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Abstract

Hypothesis

The morphology of a lamellar phase, which is mainly characterized by
stacked parallel layers, is often accompanied by interconnected network
structures which is a feature of bicontinuous sponge phase. However,
conventional scattering function based on deterministic modeling cannot
express such structural features in full extend. , face a significant challenge
in analytically expressing scattering functions with relevant structural
parameters. We hypothesize that a stochastic deep learning approach can
quantitatively reveal the inherent correlations within these phases.
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Experiments and Simulations

This report outlines a novel strategy that integrates convolutional neural
networks, supported by stochastically generated density fluctuations, into
the regression analysis framework for addressing the persistent challenge of
structural inversion in lyotropic phases using scattering data. To evaluate
the efficacy of our proposed approach, we conducted computational
accuracy assessments and applied it to the analysis of experimentally
measured small-angle neutron scattering cross-sections of a commonly
studied lamellar phase.

Findings

The findings unambiguously demonstrate that deep learning provides a
dependable and quantitative approach to investigating the morphology of
diverse lyotropic phases. It is adaptable for application to lamellar, sponge,
and intermediate structures exhibiting fused topological features, offering a
unified structural characterization of lyotropic systems. In essence, this
study underscores the capability of deep learning techniques in addressing
intricate challenges within the realm of soft matter structures and beyond.

Keywords: Lamellar Phases, Small Angle Scattering, Deep Learning,
Generalized Levelled Wave
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1. Introduction

Amphiphilic molecules have a fascinating ability to undergo self-organization
when dissolved in a solution, giving rise to the formation of two-dimensional
bilayers. They exhibit intricate and intriguing structures when examined at
a mesoscopic scale, a phenomenon that falls under the category of lyotropic
phases. Mesoscopic morphology plays a central role in lyotropic systems,
influencing a wide range of natural and synthetic processes, from the forma-
tion of cell membranes to the development of novel materials with unique
characteristics [1, 2].

Among the various lyotropic phases, the swollen lamellar phase, often
represented as Lα, stands out due to its remarkably well-organized paral-
lel planes. Considerable effort has been directed towards characterizing its
unique nonparticulate structures. Small angle scattering of neutrons and X-
rays is a crucial method employed for this purpose [3, 4]. In the context of
these experiments, it becomes necessary to derive an analytical expression
for the coherent scattering of Lα phases in reciprocal space, denoted by the
variable Q, based on relevant parameters. The morphology of these phases
is then unveiled through the refined parameters obtained via a regression
analysis of the collected spectra.

For Lα phases, a widely adopted scattering function model was intro-
duced by Nallet, Laversanne, and Roux, which conceptualizes the system as
a stake of parallel lamellar plates [5]. Within this framework, the coherent
scattering cross sections can be conveniently decomposed into the product
of two components: the inter-planar structure factor S(Q), which represents
the average displacement between these planes and its distribution, and the
form factor P (Q), which characterizes the density fluctuations within each
plane. The validity of this ideal one-dimensional ordered lamellar structures
premises on the preservation of long-range translational order of density fluc-
tuation of parallel planes [6]. To account for any localized deviations in the
lamellar surfaces, numerous scattering functions have been devised by in-
corporating expressions of P (Q). These functions are designed to explore
the intricate aspects of diffuse scattering that can be observed in various Lα

phases [7–13].
However, supported by prior Nuclear Magnetic Resonance (NMR) inves-

tigations [14–17], it has been long recognized that a substantial portion of
lamellar phases exhibits imperfect structural attributes. These imperfections,
specifically characterized as passages or perforations within adjacent plates
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[4, 18–20], disrupt the uniform alignment of the in-plane normal vector—an
inherent characteristic of the ideal Lα phase. As a result, the long-range
order within these phases no longer exhibits infinite correlation.

Nonetheless, due to the enduring remnants of lamellar organization, the
orientational distribution of the normal vector maintains a degree of non-
random lamellar order, distinguishing it from the intrinsic randomness ob-
served in L3 states, a sponge phase notable for its distinctive isotropic struc-
ture arising from the intricate interconnection of bilayers. The quantitative
analysis of the structure within this distorted lamellar phase presents a sig-
nificant and formidable challenge [21]. This challenge encompasses two es-
sential dimensions: first, it demands the precise identification of parameters
capable of accurately characterizing the topological features of distorted Lα

phases with limited long-range order; and second, it calls for the development
of an analytical expression for the corresponding scattering function, which
serves as the foundational cornerstone for spectral inversion analysis. It is
this challenge that serves as the driving impetus behind the ongoing research
endeavor.

In the context of inverting the topological characteristics of distorted
lamellar phases obtained from scattering data, our standpoint is that con-
ventional deterministic methods may not necessarily provide the most advan-
tageous solution. This constraint predominantly arises from the anticipated
complexity involved in accurately delineating the highly nonlinear bijective
relationship between the topological properties of imperfect lamellar phases,
encompassing both the L3 and Lα structures, and the two-point correlation
function. In this scholarly report, we present a deep learning approach as a
method to address these mathematical challenges.

