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Abstract

This paper presents an innovative strategy that utilizes deep autoencoder and clas-

sification networks within a deep learning framework to address the potential inversion

problem in small angle scattering. To evaluate the performance of our proposed ap-

proach, we carry out a detailed case study focusing on charged colloidal suspensions.

Our results clearly indicate that our deep learning solution offers a reliable and quan-

titative method for studying molecular interaction. Moreover, our approach surpasses

existing deterministic approaches with respect to both numerical accuracy and com-

putational efficiency. Our work demonstrates the enormous potential of deep learning

techniques in tackling complex problems in soft matter structures and beyond.
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Introduction

The importance of charge association between the supporting electrolyte and macroions in

charged colloidal suspensions is widely recognized. The resulting screening of electrostatic

interactions plays a critical role in determining the stability of colloidal solutions. According

to the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory,1 the primary electro-

static interactions can be divided into two distinct components: the repulsive force arising

from the overlap of ionic double layers surrounding the colloidal particles and an attractive

force originating from the short-range van der Waals interactions between the constituent

molecules of the colloidal particles. This attractive force is commonly referred to as the

Hamaker interaction, which exhibits an attractive strength typically on the order of kBT ,

where kB is the Boltzmann constant and T is the temperature. The magnitude of the double-

layer repulsion at the point of contact is generally several times higher than kBT . In charged

colloidal systems with low ionic strength, the spatial arrangement of particles is primarily

determined by the repulsive forces generated by the long-range double-layer interactions. By

solving the Debye-Hückel equation with the linear approximation,1 this long-range repulsion

is found to take the following expression of a hard sphere model augmented by a Yukawa

tail representing the screened Coulomb repulsion:

β VR(r) =


∞, if r < D

A exp[−κ(r−D)]
r

, otherwise

(1)

Eqn. (1) incorporates several important parameters: β is the Boltzmann factor defined as the

reciprocal of kBT . A is given by the expression Z2e2

ϵ(1+κD
2

)2
determined by the charge number

Z, the electric charge e, the dielectric constant of the solvent ϵ, the dimensionless inverse

Debye screening length κ, and the colloidal diameter D. Eqn. (1) and the associated param-

eters have been extensively employed to describe the electrostatic behavior in a wide range

of charged colloidal systems including ionized nanoparticles, self-assemblies, and biological
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systems, providing valuable insights into their properties and interactions.

Given the critical role of the repulsive electrostatic interaction as a starting point for

the statistical mechanical description of the thermodynamic properties of charged colloidal

systems, experimental determination of VR(r) becomes of paramount interest. Among the

array of available experimental techniques, small angle scattering (SAS) emerges as a promi-

nent approach.2 The effectiveness of this experimental protocol is predicated on Henderson’s

theorem, which states that there is a unique one-to-one correspondence between the ef-

fective potential and the two-point static correlation functions of the system, such as the

inter-particle structure factor S(Q) or its Fourier transform, the radial distribution function,

g(r).3–5

Within the experimental framework of SAS, VR(r) is not directly measured. Instead, it

is indirectly derived from S(Q). Extensive theoretical efforts have been dedicated to estab-

lishing a reliable inversion framework that enables the extraction VR(r) from the measured

S(Q). Since the 1980s, integral equation (IE) theories, specifically the Ornstein-Zernike (OZ)

equation,6 have been continuously developed to addresss the correspondence between S(Q)

and VR(r). However, a fundamental limitation arises from the commonly employed closure

approximation, impeding the achievement of high accuracy in potential inversion.7 This lim-

itation becomes increasingly apparent as systems exhibit higher complexity and collectivity,

as often observed in charged colloidal systems. Consequently, it significantly impedes the

accurate determination of effective interactions within such systems.

For instance, when attempting to derive VR(r) from the S(Q) of charged colloidal sus-

pensions, the widely used mean spherical approximation (MSA) closure,8 along with its en-

hanced variants like rescaled MSA (RMSA)9 and penetrating-background corrected RMSA

(PB-RMSA),10 is generally applicable only to weakly charged systems. These methods tend

to underestimate the fluid structure in highly concentrated or repulsive colloidal suspen-

sions.11–14 In particular, when employing the state-of-the-art modified PB-RMSA (MPB-

RMSA) closure,14 we have found that it is challenging to use this closure to obtain S(Q)
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for systems characterized by κ below 0.1. Furthermore, for colloidal volume fractions ex-

ceeding 0.3, there is uncertainty regarding the attainment of a reasonable MSA scaling

parameter that satisfies the Gillan condition.15 Furthermore, the computational efficiency

of the MPB-RMSA closure, which is one of the key advantages of the MSA closure, be-

comes significantly compromised as ϕ increases. Other closure approximations, such as the

hypernetted chain (HNC) and Percus-Yevick (PY) closures,16 consistently deviate from sim-

ulation results. HNC underestimates the S(Q), while PY overestimates it.12 Although the

Rogers-Young (RY) closure17 demonstrates improved quantitative agreement with compu-

tational references for moderately charged systems, its efficiency is significantly hindered

by the requirement of thermodynamic consistency. Moreover, its applicability is limited by

the narrow range of densities where convergence is achieved.18 Furthermore, in the case of

highly collective charged colloidal suspensions, where the Coulombic coupling between col-

loidal particles and counterions is very strong, IE theories fail to provide a solution.19 These

limitations highlight the inadequacy of existing IE approaches in accurately inverting VR(r)

from the S(Q) of charged colloidal suspensions.

