sn and cn with �n; furthermore,the map Bdet� is identi�ed with d�. Let us now consider the compositeC P1 � : : :� C P1 ! BU(n) Bdet- C P1 ;where the �rst map classi�es the direct product of n copies of the Hopf bundleover C P1. It is easy to see that the composite is precisely the map classifyingthe tensor product of the n line bundles over C P1� : : :�C P1; in other words, itis obtained from the map � considered in x1.4 by iterating it n� 1 times. Let usalso recall from x1.4 that Z in E2(C P1) was identi�ed with some formal powerseries a(D) in EQ1[[D]], and that ��(Z) = fa(Z
1; 1
Z). Combining the aboveremarks, we �nally obtain d�(a(D)) = Pan�1Xn; this identity will be proved inProposition 6.2.1 in a purely algebraic way.6.2 Identities Related to d�Consider the transpose map d� : R(fa)� ! Sym�A, and its extension bd� : AQ�[[D]]! Sym�bA. We denote d�(a(D)) in Sym�A by �, and bd�(D) in Sym�bA by �0.Proposition 6.2.1 We have that� =Xn�1aXn in Sym�A ; (6.2.2)and �0 =Xn�1 an�1 	n in Sym�bA : (6.2.3)



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 165Proof. We havehd�(a(D)) j SIi = ha(D) j d�(SI)i = ha(D) j �ai1(x) : : : �ail(x)i= h�l�1(a(D)) j �ai1(x)
 : : :
 �ail(x)i = fai1 ;::: ;il ;here �l�1 denotes the comultiplication iterated l � 1 times, and I = (i1; : : : ; il).Since the dual basis to SI is 	I, we haved�(a(D)) =XI faI 	I =Xn�1aXn :On the other hand,hbd�(D) j SIi = hD j �ai1(x) : : : �ail(x)i =8<: ai1�1 if l = 10 otherwise ,whence (6.2.3) follows. 2Corollary 6.2.4 We haveXn�1aXn = a Xn�1 an�1 	n! in Sym�bA :We will now consider the important special case corresponding to the umbratq in kQ� with tq := �1; [2]q2 u; [3]q3 u2; : : :� ;here q is an integer, and [n]q := 1 + q + : : :+ qn�1. We havetq(Z) = 1(1 � q)u ln 1� quZ1� uZ ; tq(Z) = exp((1 � q)uZ)� 1(exp((1� q)uZ)� q)ufor q 6= 1, and t1(Z) = Z1 � uZ ; t1(Z) = Z1 + uZ :The formal group law f tq(X1;X2) is given byf tq(X1;X2) = X1 +X2 � (1 + q)uX1X21 � qu2X1X2 ;whence f tq(X1;X2) lies in k1[[X1;X2]]. Note that this formal group law is actuallythe graded version of Fq(X;Y ) in (5.1.1).



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 166Corollary 6.2.5 The following identity holds in Sym�kQ:tq Xn�1 [n]qn 	n un�1! = Pn�1(�1)n�1 [n]q �n un�11 + qPn�2(�1)n�1 [n� 1]q �n un :Proof. The identity follows immediately from Corollary 6.2.4 after provingthat Xn�1 tqXn = Pn�1(�1)n�1 [n]q �n un�11 + qPn�2(�1)n�1 [n� 1]q �n un :It is not di�cult to prove a similar identity for which the left-hand side sum is�nite, by induction on n. Then, we consider the limit with respect to the �ltrationtopology of kQ�[[X1;X2; : : : ]]. 2Let us note that for q = 0 we obtain the well-known identityexp Xn�1 	nn un! =Xn�0 Sn un ;while for q = 1 we obtain the identity1Pn�0 	n un = Pn�0(�1)n �n unPn�0(�1)n�1 (n� 1)�n un : (6.2.6)The latter appears in a slightly di�erent form in [49], Proposition 2.2, and isattributed to I. Gessel; hence Corollary 6.2.5 represents the q-analogue of (6.2.6).Other types of combinatorial identities, not necessarily involving symmetricfunctions, can be derived from Corollary 6.2.4. For instance, let us consider theformal group law f b(X1;X2) over the ring H�. We view H� asZ[m1;m2; : : : ], andchoose the monomial symmetric function basis in Sym�H. The coe�cient of 	n inPbi�1Xi is clearly 0, for every n > 1. This means that we can obtain a family ofidentities by computing the coe�cient of mi11 : : :mill 	n in b(Pi�1mi�1 	i), wherei1 + : : : + lil = n � 1. The key ingredient for this computation is Lagrangeinversion, namely the fact that the coe�cient of mi11 : : :mill in bn�1 is equal to thenumber of (unlabelled) rooted plane trees with n leaves and outdegree sequence(2i1 ; : : : ; (l+1)il) for the internal vertices. For instance, the coe�cient of mn�11 	n