In this research, our initial step involves the regulation of the random
distribution of wave vectors within the leveled wave model as introduced
by Berk [22, 23]. This regulation aims to characterize density fluctuations
within the L3 phases. Through this process, we are able to identify a specific
set of parameters that effectively describe the topological attributes of dis-
torted structures within the Lα phase. Subsequently, we create an extensive
repository of two-point correlation functions, which are generated using the
identified parameter settings that closely mimic real experimental systems
exhibiting the Lα phase. This repository serves as the training dataset for
establishing a probabilistic connection between the topological parameters
and coherent scattering functions. To achieve this, we employ a conventional
neural network (CNN), which is trained through a series of linear matrix op-
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erations, facilitating this crucial link. To assess the computational accuracy
of the CNN-based regression algorithm, we also generate an additional com-
prehensive repository of two-point correlation functions. This second set is
created using a distinct set of topological parameters that were not originally
included in the training dataset. The purpose of this is to benchmark the
performance of the algorithm through numerical evaluations.

Our study confirms the feasibility of using this deep learning approach
for structural analysis through experimentation. Specifically, we apply this
approach to small-angle neutron scattering (SANS) on a lyotropic system
composed of stacked lamellar plates with varying degrees of fragmentation.
In the following section, we delve into a more detailed exposition of the
development of our methodology.

2. Methods

This section introduces the Generalized Levelled Wave (GLW) approach
as the descriptive framework for characterizing the mesoscopic structures
within general lyotropic phases, along with applying the Convolutional Neu-
ral Network (CNN) as the foundation for regression analysis of scattering
measurements.

2.1. Generalized Levelled Wave (GLW) Method

It is instructive to present the levelled wave method as originally con-
ceived by Berk [22, 23]. This method characterizes the density fluctuations
in bicontinuous systems within real space r using the following expression:

S(r) =
1√

N⟨A2⟩

N∑
n=1

An cos(kk̂n · r+ ϕn), (1)

In Eqn. (1), the unit random wave vectors denoted as k̂ are uniformly dis-
tributed across the entire solid angle of 4π. The magnitude k follows a
normal distribution with specified mean and variance. The phase angles ϕn

are evenly distributed over the interval of 2π. Each partial wave indexed by
n is associated with a coefficient An. The entire set of N plane waves is stan-
dardized by dividing by the variance of these coefficients, which is 1√

N⟨A2⟩
.

Consequently, the quantity S(r) can be considered an ensemble of random
variables with a mean of 0 and a variance of 1.
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A threshold value denoted as α is introduced and applied to the normally
distributed S(r) to demarcate the two coexisting phases within the bicontin-
uous structure. Within a two-phase system, the parameter α is closely linked
to the ratio of the volume fractions of the two coexisting phases. To enhance
the scattering contrast, two distinct scattering length densities (SLD) can
be assigned to these phases. With the parameter α in place, Equation (1)
can be further subjected to Fourier transformation to generate the scattering
amplitude F (Q) in reciprocal Q space. The coherent small angle scattering
profile I(Q) can be readily obtained by squaring F (Q). In this specific con-
text, scattering functions with relevant parameters have been developed to
extract the topological characteristics of the bicontinuous L3 phase from ex-
perimentally acquired coherent small-angle scattering data, as documented
in references such as [3, 24–26].

Figure 1: (a) Visual representation of the definition of anisotropic wave vector distribution
within spherical coordinates, underpinning the GLW approach. (b) The dependence of
wave vector distribution on the orientational order parameter in the polar angle direction
(Γ) and the radial dispersion parameter (σk). (c) The corresponding three-dimensional
lyotropic structures in real r space which are three-dimensional lyotropic structures in real
space that are statistically equivalent to the wave vector distribution given in (b) through
the principle of ensemble average.

When the topological characteristics of lyotropic systems deviate from the
sponge conformation, the normal vector fields of the interface between the
two interpenetrating phases can no longer be represented by the randomly
oriented k̂. To address the increasing lamellar order, an additional constraint
on the orientational order k̂ proposed in [22, 23] is imposed according to the
schematic representation given in Fig. 1(a): The polar component distribu-
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tion of k̂ is no longer characterized by random distribution over a 4π sphere.
Instead, following Fisher’s recommendation [27], the distribution function
along the polar angle θ direction is expressed as follows

P (θ) = c exp(Γ cos θ), (2)

Here, c represents a constant, and Γ denotes the orientational order param-
eter used to quantify the directional dispersion of k̂ along the direction of
θ.

Furthermore, in the case of general lyotropic systems exhibiting lamellar
order, as there is no compelling rationale to suggest the presence of any pre-
ferred direction for in-plane density fluctuations at the interface, the distri-
bution of k̂ along the azimuthal angle ϕ is modeled by a uniform distribution,
as expressed below:

P (ϕ) =
1

2π
, (3)

The distribution of k̂ along the radial direction remains unchanged, in
accordance with the initial definition of the normal distribution proposed by
Berk [22, 23]. Namely,

P (k) =
1

σk

√
2π

exp[−(k − k0)
2

σ2
k

], (4)

where k0 is the mean and σk denotes the standard deviation characterizing
the radial dispersion of k given in Eqn. (1).