Earlier we propose a data-driven ML framework using Gaussian process regression (GPR)20,21

to overcome limitations of current deterministic IE analytics. We computationally created

an extensive library of structure factors, {S(Q)training}, treating the associated potential

parameters as normally distributed random variables with a covariance matrix K. By quan-

titatively relating variations in S(Q) to parameter changes through K, we demonstrated that

the potential parameters can be probabilistically inferred without relying on specific models.

A regression framework is required for experimentally extracting VR(r). To this end

we have developed an iterative optimization algorithm based on a variational autoencoder

(VAE).22 The VAE uses an encoder-decoder convolutional neural network to generate a di-

verse set of structure factors, SV AE(Q), that resemble the ground truths {S(Q)training}. In

this context, a set of latent variables is employed for regression analysis. Although the opti-

mized SV AE(Q) achieves quantitative agreement with the measured S(Q) within the probed
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Q range, it often exhibits nonphysical features beyond this region, thereby violating the

asymptotic behaviors of general S(Q). Consequently, the reliability of inverted parameters

may be compromised in such cases.

This report highlights our successful resolution of the challenge through the development

of a generative function using a generative model. By incorporating physically significant

parameters as inputs, our function generator effectively manages the intricacies involved in

potential inversion, surpassing the limitations of conventional IE approaches. The accuracy

of our generative model approach has been validated through computational benchmarking,

using highly interacting charged colloidal suspensions. Additionally, we present the outcomes

of regression analysis based on our generative model approach, employing a series of exper-

imentally measured I(Q) from salt-free solutions comprising highly charged silica particles.

This demonstrates the capability of our ML inversion algorithm to capture the complex and

highly nonlinear relationship between the potential parameters and experimentally measured

scattering cross sections I(Q).

Further details regarding the development of our approach are provided in the next

section.

Results

In this section, we will begin by presenting a comprehensive overview of the construction

process involved in augmenting a neural network.

Neural network generator of structure factor S(Q)

Earlier we developed a variational autoencoder (VAE) to extract expressive features from

an extensive set of structure factor S(Q) which were generated computationally in the

phase region of equilibrium fluids.23 The VAE includes an encoder that converts the multi-

dimensional input S(Q) to three-dimensional latent variables, and a decoder that recon-
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Figure 1: Representation of our neural network (NN) data analysis process for extracting
the effective interactions of colloidal suspensions from small angle scattering.

structs the input from the latent variables. Through training, we established a continuous

and smooth two-way mapping between S(Q) and latent variables, enabling us to explore the

connection between low-dimensional representations of S(Q) and potential parameters that

determine the statistical arrangements of colloidal particles.

To build upon our pre-trained VAE model, we utilized transfer learning and developed
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Algorithm 1: Training the S(Q) generator

Input: Γ̂, Ŝ(Q), VAE decoder fVAE with weights wVAE
0 , converter module f with

weights w0

Result: Optimal w and wVAE such that
SML(Q) = fNN(Q,Γ) ≡ fVAE(Q,wVAE, f(Γ, w))

1 wVAE ← wVAE
0 ; // initialize VAE decoder

2 w ← w0 ; // initialize Converter module

3 i← 0
4 while i < Maxiter do

5 z ← f(Γ̂, w) ; // convert Γ̂ to latent variable

6 SML(Q)← fVAE(z, w
VAE) ; // generate S(Q)

7 L←
∥∥∥SML(Q)− Ŝ(Q)

∥∥∥2

; // evaluate loss function

8 Freeze wVAE, update w with Adam optimizer to minimize L
9 i← i+ 1

10 end
11 Unfreeze wVAE

12 i← 0
13 while i < Maxiter do

14 z ← f(Γ̂, w) ; // convert Γ̂ to latent variable

15 SML(Q)← fVAE(z, w
VAE) ; // generate S(Q)

16 L←
∥∥∥SML(Q)− Ŝ(Q)

∥∥∥2

; // evaluate loss function

17 L′ ← L+ α
∥∥wVAE

∥∥2
; // regularization

18 Update w,wVAE with Adam optimizer to minimize L′

19 i← i+ 1

20 end

an generative neural network (NN) architecture highlighted by the blue background in Fig. 1