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 167provides the identity nXi=d n2 e(�1)i�1 Ci� in� i� = 0 ; (6.2.7)where Ci = 1i �2i�2i�1 � is the i-th Catalan number. This is a special case of an identityin [43] x4.5 Problem 1(c). More generally, the coe�cient of msr 	rs+1 provides theidentity sXi=d s�1r+1e(�1)i Cr+1ri+1�ri+ 1s� i� = 0 ; (6.2.8)where Cr+1ri+1 = 1(r+1)i+1�(r+1)i+1i � represents the number of r + 1-ary rooted planetrees with ri+ 1 leaves (see e.g. [16], or [7] for a bijective proof).6.3 Computing the Images of Certain Bases ofSymA� under the Map d�The images of the elementary symmetric functions under the map d� are easy tocompute. Indeed, using the fact that d� is a Hopf algebra map, and denoting by
 the antipodes of SymA� and U(fa)�, we haved�(�n) = (�1)n d�(
(Sn)) = (�1)n 
(d�(Sn)) = (�1)n 
(�an(x)) = (�1)n �an(�x) :We now move on to the computation of the images of the power sum symmetricfunctions under the map d�. The key ingredients for most of the computationsin this section are Doubilet's change of basis formulae for symmetric functionsin [11], which use M�obius inversion on set partition lattices. We will use thezeta type function �� and the M�obius type function �� in the incidence algebraA�(�n). According to our conventions, � denotes the classical M�obius functionof the lattice �n, as it traditionally does.



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 168Proposition 6.3.1 For every partition I = (i1; : : : ; il) of n, we have thatd�(	 I) =  lYj=1 ij aij�1! xl :Proof. First method. This is a combinatorial method. Choose � in �n suchthat I(�) = I. Combining Doubilet's formula	 I = 1j�(b0; �)jX��� �(�; �) I(�)!SI(�) ;with (1.7.8), we obtaind�(	 I) = 1j�(b0; �)jX��� �(�; �)  X!�� ��(b0; !)xj!j!= 1j�(b0; �)jX!�� ��(b0; !)xj!j  X!���� �(�; �)!= 1j�(b0; �)j��(b0; �)xj�j =  lYj=1 �ij�1(ij � 1)!! xl :Second method. Since d� is an algebra map, it is enough to prove the resultfor partitions I of length 1. Since d� is a coalgebra map and 	n is a primitiveelement of SymA� , we have that d�(	n) = cx for some c in A�. Nowc = hD j d�(	n)i = h�0 j 	ni = nan�1 ;the last equality follows from (6.2.3) and the well-known fact that h	i j	ji = i�i;j.2 Using other two formulae of Doubilet, we can immediately express the imagesof the monomial and forgotten symmetric functions.Corollary 6.3.2 Let K be a partition of n, and choose � in �n such that I(�) =K. We have d�(	K) = 1kKk X��� �(�; �) 0@ j�jYj=1 ij(�) aij(�)�11A xj�j ; (6.3.3)