In this representation, referred to as the Levelled Wave (GLW) method,
the relationship between the anisotropic wave vector distribution and the
parameters σk and Γ is visually depicted in Fig. 1(b). When σk is held
constant, augmenting the value of Γ engenders a discernibly heightened po-
larization within the distribution of k̂, resulting in the vectors aligning more
closely with the normal axis of the lamellar plates. Conversely, when Γ re-
mains fixed and σk is increased, the result is a progressively more diffused
distribution in k̂. The corresponding three-dimensional renderings of inter-
facial conformation are given in Fig. 1(c). As Γ increases, the characteristic
anisotropic orientational order of lamellar phases becomes more prominent.
Conversely, an increase in σk leads to a greater variation in the inter-plane
distance across all lyotropic phases.

It is essential to emphasize that within the descriptive framework of GLW,
a given lyotropic structure can be defined by three key parameters: σk, Γ,
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Figure 2: The evolution of I(Qd̃) as a function of (a) σk, (b) ln Γ, and (c) α. The
continuous color scales indicate the probed ranges of each parameter. d̃ represents the
average inter-plane distance.

and α. Here a specific set of σk, Γ, and α is defined as Ξ. The responsive char-
acteristics of small-angle scattering in lyotropic phases in relation to these
parameters are illustrated in Fig. 2. Here the coherent scattering intensity is
represented in a dimensionless unit of Qd̃, where d̃ ≡ 1

k0
represents the aver-

age inter-plane distance of well-ordered lamella. Within the probed ranges,
as σk increases, all distinctive lamellar peaks in the plot of I(Qd̃) gradually
broaden and eventually fade away, as illustrated in Panel (a). Moreover,
as shown in Panel (b), when ln Γ increases from 0 to 5, there is a distinct
transformation in the behavior of I(Qd̃) transitioning from an expression of
an L3 sponge state to that of an Lα lamellar state. In Panel (c), it becomes
clear that adjusting α from 0.5 to 0 gives rise to an intriguing observation:
the magnitudes of the even-numbered peaks in I(Qd̃) for the Lα lamellar
state gradually diminish and eventually vanish, whereas the odd-numbered
peaks remain largely unchanged. Given that α is used to define the inter-
face between two interpenetrating phases within the framework of GLW, it is
possible to modify the α value in SANS experiments for a lamellar system by
adjusting the difference in scattering length density between surfactant and
solvent. As a result, this adjustment results in a unique observation similar
to what’s shown in Fig. 2(c), as described in a SANS experiment where the
contrast was varied in a lamellar phase [28].

2.2. Demonstrating the One-to-one Correspondence: Ξ↔ I(Qd̃)

It is crucial to assess whether there exists a one-to-one mapping between
Ξ and I(Qd̃), a prerequisite for any feasible structural inversion analysis.
To conduct this evaluation, we generated 3000 sets of I(Qd̃), denoted as
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{Itrain(Qd̃)}, using the GLW framework, with Ξ values falling within the
ranges illustrated in Fig. 2. Each I(Qd̃) comprises 128 sampled Q points.

To visualize the effect of Ξ on the 128-dimensional I(Qd̃) dataset, we
performed a Principal Component Analysis (PCA) employing Singular Value
Decomposition (SVD) techniques [29]. The results revealed that the first
three singular vectors effectively capture the primary sources of variance
within the original data. This suggests that the vector space R3 defined by
these three singular vectors, which we refer to as SVD0, SVD1, and SVD2
in Fig. 3(a), sufficiently express the fundamental features of the interrelated
data.

In the three-dimensional vector space defined by the basis vectors SVD0,
SVD1, and SVD2, each instance of the expression I(Qd̃) corresponds to a
distinct point. As illustrated in Fig. 3, the distribution of this data exhibits
a complex, twisted three-dimensional structure. Findings depicted in Panels
(b)-(d) of Fig. 3 indicate a smooth variation in the distributions of these pa-
rameters. This suggests that the data points are non-overlapping and exhibit
significant correlations over a specific length scale. A comprehensive analysis
of the data distribution has revealed the absence of any inseparable overlaps,
thus confirming a one-to-one mapping between I(Qd̃) and Ξ. This supports
the feasibility of inversely deducing these parameters for general lyotropic
phases from their experimentally measured scattering cross-sections.

The color scale transformations displayed in Panels (b) through (d) of
Fig. 3 demonstrate the linear independence of the gradient vectors associ-
ated with these three parameters. In conjunction with the observed assess-
ments of I(Qd̃) in response to variations in σk and ln Γ, as detailed in Panels
(a) and (b) of Fig. 2, it is mathematically unviable to capture the nuanced
characteristics of I(Qd̃) through the conventional approach of modifying the
1-D scattering function typically employed for lamellar phases when deal-
ing with general lyotropic phases composed of partially interconnected or
incompletely laterally separated membranes, as delineated in [5]. A mere
adjustment of P (Q) while considering intra-plate density fluctuations falls
short in addressing the features of intricate diffusive scattering in I(Qd̃).

2.3. Development of Regression Algorithm based on Convolutional Neural
Network (CNN)

Based on the intricate array of color scales depicted in Fig. 3, the posi-
tion we take in this study is that the mathematical derivation of an analyt-
ical expression for I(Qd̃) as a function of Ξ, represented by the parameters
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Figure 3: (a) The first three singular vectors SVD0, SVD1, and SVD2 derived through
Principal Component Analysis (PCA) of {Itrain(Qd̃)}. Panels (b) to (d) illustrate the
distributions of σk, ln Γ, and α within the R3 vector space defined by SVD0, SVD1, and
SVD2 in the manifold of {Itrain(Qd̃)}.