that connects the pre-trained decoder fVAE with a converter module f composed of a shallow

fully connected NN. The weights associated with fVAE and f are represented by wVAE and w,

respectively. Throughout this report, the symbol ˆ is used to denote any quantities or func-

tions associated with the computationally generated ground truth. Initially, the input poten-

tial parameters, denoted as Γ̂, are transformed into latent variables, denoted as z, through the

function f(Γ̂, w). These latent variables then serve as input to the function fVAE, which gen-

erates the output SML(Q) = fVAE(z, w
VAE). The training steps of this generator is described

in Algorithm 1. In the first step, wVAE is fixed, and w is updated using a gradient descent
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Adam optimizer24 to minimize the squared difference L =
∥∥∥SML(Q)− Ŝ(Q)

∥∥∥2

between the

output of the augmented NN model SML(Q) and Ŝ(Q). This step is repeated until the max-

imum number of iterations, is reached. Next, both w and wVAE are updated simultaneously

using the Adam optimizer. The optimization objective L′ =
∥∥∥SML(Q)− Ŝ(Q)

∥∥∥2

+α
∥∥wVAE

∥∥2

includes the squared difference between the output SML(Q) and Ŝ(Q) as well as a regulariza-

tion term,
∥∥wVAE

∥∥2
with α = 0.05, which encourages small values for wVAE. Again, this step

continues until the maximum number of iterations is reached. By iterating through these

steps, the algorithm aims to converge towards the optimal values for w and wVAE, achieving

the desired similarity between SML(Q) and Ŝ(Q) as well as controlling the magnitude of

wVAE. This augmented NN model captures the non-linear relations between potential pa-

rameters and latent variables, while retaining the variational feature to account for random

noises inherent in the molecular dynamics-generated training sets. After the training and

fine-tuning as shown in Algorithm 1, the resulting NN model can generate S(Q) curves that

correspond to input potential parameters.

Computational Evaluation of Numerical Accuracy

After introducing the architecture of the NN S(Q) model, our focus now shifts to evaluating

its performance as a part of potential inversion algorithm. To accomplish this, we employ the

mean squared error (MSE) as a metric to assess the accuracy of the ML-generated structure

factor, denoted as SML(Q) for charged colloidal suspensions. This benchmarking involves

a comprehensive comparison between SML(Q) and the corresponding ground truth Ŝ(Q)

obtained through MD simulations generated based on the identical potential parameters.

MSE =
1

n

n∑
i=1

(ei)
2 =

L

n
(2)

where ei representing the numerical difference between the ith sampled Q point of SML(Q)

and that of Ŝ(Q). For each SML(Q) and Ŝ(Q), 80 Q points are sampled within the range
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Figure 2: Panels (a) and (b) display the mean squared error (MSE) between the ground truth
Ŝ(Q) generated computationally and that produced by the machine learning and OZ-RMSA
methods, respectively. Within the probed equilibrium fluid region, the quantitative accuracy
of the S(QD) generated by OZ-RMSA is seen to deteriorate rapidly upon increasing ϕ and
A. Panels (c), (d) and (e) display the ground truths Ŝ(QD) (black curves) and ML-generated
S(QD) (red curves) for the selected phase regions with the corresponding system parameters
being indicated in the legends.

of interest, therefore n = 80. The calculated results are presented in a dimensionless scaled

format of QD where D is the colloidal diameter. The domains of relevant parameter

{ϕ, 1
κD

, βAD} ≡ Γ̂ are chosen according to23 to ensure the simulated system remains in

the equilibrium fluid phase. According to Eqn. (2), MSE therefore measures the deviation

from the square of Euclidean distance in the vector space of structure factor with demension

of 80. As indicated by Panel (a) of Fig. 2, the MSE is seen to be no greater than ∼ 4×10−4.

The root-mean-square error (RMSE), which has the same unit as the evaluated SML(Q),

can be obtained by taking the square root of the MSE. Consequently, we conclude that the

overall numerical error of the SML(Q) in the probed phase region is less than 2%. It is

crucial to note that the degree of uncertainty is determined collectively by the inherent noise
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present in the simulated Ŝ(QD) and the precision of the ML inversion algorithm outlined in

Algorithm 1.

To demonstrate the superior accuracy and precision of the ML inversion algorithm in

comparison to conventional IE approaches, the OZ-RMSA approach9 was used to generate

the structure factor termed as SRMSA(QD). In this context, precision denotes the measure of

inverted mean, while accuracy represents the measure of variance pertaining to the inverted

parameters, relative Γ̂. This comparison serves to establish the robustness and reliability

of the ML approach. The reason for selecting OZ-RMSA approach in this benchmarking

purpose is due to its wide acceptance for inverting the effective interaction of charged colloidal

suspensions from small angle scattering, as evidenced by its integration into the SasView

user interface. The evaluation results against the corresponding ground truth Ŝ(QD) are

presented in Panel (b) of Fig. 2, which clearly demonstrate that the OZ-RMSA approach is

only applicable to weakly interacting systems when used as a potential inversion framework.