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 169d�(	K(�X)) = (�1)l(K)kKk X��� j�(�; �)j 0@ j�jYj=1 ij(�) aij(�)�11A xj�j ; (6.3.4)where I(�) := (i1(�); : : : ; ij�j(�)). Furthermore, given the partition R = (rs) ofn = rs, we have d�(	R) = XjIj=s (�1)s�l(I)kIk 0@l(I)Yj=1 arij�11A (rx)l(I) (6.3.5)= 1n! X�2�(r)n (�1)s�j�j ��(b0; �) (rx)j�j ;d�(	R(�X)) = (�1)s XjIj=s 1kIk 0@l(I)Yj=1 arij�11A (rx)l(I) (6.3.6)= (�1)sn! X�2�(r)n ��(b0; �) (rx)j�j ;where �(r)n represents the poset of r-divisible partitions of [n] (that is partitionswith all block sizes divisible by r).Proof. (6.3.3) and (6.3.4) follow immediately from Proposition 6.3.1 and [11].To deduce (6.3.5) from (6.3.3), we use the fact that the number of partitions �of [n] with I(�) = I is n!=(I! kIk). Given the partition � in �n with I(�) = R,we haved�(	R) = 1s! XjIj=s(�1)s�l(I) s!I! kIk 0@l(I)Yj=1(ij � 1)! (rij) arij�11A xl(I)= 1n! XjIj=s(�1)s�l(I) n!(ri1)! : : : (ril(I))! kIk 0@ l(I)Yj=1 �rij�11A (rx)l(I)= 1n! X�2�(r)n (�1)s�j�j ��(b0; �) (rx)j�j :(6.3.6) follows similarly. 2



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 170Remark 6.3.7 Computing the images of the forgotten symmetric functions isimportant because we can immediately obtain the coe�cients in the expansionof � in the elementary symmetric function basis. All we need to do is replaceevery xk in (6.3.4) by ak�1, and multiply the result by (�1)jKj; indeed, we haveh�j	R(�X)i = ha(D)jd�(	R(�X))i. According to (6.2.2), we obtain, in particu-lar, the coe�cient of Ei1Ej2 in the formal group law fa(X;Y ), where E1 := X+Yand E2 := XY .Since Sym�A is the dual algebra of the coalgebra SymA� , we have a canonicalaction of the former on the latter, as discussed as the beginning of x1.1; thisaction is well-known in the theory of symmetric functions (see [28]). For instance�Sn = nXi=1 h� j SiiSn�i = Sn�1 ; and �	n = h� j 	ni = nan�1 : (6.3.8)The operator � is, in fact, a delta operator on SymA� , and the map d� is a mapof Hopf algebras with delta operator; the second claim follows immediately from(1.1.4). The following proposition, which extends the similar results (1.2.11) and(1.2.12) concerning the action of a(D) on U(fa)�, will enable us to compute theaction of � on other symmetric functions.Proposition 6.3.9 For every P;Q in SymA� , we have�PQ = Xi;j�0 fai;j (�i P ) (�j Q) ; (6.3.10)�
(P ) =Xj�1 iaj 
(�j P ) : (6.3.11)Proof. Let p denote the product in SymA� and g := h� j �i. We haveh� j PQi = h�(d�(a(D))) j P 
Qi = h(d� 
 d�)(�(a(D))) j P 
Qi= h(d� 
 d�)(fa(a(D) 
 1; 1 
 a(D))) j P 
Qi= *Xi;j�0 fai;j �i 
�j j P 
Q+ :



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 171Hence �g�p =Pi;j�0 fai;j �i
�j, and (6.3.10) follows by recalling (1.1.4). Formula(6.3.11) is proved similarly, usingh� j 
(P )i = ha(D) j d�(
(P ))i = ha(D) j 
(d�(P ))i = ha(�D) j d�(P )i= *Xj�1 iaj a(D)j j d�(P )+ = *Xj�1 iaj �j j P+ :2 Clearly, formula (6.3.10) can be iterated in order to express the action of �on an arbitrary product. Here are some applications of Proposition 6.3.9 (cf.(6.3.8)): �SI = X0�sk�ik fas1 ;::: ;sl(I) l(I)Yj=1 Sij�sj ; (6.3.12)�	 I = X0�sk�1�s1+:::+sl(I)�1 l(I)Yj=1�sj 	ij ; (6.3.13)��n = nXj=1 (�1)j iaj �n�j : (6.3.14)In order to express the action of � on the basis of monomial symmetric functions,we need to combine the formula in [15] for the comultiplication correspondingto these functions with (6.3.3), and use (1.1.2); this gives a more complicatedformula, which we do not present here.6.4 Applications Related to the Lazard RingIn this section, we study a certain family of elements in the Lazard ring L�, byusing the results in the previous section corresponding to the universal formalgroup law f b(X1;X2). More precisely, given two integers r; s with r > 1, and apartition R := (rs) of n := rs, we consider the elementsgn;r := (�1)s h� j 	R(�X)i = (�1)s hb(D) j d�(	R(�X))i in Ln�1 :(6.4.1)