{σk, ln Γ, α}, is no longer feasible for the broad category of lyotropic systems.
Hence, rather than pursuing the deterministic derivation of analytical scat-
tering functions for the precise extraction of structural parameters from the
associated scattering cross-sections, a methodology distinct from the prior
investigations of L3 [24, 25] and Lα phases [5] is presented in this report.
This novel approach employs a regression framework founded on the princi-
ples of deep learning, specifically utilizing a Convolutional Neural Network
(CNN), to probabilistically infer Ξ from the observed I(Qd̃).

Fig. 4 illustrates the CNN architecture, which plays a central role in
our regression analysis. The CNN comprises two primary components: the
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Figure 4: The convolutional neural network (CNN) architecture which constitutes the
fundamental framework of regression analysis for inversely inferring Ξ ≡ {σk, ln Γ, α} of
lyotropic phases from experimentally measured I(Qd̃).

encoder and the decoder. At the forefront of the encoder lies a convolutional
layer, tasked with processing an input denoted as Iinput(Qd̃) containing 128
elements. It employs 48 three-element filters to extract the salient features
from the input I(Qd̃). As implied by its title, this process is accomplished
through the convolution of Iinput(Qd̃) with filters. During this operation, a
dot product is computed as the filter shifts with a stride of 2. In the end,
48 one-dimensional arrays, each consisting of 64 elements, are generated,
collectively known as the feature map. These 48 arrays are subsequently
collapsed into one dimension, a step referred to as flattening, to produce a
one-dimensional array comprising 3072 elements, which serves as the input
for the dense layer located at the back end of the encoder.

The primary function of a dense layer is to consider the effect of each
element within the feature map on its output through linear mapping matrix
operations, enabling either a reduction or an increase in dimensionality. In
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this context, two three-element arrays, denoted as µ and σ, are generated.
These arrays are used to generate a random variable, denoted as z, with µ
serving as the mean and σ as the standard deviation. This process is designed
to mitigate the minor uncorrelated data fluctuations inherent in Iinput(Qd̃).

Here, we define z ≡ µ+σ⊙ϵ as the sum of µ and the element-wise product
of σ and ϵ. The symbol ⊙ represents the element-wise production operator.
Then, z serves as an input for the decoder, which possesses the network
architecture mirroring that of the encoder. We generate 100 different z val-
ues based on 100 unique ϵ values, randomly sampled from a standard normal
distribution with a mean of zero and a variance of 1. Consequently, the corre-
sponding 100 different I(Qd̃) outputs are produced. To obtain Ioutput(Qd̃), we
compute an ensemble average of these output values across all ϵ samples. Ac-
cordingly, we define a loss function L as L ≡ ∥ln Iinput(Qd̃)− ln Ioutput(Qd̃)∥2.
We aim to minimize the squared difference in a logarithmic scale because the
coherent scattering intensity in typical lyotropic systems often spans several
orders of magnitude.

Algorithm 1: Training VAE as a basis of generative model

Input: I(Qd̃)
Result: Optimal wVAE for fdecoder

1 wVAE ← wVAE
0 ; // initialize VAE parameters

2 µ, σ ← fencoder(I(Qd̃)); // convert I(Qd̃) to the mean and

standard deviation of z
3 i← 0
4 while i < Maxiter do
5 Generate 100 samples ϵ ∼ N (0, 1)

6 IVAE(Qd̃)← ⟨fdecoder(µ, σ, ϵ)⟩ϵ ; // generate I(Q) from the

ensembe average of the decoder output

7 LVAE ←
∥∥∥IVAE(Qd̃)− I(Qd̃)

∥∥∥2

; // evaluate loss function

8 Update wVAE with Adam optimizer to minimize LVAE

9 i← i+ 1

10 end

In every training iteration, the values of ϵ remain constant as we com-
pute the backpropagated partial derivatives of L with respect to the network
parameters using the chain rule. Subsequently, we adjust the network based
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Algorithm 2: Training the I(Qd̃) generator

Input: Ξ, I(Qd̃), pretrained wVAE for fdecoder
Result: Optimal w and wVAE such that INN(Q) = fNN(Q,Ξ)

1 Freeze wVAE

2 w ← w0 ; // initialize converter module

3 i← 0
4 while i < Maxiter do
5 Generate 100 samples ϵ ∼ N (0, 1)
6 µ, σ ← f(Ξ, w) ; // convert Ξ to the mean and standatd

deviation of z

7 INN(Qd̃)← ⟨fdecoder(µ, σ, ϵ)⟩ϵ) ; // generate I(Q) from the

ensembe average of the decoder output

8 L←
∥∥∥INN(Qd̃)− I(Qd̃)

∥∥∥2

; // evaluate loss function

9 Update w with Adam optimizer to minimize L
10 i← i+ 1

11 end
12 Unfreeze wVAE

13 i← 0
14 while i < Maxiter do
15 Generate 100 samples ϵ ∼ N (0, 1)
16 µ, σ ← f(Ξ, w)