Our observations indicate that as the level of structural collectivity increases, either by

augmenting ϕ or A, the extent of discrepancy escalates significantly. Panels (c), (d), and (e)

depict the ground truth Ŝ(QD) (the black curves) and SML(QD) (the red curves) for the

selected phase regions. The legends provide the respective system parameters. Quantitative

agreement is observed within the probed QD range.

Application for Practical Potential Inversion Problem

In order to further verify the feasibility of the ML approach in potential inversion problem of

practical experiment, the small angle neutron scattering cross sections Î(Q) are calculated

from the corresponding Ŝ(Q) via the following expression:

Î(Q) = nc∆ρ2v2P (Q)Ŝ(Q) + Iinc (3)
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where nc is the number density of colloidal particles, ∆ρ the difference between the scattering

length density of a colloidal particle and that of solvent, v the volume of a colloidal particle,

P (Q) the normalized form factor which describe the intra-particle spatial correlation. In

this study we model the colloidal particle as a homogeneous hard sphere, therefore the form

factor P (Q) is given by

P (Q) = [3
j1(QR)

QR
]2 (4)

where R = D
2
and j1(x) is the Bessel function of the first kind with an order of 1 for argument

x. Iinc is the incoherent background. It is instructive to note that Eqn. (3) is only valid

when the system is composed of monodisperse spherical objects. To account for the effect

of instrumental smearing, Î(Q) given in Eqn. (3) is further convoluted with the resolution

function:

Îe(Q) =

ˆ ∞

0

Î(Q)√
2πσ2

R(Q)
exp[−(Q− Z)2

2σ2
R(Q)

]dZ (5)

The quantity σR(Q) represents the width of the resolution function that accounts for the

smearing of spatial resolution. The subscript e signifies the use of Eqn. (5) to represent the

experimental small angle neutron scattering cross sections in this report. It is important to

note that due to the ill-posed nature of deconvolution, it is not practical to extract Î(Q)

from Îe(Q) in a mathematically unique manner. Therefore, to minimize numerical errors, one

commonly adopted implementation for potential inversion involves performing data-driven

regression analysis directly on Îe(Q).

Implementation of Curve Fitting

Our ML method provides a numerical estimation of structure factor without relying on any

a priori assumptions of mathematical expression, making it a valuable replacement for the

popular IE approaches. The model’s ability to incorporate into the standard least-square

curve fitting procedure for potential inversion given by Algorithm 2 in Fig. 1 is also note-

worthy. The curve fitting algorithm initializes Γ, P (Q), and Iinc with the initial guesses
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Algorithm 2: Potential inversion by least squares curve fitting

Input: Îe(Q), fNN(Q), initial guesses xi = {Γi, P i(Q), I iinc C
i}, instrument resolution

σR(Q)
Result: ΓML

1 Γ← Γi

2 P (Q)← P i(Q)
3 Iinc ← I iinc ; // initial guess

4 C ← C i

5 i← 0
6 while i < Maxiter do
7 SML(Q)← fNN(Q,Γ) ; // generate S(Q)

8 I(Q)← CP (Q)S(Q) + Iinc (Eqn. 3) ; // generate I(Q)

9 Ie(Q)←
´∞
0

I(Q)√
2πσ2

R(Q)
exp[− (Q−Z)2

2σ2
R(Q)

]dZ (Eqn. 5) ; // apply resolution

10 Lfit ←
∥∥∥Ie(Q)− Îe(Q)

∥∥∥2

; // evaluate regression loss

11 Update Γ, P (Q), Iinc and C with L-BFGS-B algorithm to minimize Lfit

12 i← i+ 1
13 if Lfit < Lc then
14 ΓML ← Γ ; // return the fitting result

15 end

16 end
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provided. It then enters a loop where it iteratively updates these parameters. Within each

iteration, the algorithm calculates SML(Q) based on the current values of Γ using the neural

network framework. It then computes the estimated scattering cross section Ie(QD) accord-

ing to Eqn. 5. The algorithm measures the discrepancy between the Ie(QD) and Îe(QD)

using the squared difference L defined in step 10 of Algorithm 2. It updates the parameters

Γ, P (Q), Iinc, and C using the limited-memory Broyden–Fletcher–Goldfarb–Shanno bound-

constrained (L-BFGS-B) optimization algorithm25 implemented in SciPy26 to minimize Lfit.

If the discrepancy Lfit falls below a certain threshold Lc, the algorithm sets the current value

of Γ as the estimate ΓML.

