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ABSTRACT

Diabetic foot ulcers pose health risks, including higher mor-
bidity, mortality, and amputation rates. Monitoring wound
areas is crucial for proper care, but manual segmentation is
subjective due to complex wound features and background
variation. Expert annotations are costly and time-intensive,
thus hampering large dataset creation. Existing segmentation
models relying on extensive annotations are impractical in
real-world scenarios with limited annotated data. In this pa-
per, we propose a cross-domain augmentation method named
TransMix that combines Augmented Global Pre-training
(AGP) and Localized CutMix Fine-tuning (LCF) to enrich
wound segmentation data for model learning. TransMix can
effectively improve the foot ulcer segmentation model train-
ing by leveraging other dermatology datasets not on ulcer
skins or wounds. AGP effectively increases the overall image
variability, while LCF increases the diversity of wound re-
gions. Experimental results show that TransMix increases the
variability of wound regions and substantially improves the
Dice score for models trained with only 40 annotated images
under various proportions.

Index Terms— foot ulcer segmentation, data augmenta-
tion, CutMix, transfer learning, pre-training.

1. INTRODUCTION
Foot ulcers, a common complication associated with diabetes,
represent a significant public health concern due to their sub-
stantial impact on morbidity, mortality, and the elevated risk
of lower limb amputations [1]. Precise delineation of wound
areas plays a pivotal role in comprehensive wound manage-
ment and ongoing healing assessment. Manual skin wound
segmentation is a traditionally employed approach that de-
mands a high level of expertise and experience [2]. This
requirement arises from the multifaceted etiologies and di-
verse visual characteristics of wounds. However, the inherent
subjectivity and time-intensive nature of manual segmenta-
tion procedures pose considerable challenges within clinical
practice [3, 4]. Consequently, there exists a pressing need
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to develop an automatic segmentation model for efficient and
accurate ulcer wound analysis.

Research on automatic wound segmentation has advanced
greatly with Deep Neural Networks (DNN), notably the con-
volutional neural network (CNN) and Transformer architec-
tures. Visual object detection and segmentation networks
such as the Mask R-CNN [5] have been applied for au-
tomatic wound segmentation [6]. The lightweight model
in [7] utilizes residual attention to capture local patch details.
The recent FUSegNet [3] refines the U-Net [8] architecture
by integrating spatial and channel Squeeze-and-Excitation
modules during the decoding phase. In addition, ensemble
techniques are broadly employed to overcome the limited
discriminative ability of the architecture designs [3, 9, 10].
Despite the advancement, these model designs and ensemble
strategies focus on fine-tuning network architectures, without
directly manipulating the raw image data. These approaches
still face limitations when it comes to effectively learning
and segmenting diverse types of wounds. Furthermore, over-
parameterized models may struggle to accurately capture
subtle wound patterns, especially when there is a scarcity of
available labeled training data [11].

Previous studies on foot ulcer segmentation have typically
neglected real-world scenarios, characterized by a scarcity of
labeled training data due to the time-intensive nature of the
data collection and annotation processes. In addressing the
challenge of data scarcity, cross-domain learning approaches
are developed in medical image analysis. Most research
focuses on learning from different sources of data that be-
long to the same set of labeled classes. The domain gap
arising from differences in imaging sites for MRI data can
be eliminated this way [12]. Other transfer learning ap-
proaches extend beyond these domain gaps to encompass
different label types. For instance, the diabetic retinopathy
method is expanded in [13] to recognize multiple ocular dis-
eases, where their glioma identification model can be used to
diagnose other brain tumors. In automatic wound segmen-
tation, it is impractical to collect a sufficiently large amount
of images with annotations that cover the required variabil-
ity for DNN model training. Although the transfer learning
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Fig. 1. Overview of the proposed TransMix framework. Augmented Global Pre-training (AGP) enables initial model
learning from other larger skin datasets. Localized CutMix Fine-tuning (LCF) expands the diversity of wound patches via
CutMix synthesis. Our approach can effectively overcome the issue of data scarcity during model training.

across classes can partially work for wound segmentation, the
application-dependent domain gap remains the bottleneck for
effectiveness. The main difficulty in developing an automatic
foot ulcer segmentation model is still the scarcity of suitable
wound image data. To this end, developing effective methods
that can learn from limited labeled data is imperative.