17 INN(Qd̃)← ⟨fdecoder(µ, σ, ϵ)⟩ϵ) ; // generate I(Q) from the

ensembe average of the decoder output

18 L←
∥∥∥INN(Qd̃)− I(Qd̃)

∥∥∥2

; // evaluate loss function

19 L′ ← L+ α
∥∥wVAE

∥∥2
; // regularization

20 Update w,wVAE with Adam optimizer to minimize L′

21 i← i+ 1

22 end
23 fNN(Ξ) ≡ fdecoder(f(Ξ, w), w

VAE)

on these derivatives. Evidently, the primary objective of the training process
is to minimize the disparity between the input function Iinput(Qd̃) and the
output function Ioutput(Qd̃). The training processes for this generative model
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are summarized in Algorithm 1.
In typical regression analyses of scattering experiments, the inputs usually

consist of pre-selected structural parameters, as opposed to a one-dimensional
array representing the scattering function. Hence, a converter module is de-
signed, comprising two dense layers, to transform the parameters σk, ln Γ,
and α, which are represented as a three-element array, into the corresponding
latent variable z. Following further fine-tuning, we introduce an augmented
decoder network, denoted by the orange dashed line in Figure 4, designed
to facilitate the regression analysis of scattering experiments for general ly-
otropic phases. We outline the additional training procedure of the I(Qd̃)
generator in Algorithm 2.

In essence, the primary objective of employing this deep learning-driven
regression analysis is to capture the intricate and inherently nonlinear con-
nection between Ξ and I(Qd̃). This intricate relationship defies conventional
analytical methods, necessitating the use of a series of linear operations de-
rived from a dataset Itrain(Qd̃) gathered within the parameter space defined
by the GLW descriptive framework. To sum up the training process, this
approach seeks to model this complex relationship effectively.

Figure 5: Comparative analysis of parameters inverted by CNN (NN) and the corre-
sponding Ground Truth (GT): (a) σk, (b) ln Γ, and (c) α were inverted using the CNN
regression algorithm (NN) and compared with the ground truth data (GT) represented
on the y-axis and x-axis, respectively. The majority of predicted parameters are seen to
show quantitative agreement with the GT values.

We generated an additional comprehensive set of I(Qd̃) data, denoted
as Itest(Qd̃), using an extensive set of Ξ. This set of data was calculated
separately and was not utilized during the training phase. The purpose was
to assess the numerical accuracy of the deep learning-based regression al-
gorithm presented in Fig. 4. In Fig. 5, we present a comparison between
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the input parameters used in simulations and those obtained through in-
version from Itest(Qd̃). Remarkably, all three inverted parameters, referred
to as NN, exhibit a high degree of agreement with their computational in-
puts, referred to as the ground truth (GT). The majority of the inverted
parameters closely align with the corresponding ground truths, underscoring
the numerical accuracy of this CNN-based regression algorithm. it’s worth
noting that the statistical uncertainties associated with the inverted α are
visibly higher when compared to the other two inverted parameters. This
observation suggests that I(Qd̃) is less influenced by changes in α.

3. SANS Experimental Results and Discussion

To demonstrate the feasibility of our proposed deep learning inversion
method, we carried out small angle neutron scattering (SANS) of a frequently
investigated lyotropic system: Sodium dioctyl sulfosuccinate, commonly re-
ferred to as AOT, was commercially available from Thermo Scientific. To
produce aqueous AOT solutions with different weight concentrations of 30%,
40%, and 50%, AOT powders were dissolved in deuterium oxide (D2O) ac-
quired from Sigma Aldrich with a deuteration degree of no less than 99.96
%. These blends were continuously agitated under standard environmental
conditions for approximately 4 hours, ultimately yielding optically transpar-
ent solutions. It should be noted that the concentration range examined in
this study has been previously identified as the equilibrium lamellar phases
[30, 31]. The SANS experiment was conducted at the D22 large dynamic
range small-angle diffractometer located at the Institut Laue-Langevin (ILL).
In this study, we used two wavelengths, 6 Å and 11.5 Å, to cover the essential
range of Q from 0.001 Å−1 to 0.5 Å−1, where coherent neutron scattering was
detected. The AOT aqueous solutions were placed in Hellma banjo cells with
a 1 mm pathlength.

Fig. 6 (a) shows the SANS intensity, I(Q), for aqueous solutions con-
taining 30%, 40%, and 50% AOT. Before delving into the quantitative data
analysis, it is instructive to explore the qualitative characteristics of I(Q):
Upon initial observation, it is evident that with an increase in the weight
fraction of AOT, the height of the first correlation peak in I(Q) steadily
diminishes, and its position progressively shifts towards higher values of Q.
Furthermore, while the states chosen for the SANS study are well situated
within the lamellar phases, as indicated by the AOT/water phase diagram
[30, 31], the distinctions in lamellar structural organization can be readily
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Figure 6: (a) SANS I(Q) for aqueous AOT solutions at three weight fractions of 30% (blue
circles) 40% (orange circles) and 50% (green circles). (b) to (d): Comparison between
experimental I(Q) (colored symbols) and fitting curves (black lines). The measured I(Q)
were desmeared according to [32]

observed through the distinct features in the development of I(Q), including
the height and width of the second correlation peak. When the weight frac-
tion of AOT is raised, the incoherent background becomes more prominent
due to the higher concentration of protons in the sample.