Figure 3: Panels (a), (b) and (c) give the small angle coherent scattering cross sections of
charged colloidal suspensions in selected phase regions. The squares represent the ground
truths Îe(QD) generated by MD simulation. Additionally, the red solid curves and blue
dashed curves represent the best-fitted curves obtained from regression analyses based on
the ML approach and OZ-RMSA integral equation, respectively. All I(QD) have been
vertically adjusted for the purpose of facilitating visual examination.

In Fig. 3, we provide illustrative examples of such analyses carried out using two different

methods - the ML inversion algorithm and the OZ-RMSA integral equation, over the target

of Îe(QD). Panels (a), (b), and (c) display a comparison between the ground truths Îe(QD)

(the open squares), the best-fitted curves obtained from the ML approach (the red curves),

and the OZ-RMSA integral equation (the blue curves), respectively. Both the ML and OZ-

RMSA approaches are seen to offer quantitatively accurate representations of Îe(QD). In

16 and 16, we present the values of {ϕ, κ,A} extracted from the ML approach and the OZ-

RMSA method respectively. Overall, the ML inversion algorithm in regression analysis of
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Îe(QD) accurately extracts all {ϕ, κ,A} except for some certain cases where a deviation of

∼ 20% in κ and A is observed, as indicated in 16. In contrast, while the OZ-RMSA approach

is able to precisely determine ϕ, its inherent deficiency as an inversion algorithm is evident in

the noticeable deviation in extracted κ and severe disagreement in extracted A, as revealed

by the results given in 16.

Insights into the Numerical Precision and Accuracy of Inverted Potential

While the pronounced discrepancy observed between Γ̂ and ΓI
RMSA given in 16 (Here the

superscript I and subscript RMSA in ΓI
RMSA indicate that these parameters were obtained

through regression analyses of Îe(QD) using the OZ-RMSA approach) has been recognized to

originate from the approximate of the closure relation employed in the OZ equation, the fac-

tors contributing to the inconsistency between Γ̂ and ΓI
ML displayed in 16, although relatively

small in magnitude, still lack clarity. Therefore, conducting a comprehensive investigation

to uncover the underlying cause of this inconsistency is crucial. To this end, we conducted a

comprehensive analysis of the phase point specified by {ϕ, κ,A} as detailed in row xii of ΓI
ML

in 16. Using this set of inverted parameters, we generated a plot illustrating the effective

interaction VI(r/D). Here the subscript I indicates the associated parameters were obtained

from the regression analysis of Îe(QD). By directly comparing this plot with V̂ (r/D), we

can assess their agreement. The results presented in Panel (a) of Fig. 4 indeed demonstrate

a noticeable discrepancy between V̂ (r/D) (the black dashed curve) and VI(r/D) (the red

curve). This disparity exceeds the anticipated range of experimental uncertainties, clearly

indicating a significant deviation between the two.

Panel (b) presents a comprehensive comparison between the structure factor, obtained

from the regression analysis of Îe(QD), denoted as SI(QD) ≡ SML(QD,ΓI
ML), and its cor-

responding ground truth Ŝ(QD) represented by the black squares. While a quantitative

agreement is clearly observed between Îe(QD) and optimized curve II(QD) (the orange

curve) as indicated by the inset, a subtle discrepancy is observed around the first correlation
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Figure 4: (a): A comparison between V̂ (r/D) (the black dashed curve), VI(r/D) inverted
from the regression analysis of Îe(QD) (the red curve), and VS(r/D) inverted from the
regression analysis of Ŝ(QD) (the cyan curve). (b): A comparison between the Ŝ(QD) (the
black squares), SI(QD), the structure factor obtained from the regression analysis of Î(QD)
(the red curve), and SS(QD), the structure factor optimized from the regression analysis of
Ŝ(QD) (the cyan curve). A comparison between the Îe(QD) (the black squares) and the
optimized II(QD) (the red curve), along with the associated P (Q) (the gray dashed curve)
are given in the inset. (c) The residual plots presenting the vertical deviations between
Ŝ(QD) and SI(QD) (the red solid curve), Ŝ(QD) and SS(QD) (the cyan curve), and Î(QD)
and II(QD) (the orange dashed curve).

peak, occurring at approximately QD ∼ 6. This observation evidences the substantial influ-

ence of P (Q) (the gray dashed curve in the inset) on the outcomes of the regression analysis

for potential inversion of Îe(QD) which represents the experimentally measured scattering

cross section. When employing Îe(QD) as the target function, the accuracy of the inverted

ΓI
ML presented in 16 is inevitably impacted by the loss of expressive features exhibited by

Ŝ(QD) in the high Q region of QD ≳ 6. According to Eqn.(4), for this illustrative example

the coherent intensity of P (Q) decreases as Q−2 as a function of Q within this QD region,

while S(QD) oscillates characteristically around the asymptotic value of S(QD →∞) = 1.

Consequently, based on Eqn.(3), certain distinct features of S(QD) are unavoidably smeared

due to the rapid decay of P (Q) and the presence of Iinc.

