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Abstract—Detecting and localizing image manipulation has
long been a focus in computer vision. Current state-of-the-
art methods primarily identify visual and JPEG compression
artifacts. In this study, we propose the integration of semantic
segmentation to enhance object awareness and improve the ac-
curacy of spliced object localization. Instead of treating semantic
segmentation as an independent submodule, we integrate it as
a third branch of an end-to-end model. This approach balances
visual, compression, and segmentation artifacts, reducing overem-
phasis on any single branch. Extensive evaluations on established
datasets show a three percent average IoU increase in perfor-
mance across five mainstream datasets for image manipulation
localization. We also provide insights into how existing digital
defense models adapt to new image tampering techniques like
generative fill and expand.

Index Terms—image forgery detection, image forgery localiza-
tion, digital forensics, semantic segmentation,

I. INTRODUCTION

Image manipulation, altering visual content to deceive or
mislead viewers, has become increasingly prevalent in today’s
digital landscape. With the widespread availability of sophis-
ticated editing tools and the ease of sharing images across
various platforms, the potential for image manipulation to be
used for malicious purposes has escalated. Consequently, the
development of robust techniques for detecting manipulated
images has emerged as a critical area of research across mul-
tiple disciplines, including computer vision, image processing,
and forensic analysis.

The detection of image manipulation holds significant impli-
cations across various domains. In forensic investigations, ac-
curate manipulation detection can aid in verifying the authen-
ticity of digital evidence, thereby facilitating the identification
of tampered images and ensuring the integrity of the internet.
Additionally, in journalism and media forensics, detecting
image manipulations is crucial for preserving the credibility
of visual content and combating the spread of misinformation
and fake news.

Numerous mainstream image manipulation defense mod-
els have been developed to address this emerging threat,
each targeting different types of artifacts associated with
manipulated images. Approaches encompass Visual-based [1],
statistical [2], [3], deep learning [4], and frequency domain
analyses [4], [5]. Visual-based artifacts can include misaligned
edges, displaced pixels, and variations in lighting or depth. For
instance, models like CAT-net [4] focus on integrating multiple

Fig. 1. We integrate object-aware semantic segmentation to enhance image
manipulation localization. The intuition is based on an observation that image
manipulation is frequently done with the whole object entity.

artifact types, such as visual anomalies and compression
artifacts, to detect and pinpoint manipulated regions within
images.

While current mainstream methods have demonstrated ef-
fectiveness, they often overlook the integrity of objects when
localizing manipulated regions in images. This oversight can
result in manipulation regions containing only partial segments
of the manipulated object. In this paper, we propose lever-
aging semantic segmentation to enhance image manipulation
localization while maintaining the advantages of capturing
visual and compression-type artifacts. Figure 1 overviews our
approach to integrating object-aware semantic segmentation
with image manipulation detection and localization.

II. RELATED WORKS

Image forgery detection and localization have garnered
significant attention in recent years due to the proliferation
of digital manipulation techniques. Researchers have focused
on developing robust methods to identify tampered regions
within images, aiming to preserve the integrity and authenticity
of digital content. Techniques range from traditional methods
like analysis of noise inconsistencies and pixel-level alterations
to advanced approaches utilizing deep learning and AI-driven
algorithms for more accurate detection and precise localization
of forged regions. These efforts are crucial not only for main-
taining trust in digital media but also for forensic applications
in legal and security domains. Below, we have summarized
image manipulation detection methods within the literature.

Pixel-based analysis methods analyze image pixel values
and their relationships to identify anomalies indicative of
manipulation. Forensic techniques such as Error Level Anal-
ysis (ELA) [1] and Noise Analysis [6] leverage pixel-level
inconsistencies to detect altered or tampered regions.



Statistical analysis approaches examine statistical proper-
ties of images to detect anomalies caused by manipulation.
Methods such as Benford’s Law [2] and Statistical Moments
Analysis [3] exploit statistical irregularities in manipulated
images to localize regions with altered content.

Deep learning based approaches have emerged as a pow-
erful tool for image manipulation localization, enabling the
development of highly accurate and robust detection models.
Convolutional Neural Networks (CNNs) [4] trained on large-
scale datasets have shown promising results in localizing
manipulations. Generative Adversarial Networks (GANs) have
been employed for adversarial image manipulation detection.