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 172In other words, (�1)(r�1)s gn;r is the coe�cient of �sr in the expression of� (or justX1+b+ : : :+bXr) in the elementary symmetric function basis. Furthermore, if � isa primitive r-th root of unity, then gn;r is the coe�cient of Zn in �Z+b : : :+b �rZ.The elements gn;r are implicit in the construction of the universal p-typicalformal group law (see [33]), to which we will refer below. These elements aremanipulated in a purely formal way in the process of p-typi�cation, whence noexplicit formula for them is needed. Corollary 6.3.2 enables us to derive severalexplicit formulae for gn;r.Proposition 6.4.2 Let � is a partition of [n] with I(�) = R. We havegn;r = 1s! X��� j�(�; �)j 0@ j�jYj=1 ij(�)mij(�)�11A j�j! bj�j�1= XjIj=s rl(I) l(I)!kIk 0@l(I)Yj=1mrij�11A bl(I)�1= 1n! X�2�(r)n rj�j ��(b0; �) ��(�;b1) in Ln�1 ;where I(�) := (i1(�); : : : ; ij�j(�)). In particular, gn;n = nmn�1.Recall that the Milnor genus of an element z in Ln�1 is the coe�cient of bn�1in the expression of z as a polynomial in the bi's. According to Proposition 6.4.2,the Milnor genus of gn;r is �r. Hence, according to the structure of the Lazardring, we have the following result.Proposition 6.4.3 For every prime p and integer l � 1, the element gpl;p is acanonical polynomial generator for the Lazard ring in dimension pl � 1. Further-more, if p and q are two distinct primes dividing n, and i; j are integers such thatip + jq = 1, then ign;p + jgn;q is a polynomial generator in dimension n � 1. Inconsequence, the Lazard ring is generated by the set of elements gn;p, where n � 2is an integer, and p is a prime dividing n.



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 173Note that the elements h� j 	Ri have similar properties with gn;r.Let us now recall the universal p-typical formal group law corresponding tothe prime p, which is de�ned over the summand V� of L�, and whose exp serieswas denoted by bp(Z). We denote by hbp� the canonical projection from L� toV�. The above remark on the Milnor genus of the elements gn;r implies thatthe elements zl := hbp� (gpl;p) are polynomial generators of V�. Proposition 6.4.2provides similar expressions for zl, simply by setting mi = 0 for i 6= pk � 1, andby replacing bi with bpi for all i (recall from x1.1 that bpi = 0 unless i is divisibleby p � 1).Let � be a primitive p-th root of unity. According to the de�nition of theelements gn;r at the beginning of this section, we haveXs�1 gps;p Zps = �Z +b : : :+b �pZ :On the other hand, it was proved in [20] that Hazewinkel's generators vl satisfyXl�1 bpvl Zpl = �Z +bp : : :+bp �pZ :Projecting the �rst relation onto V� and using the second one, we obtainXs�1 hbp� (gps;p)Zps =Xl�1 bpvl Zpl : (6.4.4)Hence, we have a formal expression for zl in terms of Hazewinkel's generators.We now intend to derive more explicit information from (6.4.4). To thisend, we recall from x1.2 the formal group law fkp;q (X1;X2) over the summandk(q)� of k�, where q is an integer greater than 1. We denote by hkp;q� the ringhomomorphism from V� to k(q)� mapping the coe�cients of the universal p-typicalformal group law to those of fkp;q (X1;X2). We have seen that this homomorphismsends vq to upq�1, and the rest of Hazewinkel's generators to 0. By projectingformula (6.4.4) via hkp;q� , we obtain a similar result for the generators zl of V�. Westate this result in terms of the composite hkp;q� � hbp� , which we denote by hkp;q� .