To provide further support for this argument, we selected Ŝ(QD) as the target function

and conducted complementary regression analysis accordingly. The corresponding results

referred as ΓS
ML are provided in 16. Here, the superscript S is used to indicate that the

target function is Ŝ(QD) rather than Îe(QD). From the result given in Panel (b) of Fig. 4,
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the optimized curve SS(QD) ≡ SML(QD,ΓS
ML) is found to exhibit a discernible quantitative

agreement with Ŝ(QD), as depicted by the cyan curve. The previously observed approxi-

mately 20% discrepancy in A reported in 16 is essentially eliminated in the results reported

in 16. Moreover, as illustrated in Panel (a), the reconstructed effective potential VS(r/D)

(the cyan curve) exhibits a quantitative agreement with the ground truth V̂ (r/D) (the black

dashed curve). Panel (c) of Fig. 4 further presents the residual plot to measure the vertical

disagreement between the ML-inferred spatial correlation functions and the corresponding

ground truths within the Q range of interest. Namely,

∆S(Q) = S(Q)− Ŝ(Q)

∆I(Q) = Ie(Q)− Îe(Q)

(6)

By analyzing the data presented in Panel (b) of Fig. 4, ∆II(QD) can be calculated according

to Eqn.(6); Two important features of ∆II(QD) are revealed by the results represented by

the red dashed curve in Panel (c): First, ∆II(QD) is essentially zero when QD ≳ 6, sug-

gesting that Îe(QD) is virtually identical to II(QD) in this high Q region. It thus evidences

the coherent signal is predominantly governed by P (Q) in both correlation functions. The

QD region containing statistically meaningful data of S(QD) for potential inversion is thus

limited to the range of QD ≲ 6. The magnitude of ∆SI(QD) generated from the regression

analysis of Îe(QD) is considerably greater than that of ∆SS(QD) obtained from the regres-

sion analysis of Ŝ(QD). As a result, the deviations in ΓI
ML are more pronounced compared

with those in ΓS
ML. Secondly, within the statistically relevant range, both ∆II(QD) and

∆SS(QD) are found to be consistently no greater than 0.02. This magnitude is essentially

identical to the RMSE deduced from the MSE provided in Panel (a) of Fig. 2. Hence, it

is evident that there is no room for further improvement in the quantitative agreement in

∆II(QD) or ∆SS(QD), the regression analysis based on the NN generated S(Q) has reached

its inherent precision limit. This implies that the numerical difference between Γ̂ and the

inverted ΓI
ML given in 16 can not be further minimized.
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It is important to note that there has been much interest in developing model-free tech-

niques for potential inversion. These techniques, such as iterative Boltzmann inversion, force

matching, relative entropy minimization, as well as the other machine learning approaches,

aim to overcome the inherent limitations of the existing OZ integral equation approaches.

Our findings, as illustrated in Fig. 4, hold significant implications for these non-parametric

theoretical endeavors as well: Within the framework of this data analysis protocol, an ad-

ditional regression analysis on the inverse function VR(r) based on the parametric screened

Coulomb formula is necessary. This analysis allows for the extraction of important informa-

tion regarding the effective charge, which holds relevance for experimentalists. To ensure the

practical application of these model-free approaches for potential inversion using small-angle

scattering, it is crucial to consider the combined impact of factors such as P (Q), instrument

resolution, as well as statistical noise from the detector. This consideration enables a nu-

merically reliable evaluation of the effective charge while accurately assessing the mean and

variance of the inverted function VR(r). By incorporating these considerations, the model-

free approaches can be improved in terms of their practicality and reliability for accurately

inverting the potential of charged colloidal suspensions from their small-angle scattering cross

sections.

Figure 5: The evolution of I(QD) as a function of (a) ϕ, (b) βAD, and (c) 1
κD

. The ranges
of parameters are given by the legends.

Moreover, the comparison between ΓI
ML in 16 and ΓS

ML in 16 reveals that changing the

target function from Îe(QD) to Ŝ(QD) did not improve the agreement between the inverted
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κ and the corresponding ground truths. To understand the underlying reasons for this

observation, we conduct an analysis to assess the sensitivity of Î(QD) to variations in ϕ,

κ, and A. The findings are presented in Fig. 5. Within the explored parameter ranges,

adjusting ϕ causes a noticeable shift in the primary correlation peak of Î(QD), as illustrated

in Panel (a). Furthermore, Panel (b) demonstrates that an increase in A leads to a clear

narrowing of its width. However, Panel (c) indicates that the effect of varying κ on the

evolution of Î(QD) is less pronounced. Apart from the extreme case of 1
κD

= 0.1, where

substantial changes in the intensity of Î(QD) occur when QD < 0.3, the variation of κ only

induces minor alterations in the intensity of Î(QD) in the low Q region. This observation

suggests that the potential difference caused by the change in κ does not render sufficient

structural change in terms of two-point static correlation. Fig. 5 reveals the difference in the

responsiveness of the two-point static correlation function toward the variation in different

parameters. To us investigating the posedness of different variables in potential inversion

problem is of interest in its own right. We intend to delve into this topic in future research

endeavors.