Frequency domain analysis techniques operate on im-
age transform domains, such as Fourier or Discrete Cosine
Transform (DCT), to detect manipulations. Methods like DCT-
based Manipulation Detection [4] and Frequency Analysis
of Sensor Pattern Noise (SPN) [5] utilize frequency domain
representations to identify manipulations introduced during
image editing.

Hybrid methods [7] combine multiple techniques, such as
pixel-level analysis, frequency analysis, and deep learning,
to achieve enhanced performance in manipulation localiza-
tion. These methods leverage the complementary strengths
of different methodologies to improve detection accuracy and
robustness.

III. METHOD

In our effort to enhance image manipulation localization
through semantic segmentation, we chose Cat-Net v2 [4] as
our baseline model. Cat-Net was selected for its user-friendly
nature and comprehensive codebase, including training and
model code. The existing model architecture features two
branches designed to capture visual defects and JPEG artifacts.
We propose adding a third branch dedicated to semantic
segmentation. Solely capturing visual and JPEG artifacts may
result in manipulations regions that only cover the spliced
object partially. By adding a semantic segmentation branch, we
aim to enhance the localization to encompass the manipulated
object entirely. We have included this third branch to provide
the model with a sense of physical object awareness, thereby
enhancing the detection of entity based manipulated.

We adopt much of the lower-level design from HRNet [8]
due to its suitability for digital forensics applications. HRNet
maintains high-resolution representations throughout the net-
work while preserving lower-level details. This characteristic
enables us to capture comprehensive images without losing
the intricate details crucial for forensic examinations. HRNet
uses stride-2 convolution for downsampling feature maps
and avoids pooling layers. Although pooling benefits many
computer vision tasks, it is less suitable for tasks requiring
subtle signal discernment. Pooling tends to enhance content
but suppress noise-like signals, which are significant indicators
of tampered regions in image manipulation localization.

Segmentation stream vs. separate module: The decision
to incorporate semantic segmentation as a third stream in the
model, rather than a separate module, was driven by several

key considerations. Primarily, this integration aims to pre-
vent semantic segmentation from dominating the localization
process, which could obscure other valuable detection cues.
Although semantic segmentation has improved significantly,
it has flaws and could cause over-detection if used as a
standalone module for completing object regions. By merging
it with visual and JPEG artifact detection streams within a
unified model framework, the method effectively balances its
influence, reducing the risk of over-reliance on any single type
of artifact. This architecture, which merges all three streams
at the fusion stage, allows for adjustable weighting of each
stream’s input during training and inference time. This flex-
ibility enhances the model’s image manipulation localization
performance by fine-tuning semantic segmentation’s impact
based on specific needs and scenarios rather than relying on
fixed rules for segment completion. A detailed illustration of
the proposed model architecture can be seen in Figure 2.

A. Model Architecture

Our proposal involves incorporating an additional semantic
segmentation stream alongside the existing RGB and DCT
streams within CAT-Net [4], as shown in Figure 2. The seg-
mentation stream will focus on delineating the segmentation
of pre-existing entities within the image scene. Following the
CAT-Net paradigm, we adopt HR-Net for processing the input
image across multiple resolutions using up-scaling and down-
scaling techniques. Each resolution within this framework is
fully connected at every two layers, allowing us to preserve
individually captured artifacts at each image resolution while
simultaneously sharing features across alternate layers.

Pipeline: The initial stage involves pre-processing the input
image, which includes two key procedures: extracting the
Discrete Cosine Transform (DCT) table for the DCT stream
and utilizing a semantic segmentation model to derive a series
of segmentation of the image scene. The segmentation masks
of all entities are then consolidated to reconstruct the image in
the form of a semantic segmentation labeled image. This image
contains semantic class labels for each image pixel. Each
label maps that pixel to its corresponding entity segmentation
class. We have selected the Meta Segment Anything Model
(SAM) [9] to produce the semantic segmentation masks. We
have chosen SAM based on its accurate performance in various
image scenes.