In this work, we propose a cross-domain wound segmen-
tation method based on data augmentation via image transfor-
mation and local patch mixing, named TransMix; see Fig. 1.
TransMix consists of two model training stages: Augmented
Global Pre-training (AGP) and Localized CutMix Fine-tuning
(LCF). To verify the effectiveness of learning from limited la-
bels, our model is first trained on the large skin lesion dataset
HAM10000 [14, 15] from Harvard Dataverse. The model
with learned global knowledge regarding skin segmentation is
then fine-tuned on a smaller foot ulcer dataset, where the aug-
mented wound regions with diversified wound appearances
can be effectively learned. AGP enables the learning of global
knowledge such as camera viewpoint variations. In LCF, a
more local and refined augmentation using CutMix [16] is
adopted to expand the variability of the wound regions. In-
stead of randomly replacing patches in the image, we care-
fully specify the wound region for fine-grained augmentation.
The proposed AGP and LCF pipeline work jointly to narrow
down domain gaps across datasets, enabling our method to ro-
bustly transfer the learned knowledge in the scenario of lim-
ited annotation data. We evaluate our proposed framework
on the FUSeg dataset [17] and achieve an 85.26% Dice score
using only 40 labeled images, which achieved a 10.43% im-
provement compared to the baseline method.

2. METHOD

We focus on the wound segmentation task with limited train-
ing data. We consider transfer learning from a source domain
with a larger dataset to a target domain with limited data
samples. Specifically, for model pre-training in the source
domain, let the source skin dataset DS consist of image-mask

pairs {xSi ,mS
i }Mi=1, where the size M of the source dataset

DS is large enough. Let the target foot ulcer wound dataset
DT consist of image-mask pairs {xi,mi}Ni=1, where mi

denotes the RW×H segmentation ground truth of the corre-
sponding image xi with the same dimension. We assume the
size N of the target dataset to be small (e.g., N ∈ {40, 81}).
The goal is to derive a model that can accurately segment the
wound region from the test images in the domain of DT .
Dataset. We use a real-world foot ulcer wound segmenta-
tion benchmark, FUSeg [17] as the dataset for the target do-
main. FUSeg contains 810 foot ulcer images along with their
ground-truth masks as a training set and 200 images as a vali-
dation set. To simulate the data scarcity scenarios for evalua-
tion purposes, we limit the access to only 40 and 81 randomly
selected training samples (which corresponds to 5% and 10%
of the original training set, respectively). For the source do-
main, we utilize the large-scale HAM10000 dataset [14] Har-
vard Dataverse, as the source dataset. HAM10000 consists of
10, 015 skin lesion images along with ground-truth masks.

2.1. Cross-Domain Transfer Strategies
Our cross-domain wound segmentation framework in Fig. 1
consists of two training stages: Augmented Global Pre-
training (AGP) and Localized CutMix Fine-tuning (LCF).
The focus of AGP is to extract global knowledge of skin le-
sion segmentation from the larger source-domain data. LCF
then perform location-aware CutMix with background re-
moval to enhance wound variability to fine-tune the wound
segmentation model on the limited available target-domain
samples. Both AGP and LCF perform image data augmen-
tations, from coarse to fine, with different purposes: AGP
focuses on global viewpoint variations, while LCF attends to
local wound patch variabilities.

2.2. Augmented Global Pre-training
To mitigating the large discrepancy between the source and
target domains, effective data augmentation is necessary for



Table 1. Evaluation of Augmented Global Pre-training (AGP) and Localized CutMix Fine-tuning (LCF) on the FUSeg validation
dataset in terms of precision, recall, and Dice scores in %.

Experiments
Setting #

Pre-trained Method
40 Samples 81 Samples

Precision Recall IoU Dice Precision Recall IoU Dice
A - U-Net 67.99 83.18 59.78 74.83 86.98 73.24 66.00 79.52
B ✓ + Pre-training 84.06 55.92 50.56 67.16 82.98 71.16 62.09 76.61
C ✓ + AGP 84.99 79.60 69.79 82.21 84.87 86.50 74.95 85.68
D - + CutMix 80.16 75.16 63.37 77.58 76.68 90.53 70.98 83.03
E - + CutMix + Background Removal 75.11 77.85 61.89 76.46 84.18 87.29 74.99 85.71
F - + CutMix + Location-aware Pasting 85.57 72.38 64.51 78.43 85.98 86.26 75.72 86.12
G - + LCF 86.75 82.39 73.18 84.51 84.79 87.53 75.65 86.14
H ✓ + TransMix 82.50 88.22 74.31 85.26 84.83 88.51 76.44 86.65