Figs. 6 (b)-(d) display the comparison between the measured I(Q) and
the results of regression analysis following Algorithm 3. The data is pre-
sented in the dimensionless unit of Qd̃. In practical regression analysis, the
initial guess for d̃ is determined as 2π

Q̃
, with Q̃ representing the position

of the first correlation peak in I(Q). Within the probed range of Qd̃, we
observe quantitative agreement between the SANS experimental data and
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Algorithm 3: Least squares curve fitting

Input: Iexp(Qd̃), fNN(Qd̃,Ξ), initial guesses Ξi, C i and I iinc
Result: ΞNN

1 Ξ← Ξi

2 C ← C i

3 Iinc ← I iinc ; // initial guess

4 i← 0
5 while i < Maxiter do

6 INN(Qd̃)← fNN(Qd̃,Ξ) ; // generate INN(Qd̃)

7 I(Q)← CINN(Qd̃) + Iinc ; // generate I(Q)

8 Lfit ←
∥∥∥Iexp(Qd̃)− I(Qd̃)

∥∥∥2

; // evaluate regression loss

9 Update Ξ, C, and Iinc with L-BFGS-B algorithm to minimize Lfit

10 i← i+ 1
11 if Lfit < Lc then
12 ΞNN ← Ξ ; // return the fitting result

13 end

14 end
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the optimized I(Qd̃). Nevertheless, significant disparities become apparent
for solutions with 30% and 40% AOT when Qd̃ ≤ 1. The explanation for
this observation will be addressed in the subsequent section of this report.
The discrepancy between the symbols and the dotted lines suggests that the
widely used lamellar model [5] is inadequate for describing the structure of
the lyotropic phases examined in this report.

Figure 7: Values for (a) σk, (c) Γ, and (d) α in aqueous AOT solutions obtained via
regression analysis of corresponding SANS data. Panel (b) presents the distribution of
wave vector magnitude f(k).

The relevant parameters determined from the regression of the scattering
experiment are given in Fig. 7. Panels (a) and (b) present σk, and the corre-
sponding distribution of wave vector magnitude p(k) are given in extracted
from regression. The findings support the conclusion that the standard de-
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viation typically accounts for less than 5% of its mean. For the derivation
of scattering cross sections in L3 bicontinuous phases using the clipped ran-
dom wave model—a mathematically refined extension of the LW model—a
different spectral function is employed. This spectral function encompasses
both the second and fourth moments of a Gaussian distribution [24, 25].
Given that the relevant values of wave vectors k are tightly clustered around
their mean, we can reasonably conclude that a standard normal distribution
adequately addresses density fluctuations in typical lyotropic structures.

Fig. 7 (c) illustrates the extracted orientational order parameter Γ. As
the weight fraction of AOT increases, Γ decreases. This observation indicates
that the distribution of wave vectors becomes progressively less anisotropic,
suggesting a growing structural aspect of the L3 sponge state within the Lα

phases as the lamellar order deteriorates. Fig. 7 (d) illustrates the relation-
ship between the extracted parameter α and the weight fraction of AOT. In
the framework of the LW model, α serves as a quantitative indicator of ani-
sometricity, specifically reflecting the relative composition of two immiscible
phases. The observation of α decreasing from approximately 0.7 to around
0.3 as the AOT weight fraction increases from 30% to 50% is not surprising.
This reduction in α reflects a decrease in the imbalanced ratio of water to
AOT as the lyotropic system approaches isometric.

Figure 8: Three-dimensional visualizations of the lyotropic structures in aqueous AOT
solutions at weight fractions of (a) 30%, (b) 40%, and (c) 50%.

Using the extracted values of σk, Γ, and α, as displayed in Fig. 7, a
three-dimensional representation of lyotropic structures can be constructed
by applying the GLW framework as shown in Fig. 8. Firstly, the inter-planar
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spacing is on the order of several tens of Å. Secondly, as the AOT weight frac-
tion increases, pathways between adjacent plates begin to develop gradually,
resulting in a substantial increase in interconnections between layers. This
transformation causes a shift in the arrangement of the initially anisotropic,
two-dimensional plates at the mesoscopic length scale, transitioning them
into a much more isotropic phase.

We can offer a quantitative account of this observed conformational pro-
gression by relying on the pertinent length scales as indicated in Fig. 9,
which define the unique characteristics of the three analyzed stacked lamel-
lar systems: Panel (a) presents the average inter-planar spacing, denoted as
d ≡ 2πd̃. As the AOT weight fraction rises from 30% to 50%, this parameter
decreases from about 60 Å to 40 Å. Panel (b) gives the in-planar spatial cor-
relation length, denoted as d⊥, based on the averaged spatial period of Moiré
stripes [33]. This parameter signifies the shortest distance over which the
normal vector of a lamellar plane maintains its alignment. Mathematically,
d⊥ is defined as

d⊥ ≡
d

sinσθ

, (5)

where σθ is the standard deviation of P (θ) given in Eqn. (2) and is defined
as

σθ ≡ [

´ π

0
P (θ)θ2 sin θdθ´ π

0
P (θ) sin θdθ

]
1
2 , (6)