Concluding Discussion

In conclusion, we have developed a novel deep learning inversion framework that leverages

the mathematical principles of neural networks (NN) to accurately determine the effective in-

teraction of charged colloidal suspensions from their scattering cross sections. Our approach

surpasses the limitations of existing integral equation (IE) methods, which struggle to ef-

fectively address the structure-interaction correspondence in charged colloidal suspensions.

By using an extensive library of structure factors generated computationally as the training

set, our framework overcomes the shortcomings of traditional IE approaches. Unlike the

laborious numerical calculations involved in current IE methods, our approach based on a

deep autoencoder and a classification network employs a series of matrix operations to invert
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potential parameters from the experimentally measured scattering cross sections. This not

only enhances numerical accuracy but also significantly improves computational efficiency,

making our approach a more practical and widely applicable solution of potential inversion.

This research also highlights a promising avenue for future investigation: The DLVO

potential, which encompasses a long-range Coulombic repulsion, as described in Eqn. (1),

and a short-range van der Waals attraction, has been proven to be an effective theoretical

framework for understanding the properties of charged colloidal suspensions. The nature

of charged colloidal suspensions depends on the ionic strength. At low ionic strength, the

repulsive component dominates and underpins the stability of highly charged systems. An

increase in the ionic strength results in the dominance of the attractive part of the potential

at short distances, thus leading to phenomena such as flocculation and dynamical clustering.

Our current method offers a comprehensive solution to the potential inversion problem for

charged colloidal suspensions under low ionic conditions. In combination with computer

simulations of both double-layer repulsion and dispersive attraction, which account for the

general radial dependence of electrostatic interactions, our ML approach can be systemati-

cally expanded to address potential inversion challenges in diverse charged colloidal systems,

encompassing a wide range of ionic conditions commonly encountered in experimental sce-

narios. By advancing the field of colloidal structural study and offering new possibilities for

research and applications of molecular interaction using scattering techniques, our approach

contributes significantly to the ongoing progress in this domain.

Moreover, the current investigation not only establishes a sturdy framework for examin-

ing the effective interaction among charged colloidal suspensions but also uncovers a highly

promising pathway for future exploration. Previous experimental and computational stud-

ies27,28 have demonstrated the presence of many-body interactions within charged colloidal

suspensions, underscoring their vital implications that demand comprehensive considera-

tion when elucidating the intricate phase behaviors of such systems. It remains unexplored

whether the measured two-point correlation functions, which collectively manifest the pair-
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wise and many-body interactions at the particle level, can provide information regarding

multi-particle interactions. Providing the mathematical expression of many-body inter-

action, our ML potential inversion framework presents a promising approach for directly

mapping this information using elastic scattering experiments complemented by computer

simulations.
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Comparison of the Potential Parameters Inverted from

the Regression Analysis of Î(QD) by ML Approach and

the Ground Truths Γ̂

Γ̂ ΓI
ML

ϕ̂ 1/κ̂D βÂD Ẑ ϕ/ϕ̂ κ̂/κ A/Â Z/Ẑ
i 0.045 0.300 6.000 6.532 1.005±0.021 1.046±0.052 1.000±0.002 0.972±0.030
ii 0.135 0.300 6.000 6.532 1.023±0.014 1.288±0.095 0.950±0.024 0.839±0.036
iii 0.225 0.300 6.000 6.532 0.999±0.014 1.067±0.061 1.090±0.047 1.003±0.041
iv 0.315 0.300 6.000 6.532 0.997±0.011 1.072±0.072 1.150±0.024 1.028±0.043
v 0.405 0.300 6.000 6.532 1.004±0.008 1.115±0.065 1.092±0.034 0.977±0.037
vi 0.225 0.100 6.000 14.697 0.999±0.011 1.253±0.060 1.000±0.002 0.832±0.032
vii 0.225 0.200 6.000 8.573 1.029±0.008 1.561±0.074 1.001±0.002 0.744±0.022
viii 0.225 0.300 6.000 6.532 0.999±0.014 1.067±0.061 1.090±0.047 1.003±0.041
ix 0.225 0.400 6.000 5.511 1.047±0.051 1.250±0.025 1.068±0.069 0.919±0.031
x 0.225 0.500 6.000 4.899 0.991±0.007 0.800±0.019 1.000±0.002 1.125±0.015
xi 0.225 0.300 1.000 2.667 0.964±0.015 0.913±0.039 1.000±0.010 1.060±0.030
xii 0.225 0.300 3.000 4.619 0.971±0.015 0.891±0.038 1.226±0.076 1.192±0.050
xiii 0.225 0.300 6.000 6.532 0.999±0.014 1.067±0.061 1.090±0.047 1.003±0.041
xiv 0.225 0.300 10.000 8.433 1.010±0.010 1.132±0.047 0.985±0.032 0.920±0.027
xv 0.225 0.300 20.000 11.926 1.006±0.008 1.133±0.029 1.000±0.001 0.926±0.014
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Comparison of the Potential Parameters Inverted from