knowledge transfer during model training. As shown in the
snapshots in Fig. 1, HAM10000 contains higher-quality im-
ages taken with consistent camera view angle and distance,
illumination conditions and backgrounds. The skin lesion
regions are mostly circular in shape, occupying a large por-
tion at the center. In contrast, many images in the FUSeg
dataset are taken with various conditions and qualities, with
arbitrary wound locations, shapes and sizes. To this end, we
perform intense spatial-level transformations including global
perspective transformations and optical distortion. We also
perform strong pixel-level transformations including RGB &
HSV shifts, brightness & contrast, to simulate illumination
changes. A U-Net [8] model is pre-trained to learn the seg-
mentation of skin regions, which will be transferred to the
foot ulcer domain for wound segmentation.

2.3. Localized CutMix Fine-tuning

With the pre-trained model using the large-scale HAM10000
dataset, we perform fine-tuning to the FUSeg dataset for
wound segmentation. In a situation with very limited train-
ing data, the model can hardly capture diverse types of
wounds. Therefore, our proposed TransMix approach in-
cludes a CutMix strategy to diversify the visual appearances
of the wounds during the fine-tuning steps.

We first obtain the bounding boxes’ position of the
wounds in all the training images using the corresponding
annotated masks and then crop the bounding boxes along
with their masks as the wound candidates. The background of
each wound candidate is removed based on the correspond-
ing mask to synthesize a more realistic wound appearance
without an obvious artificially generated cropping boundary.

In each batch of data, we specify the position of the
wound in target images and randomly paste other wound
candidates on the specified region. As the wound size can be
dramatically different across images, we deliberately select
the wound candidates with similar wound sizes to the target
wound region and resize the wound candidates to match the
target wound size. When we paste a wound candidate to a
specified region, part of the wounds in the target image re-
mains, and other parts of the pasted wound candidate might

exceed the specified boundary due to the different shapes.
We regard the union regions of the remained wounds and
the pasted wound candidates to generate a new segmentation
mask for the newly synthesized image. Through multiple
iterations in the fine-tuning phase, the same wound region is
augmented with multiple wound candidates which enhances
the robustness of segmentation model learning against various
wound appearances. Aside from the localized wound Cut-
Mix, we also perform the strong whole-image transformation
mentioned in §2.2 to augment the training data perspectives.

3. EXPERIMENTAL RESULTS

We set up two experiments to evaluate our proposed frame-
work in terms of the comparison to other segmentation ap-
proaches and the analysis of different numbers of accessible
training data. The results are reported in §3.1 and §3.2, re-
spectively. We include the compared models and implemen-
tation details in the following sections.
Models for comparison. The settings of the compared mod-
els for §3.1 are described below and correspond to the results
in Table 1. We adopt U-Net (Setting A) as a strong baseline
model which has been widely used for automated wound seg-
mentation [18]. Notably, FUSegNet [3] using an EfficientNet-
B7 [19] backbone with ensemble techniques, achieved a state-
of-the-art Dice score (92.70%) on the FUSeg dataset. We
kept the architecture but avoided such a cumbersome back-
bone model for the data-scarce scenario while still achieving
a comparable Dice score (91.08%) on the full set evaluation
with the ResNet-50 backbone.

Pre-training (Setting B) is performed using the HAM10000
dataset with naive fine-tuning. This baseline is a common
practice in the medical field in dealing with limited training
data [20] although most past studies are limited to using seg-
mentation datasets that have the same set of labeled classes.
AGP (Setting C) utilizes our proposed pre-training approach
( §2.2) using naive fine-tuning.

We also compare model training approaches without pre-
training as follows. CutMix (Setting D) is applied based on
the original paper [16]. We further remove the background
of the wound candidates and specify the wound location in
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Fig. 2. We evaluate the model fine-tuned using different num-
bers of FUSeg training samples, and report the Dice scores
(%) on the FUSeg validation set.