As the weight fraction of AOT is increased, the average value of d⊥ decreases

Figure 9: Two characteristic length scales of typical lyotropic phases are shown: (a) the
mean inter-planar spacing denoted as d and (b) the in-planar spatial correlation length
represented by d⊥. The comparison between these lengths is presented in (c).

from 80 Å to 40 Å. This observation indicates that the individual plates
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forming the stacked lamellar phases are progressively undergoing crumpling.
In Fig. 9 (c), we compare the values of d⊥ and d. The diminishing ratio of
d⊥
d

indicates that the wave vector field characterizing the lyotropic systems
becomes more isotropic. This quantitative analysis aligns with the qualitative
observation depicted in Fig. 8, indicating a gradual shift in conformation from
a more lamellar-like arrangement to a more sponge-like configuration.

Vital insights into the local topological characteristics can be directly de-
rived from the three-dimensional structures of lyotropic phases in real space,
as illustrated in Fig. 8. Before discussing the extracted information given
in Fig. 10, we briefly introduce surface curvatures: The inherent topological
characteristics of two-dimensional surfaces can be thoroughly examined by
delving into their morphology according to differential geometry [34]. Let’s
assume that the surfaces depicted in Fig. 8 can be represented by a function
F (x, y, z) = 0. In this context, the normal vector field, denoted as Û , is
defined as Û ≡ ∇F

|∇F | . For any given point p residing on one of these surfaces,
we can establish a shape operator Sp by considering the directional gradient

along the tangent vector v⃗ at p. It can be expressed as Sp (v⃗) ≡ −∇vÛ .
Geometrically, Sp (v⃗) represents the surface curvature in the vicinity of p.
The magnitude of Sp (v⃗) corresponds to the reciprocal of the radius of an
osculating circle on the surface that is perpendicular to the plane formed by
Û and v⃗.

Since Sp (v⃗) is a symmetric matrix, it can be diagonalized. The two
resulting eigenvalues, denoted as 1

R1
and 1

R2
, are known as the principal

curvatures. These values represent the maximum and minimum values of the
normal curvature at p, where the normal curvature 1

R
is calculated as −∇uÛ ·

u⃗, with u⃗ being the unit tangent vector at p. From Sp (v⃗) and its eigenvalues,
we can define two fundamental invariants: the Gaussian curvature K and
the mean curvature H. Specifically, the Gaussian curvature is expressed as

K ≡ 1
R1R2

, and the mean curvature as H ≡ 1
2

(
1
R1

+ 1
R2

)
. These quantities

correspond to the determinant and half the trace of the shape operator Sp (v⃗),
respectively.

Fig. 10 presents the probability distribution functions for H and K, re-
ferred as p(H) and p(K) respectively. These distributions are computed from
the three-dimensional structures of lyotropic phases displayed in Fig. 8. The
probability distribution p(H) shown in Fig. 10 (a) exhibits a noticeable left-
skew. Furthermore, as the weight fraction of AOT increases, the distribution
of p(H) becomes broader. Considering the definition of H, it becomes ev-

21



Figure 10: Probability distribution functions for (a) mean curvature (H) and (b) Gaussian
curvature (K) in aqueous AOT solutions.

ident that in solutions with lower AOT weight fractions, a greater number
of the local wrinkling on the crumbled surfaces exhibit an outward curva-
ture, thereby giving rise to a convex shape extending towards the water-rich
region.

Much like the distribution of p(H) described in Fig. 10 (a), the distribu-
tions of p(K) also display left-skew tendencies, particularly showing increased
variance as the AOT weight fraction increases (Fig. 10 (b)). By considering
the definition ofK, it becomes apparent that surfaces in solutions with higher
AOT weight fractions exhibit more pronounced wrinkling, as the broader dis-
tribution implies smaller values for the corresponding R1 and R2.

We emphasize that considerable attention is directed towards establish-
ing a comprehensive framework for describing the thermodynamic charac-
teristics of general lyotropic systems [19, 20]. In this endeavor, Helfrich
pioneered by formulating the Hamiltonian for lipid bilayers in relation to
mean and Gaussian curvatures, alongside their associated moduli [35]. In
the context of elucidating phase transitions in lyotropic phases, it is imper-
ative to obtain measurements of mean and Gaussian curvatures as integral
components. These measurements, therefore, constitute a fundamental facet
of experimental investigations. In this regard, the efficacy of our proposed
method in providing these statistically averaged topological characteristics
of lyotropic phases from scattering techniques has been validated.
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Figure 11: (a) A 2D scattering spectrum of a single domain with vertically stacked lamellar
planes, where the average normal vector aligns perpendicular to the incident particle beam
along the y-axis. (b) The scattering spectrum was obtained from a polygrain sample
comprising stacked lamellar plates, with each individual grain’s local topology resembling
that of the single grain displayed in Panel (a).