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 174Proposition 6.4.5 We have thathkp;q� (gn;r) = 8<: upq�1 if n = pq and r = p0 otherwise .In particular, the homomorphism hkp;q� sends zq to upq�1, and the rest of thegenerators zl of V� to 0.Proposition 6.4.5 can be reformulated by using the interpretation of the el-ements gn;r at the beginning of this section. On the other hand, we obtain thefollowing corollary as an immediate consequence.Corollary 6.4.6 Let l > 1 be an integer, and let q be a divisor of l.1. The coe�cient of v(pl�1)=(pq�1)q in the expression of zl in terms of the gen-erators vi is 1 if q = l, and 0 otherwise. The same holds for the coe�cientof z(pl�1)=(pq�1)q in the expression of vl in terms of the generators zi. Inparticular, z1 = v1 and z2 = v2.2. The coe�cients of z(pl�1)=(pq�1)q and v(pl�1)=(pq�1)q in the expressions of mpl�1in terms of the generators zi and vi of V� are both equal to p�l=q.We conclude this section with a purely combinatorial proof of Proposition6.4.5, which does not use Hazewinkel's generators. The main point made here isthat the elements gn;r are well-suited for combinatorial manipulations, due to theformulae in Proposition 6.4.2.Proof. From Proposition 6.4.2 it follows that hkp;q� (gn;r) = 0 if r 6= p, or ifr = p and pq does not divide n. Now let s be an integer divisible by pq�1, and letk0(Z) := kp;q(Zpq�1) = Zpq�1 + upq�1p Zp2q�1 + up2q�1p2 Zp3q�1 + : : : :We claim that hkp;q� (gps;p) is equal to ups(1�p�q) times the coe�cient of Zs inkp;q(k0(Z)) = Zpq�1.



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 175Let � be a partition [ps] such that I(�) = (ps). Given a subset A of N, wedenote by�An the set of those partitions of [n] for which every block size lies in A.Now consider the sets P := fpqi : i � 1g and Q := fpqi�1 : i � 1g. Accordingto Proposition 6.4.2, we havehkp;q� (gps;p) = 1s! X�2�Pps; ��� j�(�; �)j 0@ j�jYj=1 p(q�1)ej(�)1A ups�j�j j�j! kp;qj�j�1= 1s! X�2�Qs 0@ j�jYj=1 (pqej(�)�1 � 1)! p(q�1)ej(�)1A ups�j�j j�j! kp;qj�j�1= 1s! X�2�Qs 0@ j�jYj=1 (pqej(�)�1)! p1�ej(�)1A ups�j�j j�j! kp;qj�j�1 ;here I(�) := (pqe1(�); : : : ; pqej�j(�)) if � lies in �Pps, and I(�) := (pqe1(�)�1; : : : ;pqej�j(�)�1) if � lies in �Qs . The above claim now follows by comparing the formulafor hkp;q� (gps;p) with the formula for the coe�cient of Zs in kp;q(k0(Z)) given byTheorem 1.7.6 (1). 26.5 Symmetric Functions and Witt Vectors As-sociated with a Formal Group LawIn this section we associate certain symmetric functions with a formal group law,and discuss their connection with Witt vectors associated with the same formalgroup law.Given the formal group law fa(X1;X2) in A1[[X1;X2]] considered in x6.1, wede�ne symmetric functions qan := qan(X) in Sym1A byXn�1a qantn =Xn�1aXnt in Sym�A[[t]] : (6.5.1)Since fa(X1;X2) � X1+X2 mod (X1;X2)2, this is a good de�nition. Let us note



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 176that Xn�1a qan(X;Y ) tn =Xn�1a qan(X) tn +aXn�1a qan(Y ) tn ;which implies the existence of a polynomialQan(x; y) := Qan(x1; : : : ; xn; y1; : : : ; yn)in A�[x; y] := A�[x1; : : : ; xn; y1; : : : ; yn] such thatqan(X;Y ) = Qan(qa(X); qa(Y )) : (6.5.2)For example, consider the multiplicative formal group law fk(X1;X2) = X1+X2 + uX1X2, for which we haveXn�1kXn = �1 +Qn�1(1 + uXn)u :Hence, (6.5.1) becomes Yn�1(1 + qknutn) =Xn�0 �nuntn : (6.5.3)Now recall the symmetric functions qn in SymnZstudied by C. Reutenauer in [42],which are de�ned by Yn�1 11 � qntn =Xn�0 Sntn : (6.5.4)It is easy to see by substituting u := �1 in (6.5.3), and comparing with (6.5.4),that qkn = (�u)n�1 qn.It is not di�cult to show, by applying the logarithm a(Z) of fa(X1;X2) to(6.5.1), that Xdjn an=d�1 (qad)n=d = an�1	n : (6.5.5)We write this, using the Witt vector notation introduced in x5.1, aswan(qa) = an�1	n ; (6.5.6)where qa := (qa1; qa2; : : : ); note that we have written wan(�) instead of wfan (�), forsimplicity. In other words, an�1	n are the ghost components of qan.