Setting E and Setting F. LCF (Setting G) is our proposed ap-
proach in §2.3 without pre-training.

Ultimately, our proposed TransMix (Setting H) combines
both AGP and LCF.
Implementation Details. We use the dataset described at §2
and U-Net with ResNet-50 encoder as our backbone. We used
Adam optimizer with 5e-4 learning rate, batch size of 4, and
training with 300 epochs, the learning rate is decayed by a
factor of 10 every 100 epochs. We perform data augmenta-
tion at two levels using the widely-used toolbox of Albumen-
tations [21]. At the spatial level, we use several augmenta-
tions including grid distortion, optical distortion, perspective
transform, and affine transform to align the whole image an-
gle across the dataset. At the pixel level, we applied some
transformations such as RGB shift, brightness contrast, and
HUE saturation value transformations to align illumination
conditions.

3.1. Results Under Limited Supervision

We compare our proposed TransMix method against other
segmentation approaches under limited supervision. Table 1
lists the performance comparisons on the FUSeg validation
set using only 40 or 81 training samples. As can be seen,
our framework (TransMix in Setting H) consistently demon-
strates significantly superior performance compared to base-
line methods. Notably, our framework achieves Dice scores
of 85.26% and 86.65%, respectively, showing 10.43% and
7.13% improvements compared to the baseline method (U-
Net in Setting A).
Effects of the Augmented Global Pre-training. As men-
tioned in §2.2, it is essential to eliminate the domain gap be-
tween the source and target domains for effective knowledge
transferring. As can be seen from Setting B in Table 1, sim-
ple pre-training on HAM10000 for transfer learning could re-
sult in significant performance degradation as compared to the
baseline (Setting A). In contrast, the model pre-trained by the
proposed Augmented Global Pre-training strategy (Setting C)

achieves Dice scores of 82.21% and 85.68% after fine-tuning
on 40 and 81 FUSeg training samples, respectively, showing
7.38% and 6.16% improvements compared to the baseline.
This demonstrates the necessity of our strong augmentation
strategy in eliminating the domain gap to better benefit from
the pre-training process, especially in data-scarce scenarios.
Effects of the Localized CutMix Fine-tuning. As men-
tioned in §2.3, it is crucial to synthesize diverse wound sam-
ples with reasonable locations and realistic appearances for
useful data augmentation. We conduct an ablation study
to demonstrate the effectiveness of the proposed LCF in
fulfilling this goal. Settings D-G in Table 1 list the perfor-
mance comparisons under different CutMix strategies during
fine-tuning. We employ the original CutMix [16] technique
(Setting D), and further remove the background of wound
candidates to be pasted (Setting E). Both of these settings
show improvements compared to the baseline (Setting A).
However, since the position for pasting is randomly selected,
these settings may result in unrealistic synthesized images.
Furthermore, we paste wound candidates based on the wound
locations in the target image without performing background
removal (Setting F) to verify the effectiveness of location-
aware pasting. This approach resulted in an improvement
compared to Setting D, highlighting the importance of a rea-
sonable pasting position. Finally, we simultaneously employ
background removal and location-aware pasting (Setting G),
which achieves further improvements of 6.93% and 3.11% in
Dice scores, respectively.

3.2. Analysis on the Amount Training Data

In Fig. 2, we examine the change of Dice score with vary-
ing data volumes, using 40 (5%), 81 (10%), 202 (25%), 410
(50%), and 810 (100%) images to simulate the data accessi-
bility in the real world. Our proposed TransMix brings about
large benefits when we only obtain less than 200 wound sam-
ples. The trend shown in Fig. 2 suggests the benefits of Trans-
Mix, while the margin becomes minor if the target dataset is
large enough. With very limited labeled data (e.g., N < 40),
the model performance could highly depend on the quality of
the sampled data.

4. CONCLUSION

Diabetic foot ulcers patients require continual wound moni-
toring to manage their recovery conditions. However, current
automatic segmentation approaches assume the accessibility
of large-scale labeled data, which is impractical in clinical
practice. To our best knowledge, this work is the first study
addressing the limited supervised wound segmentation prob-
lem. The novel cross-domain framework enables the use of
other datasets with skin images for global knowledge transfer
and augments wound variability in a localized manner.

Future work: we will apply few-shot and zero-shot
learning to enhance model usability in the real world.
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