Investigating the underlying reasons for the evident disparity between
experimental SANS data and the best-fit curve generated by the CNN re-
gression framework in the low Q region of Qd̃ ≤ 1, as depicted in Fig. 6, is
of considerable importance. Fig. 11 displays the two-dimensional coherent
scattering intensities of a lyotropic structure composed of crumbled lamellar
planes generated by the GLW. Panel (a) presents the spectrum originating
from a single domain of vertically stacked lamellar planes, where the average
normal vector is oriented perpendicular to the direction of incident particles.
Due to the prevalent alignment of these stacked planes, the resulting spec-
trum exhibits anisotropic characteristics. Panel (b) displays the scattering
spectrum acquired from a sample containing polygrains made up of stacked
lamellar plates. The local topology of each individual grain is statistically
equivalent to that of the single grain depicted in Panel (a). In this case,
the normal vector of each grain is randomly oriented, and the angular av-
eraging process is appropriately applied in the spectrum calculation, as in
our training process. Consequently, the resulting spectrum exhibits angular
isotropy.
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A visual examination of Fig. 11 (a) shows that in the range of Qd̃ ≤ 1,
the coherent scattering intensity is significantly greater along the Qxd̃ di-
rection compared to the Qzd̃ direction. In the case of a lyotropic system
characterized by the Lα phase, the process of loading the sample may inad-
vertently lead to a non-uniform distribution of orientation among the normal
vectors of individual constituent grains, potentially resulting in a modifica-
tion of the coherent scattering at low values of Q. Conversely, in the case of
a lyotropic system exhibiting the L3 topological nature, the sample loading
process will have no impact since the system is inherently isotropic. This
argument clarifies why the discrepancy is most evident in the case of a 30%
AOT solution, which exhibits the most prominent lamellar order, becomes
notably less pronounced in a 40% AOT solution, and virtually vanishes in a
50% AOT solution displaying a pronounced sponge-like topological character.

Hence, we contend that the low-Q coherent scattering data, as depicted in
Fig. 6, may not necessarily depict the equilibrium structure of the lyotropic
systems examined in this report. To thoroughly capture the hierarchical
structural characteristics encompassing both macro and mesoscopic length
scales, an approach that complements the CNN regression analysis in this
report is to conduct a two-dimensional spectral analysis using data collected
from different projection planes with varying rotation or tilt angles with re-
spect to the incident particle beam. This inversion method can be aided by
orthogonal decomposition schemes such as the real spherical harmonic ex-
pansion [36]. Nevertheless, a comprehensive implementation of this method
falls beyond the scope of this report.

4. Concluding Discussion

We have introduced an innovative deep learning inversion framework
rooted in the principles of convolutional neural networks, designed for the
precise extraction of morphological features in general lyotropic phases based
on their scattering cross sections. This framework is underpinned by the
foundational mathematical construct of generalized levelled waves. Within
this framework, we employ the plane wave superposition method to assess
density fluctuations in diverse lyotropic phases. As a versatile framework for
delineating lyotropic topology, this mathematical approach integrates a reg-
ulated wave vector distribution to effectively account for the diverse degrees
of anisotropy in density fluctuations present in lyotropic phases with distinct
morphological characteristics. After performing computational benchmark-
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ing to assess its numerical accuracy, the feasibility of this inversion frame-
work is additionally affirmed through a SANS experimental examination of
smectically stacked bilayers exhibiting different levels of lamellar order. Fur-
thermore, the current dynamical investigations of lamellar phases primarily
revolve around the structural framework of a one-dimensional lamellar model
[11]. An area that warrants further exploration is the examination of how
inter-planar passages affect the dynamic characteristics of distorted lamel-
lar phases, utilizing the generalized leveled wave model introduced in this
research.

Due to the broad applicability of the generalized levelled wave descrip-
tion framework, this methodology readily extends its utility to investigate
the structural characteristics of a wide spectrum of lyotropic phases. This
expanded approach is not confined solely to the non-particulate L3 or Lα

phases; rather, it encompasses crystalline phases like the hexagonal (H), cu-
bic (Cub), and cholesteric (Ch) phases, which are frequently encountered in
diverse applications, including biological membranes, detergents, and liquid
crystal displays.

This research also underscores a promising avenue for future investigation:
There is substantial interest in understanding the morphological transforma-
tions in flowing lyotropic phases under different deformation conditions, as
evident from the distinct evolution of measured scattering cross-sections.
Through appropriate consideration of the angular average of grain orienta-
tion, our methodology for analyzing one-dimensional scattering spectra can
be seamlessly extended to a regression framework for the examination of two-
dimensional anisotropic spectra. By accessing pertinent projection planes, we
can quantitatively map out the flow-induced morphological changes with the
assistance of eigen-decomposition methods, such as real spherical harmonic
expansion.

Future investigations into these systems can expand upon the concep-
tual framework of generalized levelled wave model introduced in this report.
Within the realm of lyotropic research, a compelling area of interest centers
on the persistent fascination with the lamellar-to-isotropic transition. This
transition is a crucial element in understanding the phase characteristics of
microemulsions, marked by the emergence of perforations that facilitate the
merging of initially isolated bilayer membranes into a continuous intercon-
nected domain. In the mathematical context of generalized leveled waves,
these topological irregularities can be clearly discerned through curvature
analysis. It is foreseeable that a significant increase in defect density will
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occur as anisotropy diminishes, and surfaces adopt a progressively twisted
configuration. With the ability to discern topological defects, it may be pos-
sible to establish an order parameter rooted in defect density for tracking
phase transitions within this significant category of soft matter.
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