the Regression Analysis of Î(QD) by OZ-RMSA and Γ̂

Γ̂ ΓOZ−RMSA

ϕ̂ 1/κ̂D βÂD Ẑ ϕ/ϕ̂ κ̂/κ A/Â Z/Ẑ
i 0.045 0.300 6.000 6.532 0.994±0.107 1.598±0.224 0.549±0.147 0.568±0.086
ii 0.135 0.300 6.000 6.532 0.976±0.026 1.260±0.092 0.934±0.080 0.842±0.050
iii 0.225 0.300 6.000 6.532 0.988±0.018 1.088±0.069 0.960±0.048 0.930±0.043
iv 0.315 0.300 6.000 6.532 1.004±0.010 1.520±0.147 0.767±0.038 0.689±0.039
v 0.405 0.300 6.000 6.532 0.956±0.005 1.667±0.033 0.639±0.034 0.600±0.017
vi 0.225 0.100 6.000 14.697 0.990±0.045 1.760±0.324 0.673±0.111 0.525±0.083
vii 0.225 0.200 6.000 8.573 0.997±0.018 1.448±0.102 0.936±0.050 0.754±0.039
viii 0.225 0.300 6.000 6.532 0.988±0.018 1.088±0.069 0.960±0.048 0.930±0.043
ix 0.225 0.400 6.000 5.511 0.988±0.015 1.250±0.025 1.063±0.039 0.916±0.019
x 0.225 0.500 6.000 4.899 0.983±0.017 0.892±0.049 0.896±0.045 1.004±0.039
xi 0.225 0.300 1.000 2.667 0.953±0.014 1.667±0.033 1.225±0.082 0.830±0.029
xii 0.225 0.300 3.000 4.619 0.974±0.022 1.093±0.106 1.016±0.091 0.954±0.070
xiii 0.225 0.300 6.000 6.532 0.988±0.018 1.088±0.069 0.960±0.048 0.930±0.043
xiv 0.225 0.300 10.000 8.433 0.996±0.015 1.128±0.073 0.902±0.045 0.882±0.040
xv 0.225 0.300 20.000 11.926 1.002±0.013 0.947±0.087 0.818±0.046 0.936±0.061
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Comparison of the Potential Parameters Inverted from

the Regression Analysis of Ŝ(QD) by ML Approach and

Γ̂

Γ̂ ΓS
ML

ϕ̂ 1/κ̂D βÂD Ẑ ϕ/ϕ̂ κ̂/κ A/Â Z/Ẑ
i 0.045 0.300 6.000 6.532 1.019±0.048 1.005±0.030 1.000±0.002 0.997±0.018
ii 0.135 0.300 6.000 6.532 0.983±0.046 0.950±0.043 1.000±0.002 1.033±0.030
iii 0.225 0.300 6.000 6.532 1.002±0.018 0.989±0.086 1.000±0.002 1.007±0.055
iv 0.315 0.300 6.000 6.532 0.996±0.008 0.947±0.016 1.000±0.001 1.035±0.011
v 0.405 0.300 6.000 6.532 0.996±0.005 0.990±0.022 1.000±0.002 1.006±0.014
vi 0.225 0.100 6.000 14.697 1.017±0.009 1.268±0.022 0.913±0.013 0.787±0.012
vii 0.225 0.200 6.000 8.573 1.002±0.044 1.221±0.050 1.048±0.002 0.891±0.024
viii 0.225 0.300 6.000 6.532 1.002±0.018 0.989±0.086 1.000±0.002 1.007±0.055
ix 0.225 0.400 6.000 5.511 1.001±0.013 1.034±0.018 1.026±0.002 0.994±0.010
x 0.225 0.500 6.000 4.899 1.003±0.004 1.000±0.003 1.000±0.002 1.000±0.002
xi 0.225 0.300 1.000 2.667 0.994±0.021 0.956±0.124 1.000±0.011 1.028±0.085
xii 0.225 0.300 3.000 4.619 0.993±0.046 0.982±0.019 1.000±0.003 1.011±0.013
xiii 0.225 0.300 6.000 6.532 1.002±0.018 0.989±0.086 1.000±0.002 1.007±0.055
xiv 0.225 0.300 10.000 8.433 0.992±0.007 0.995±0.127 1.000±0.002 1.003±0.080
xv 0.225 0.300 20.000 11.926 0.993±0.005 1.027±0.040 1.000±0.003 0.984±0.024
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