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 177Let us now recall from [18] x15.3 the polynomials �an(x; y) := �an(x1; : : : ; xn;y1; : : : ; yn) in AQ�[x; y] := AQ�[x1; : : : ; xn; y1; : : : ; yn], which are de�ned bywan(�a(x; y)) = wan(x) + wan(y) : (6.5.7)The following is a classical result, whose proof in [18] x25.1 uses the so-calledfunctional equation lemma. The proof presented here is much simpler, and itgeneralises the proof given in [42] in the case of the multiplicative formal grouplaw. Our proof relies heavily on the symmetric functions we have associated witha formal group law.Theorem 6.5.8 (cf. [18] x25.1) The polynomials �an(x; y) have coe�cients inA�.Proof. We concentrate on the universal formal group law f b(X1;X2) inL1[[X1;X2]], with logarithm m(Z) in LQ1[[Z]] = Q[m1;m2; : : : ][[Z]]. Let us note�rst that qn can be obtained from qbn by substituting mi�1 with 1=i, for all i.According to (6.5.6), we havewbn(qb(X;Y )) = wbn(qb(X)) + wbn(qb(Y )) :Combining this relation with (6.5.2) and (6.5.7), and using the fact that qbn are al-gebraically independent (since qn are), we �nally deduce that �bn(x; y) = Qbn(x; y).But we have already seen that Qbn(x; y) has coe�cients in L�; furthermore,�an(x; y) is the image of �bn(x; y) under the homomorphism from L�[x; y] toA�[x; y] mapping the coe�cients of the universal formal group law to those offa(X1;X2). The theorem now follows. 2The main consequence of this result is the de�nition of the group of Wittvectors associated with the formal group law fa(X1;X2). Addition of Witt vectorsis de�ned by the polynomials �an(x; y).



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 178C. Reutenauer conjectured in [42] that for n � 2, the symmetric functions�qn are Schur positive, that is linear combinations of Schur functions with non-negative integer coe�cients. He proved this conjecture when n is a power of2 by explicitly describing the representation of the symmetric group �n whoseimage under the characteristic map is �qn. Reutenauer's conjecture was provedin general by W. Doran in [10], and independently by T. Scharf and J.-Y. Thibon.Here we formulate a related Schur positivity result for the symmetric functionsqbn in Sym1L. Let qbn = XjIj=n�1(�1)l(I)mI qI ;where mI := mi1mi2 : : : . Clearly, qI are symmetric functions in SymnZ; further-more, from (6.5.6) it follows that qI = 0 unless ij + 1 divides n for every part ijof I. We now state the promised Schur positivity result, and refer to [28] for theclassical results used in the proof.Proposition 6.5.9 The symmetric functions qI are Schur positive.Proof. We can rewrite (6.5.5) asqan = an�1(	n � (qa1)n)� Xdjn; 16=d6=n an=d�1(qad)n=d :We use induction based on the Littlewood-Richardson rule. Since qa1 = S1, itonly remains to prove that Sn1 � 	n is Schur positive. Let us note �rst that	n = Sn � S(n�1;1) + S(n�2;12) � : : : :This follows from the fact that	n = XjIj=nK(�1)(n);I SI ;where K(�1)(n);I are entries of the inverse Kostka matrix, which are computed in [28]page 107. On the other hand, the coe�cient of S(n�k;1k) in Sn1 is greater than 0by Young's rule, which concludes the proof. 2



CHAPTER 6. APPLICATIONS OF SYMMETRIC FUNCTIONS 179Let us note that our result for n = 2k implies the Schur positivity of �qn, sincethe partitions of 2k � 1 with parts of the form 2i � 1, i � 1, have odd lengths.It would be interesting to describe the representations of �n corresponding tothe symmetric functions qI in this case, and relate them to the representationsconstructed by Reutenauer.
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