After obtaining the reconstructed segmentation labeled im-
age and the DCT table of the input image, the original RGB
image is sent to the RGB stream. In contrast, DCT table of
the Y-channel and corresponding coefficients serve as input
for the DCT stream. Simultaneously, the segmentation image
is fed to the newly incorporated segmentation stream. Upon
completion of processing by all three streams, the resultant
feature spaces are fused during the fusion stage.

A final merge operation is conducted across all image res-
olutions to generate a single heatmap indicating the probable
manipulation regions within the image. During fusion, one
can fine-tune the threshold at the fusion stage to balance the
contribution of the three input streams to more accurately



Fig. 2. Detailed illustration of the architecture of the proposed model reveals a structured approach comprising three distinct input streams, each targeting
specific categories of forgery artifacts. This design aims to bolster the model’s performance and resilience by enabling it to assess multiple types of forgery
artifacts prior to generating a manipulation mask. The RGB Stream focuses on capturing visual artifacts like misalignment, while the DCT Stream specializes
in detecting compression artifacts. Concurrently, the Segmentation Stream employs semantic segmentation to enhance object awareness within feature space.
These streams converge at the fusion stage, where the captured artifacts are integrated into a single manipulation localization mask.

Fig. 3. Detailed view of a convolutional unit shown in Fig. 2. A single
convolutional unit contains 4 consecutive basic blocks.

delineate manipulated regions. This heatmap can then be
converted to a binary mask using a discrete threshold. We
have chosen a threshold of 0.5. A detailed illustration of the
model architecture is provided in Figure 2.

Basic Blocks: Figure 3 provides a detailed view of the
internals of the convolutional units used in the three streams
in Figure 2. These convolutional units are broken down into
four consecutive basic blocks. Each basic block consists of
two sequences of 3× 3 convolution, batch normalization, and
ReLU. This design helps stabilize the model during training.

Fusion Stage: The primary objective of the fusion stage
involves two key components. First, it amalgamates the fea-
ture spaces derived from the three input streams. Second, it
integrates and leverages multiple image resolutions once more
before the final condensation process to generate the image
manipulation heatmap. Figure 4 illustrates this process. The

Fig. 4. Detailed breakdown view of the fusion fully connected layers in Fig. 2.

fully connected layer shown on the left side corresponds to
the three subsequent stages delineated on the right side of Fig-
ure 4. Each stage is partitioned into two phases: (1) standard-
izing all feature spaces to uniform dimensions via up-scaling
and down-scaling operations, and (2) performing element-
wise addition across all three standardized feature spaces. This
process is iteratively applied to feature spaces corresponding to
each of the three image resolution sizes. Subsequently, a final
consolidation step is executed by concatenating feature spaces
from all three resolution sizes, culminating in the generation
of the final heatmap.

Training: We utilized the splicing subset of the DE-
FACTO dataset [15] to train the new segmentation stream.
The DEFACTO dataset is a large-scale image manipulation



Dataset Year # Manipulated
Images

# Pristine
Images Image Size Format Manipulation

Method
Columbia(Color) [10] 2006 180 183 757× 568 - 1, 152× 768 TIF Random

CASIA v1 [11] 2013 921 800 374× 256 JPEG Manual
Coverage [12] 2016 100 100 400× 486 TIF Manual
NIST16 [13] 2016 564 875 500× 500 - 5, 616× 3, 744 TIF Manual
DSO-1 [14] 2013 100 100 2000× 1500 PNG Manual

TABLE I
DETAILS OF MAINSTREAM IMAGE MANIPULATION LOCALIZATION DATASETS.

localization dataset derived from the MSCOCO dataset. We
chose DEFACTO because it was the only large-scale image
manipulation dataset available to us at the time of training.

IV. EXPERIMENTAL EVALUATION

This work is part of the DARPA Semantic Forensics (Se-
maFor) program development, and the evaluation is performed
as a SemaFor Evaluation 5 contest done by an independent
evaluator institution. Our method underwent evaluation in
the task of image manipulation detection and localization
on a curated set of manipulated images that tries to mimic
manipulations one would see in a real-world scenario. Fur-
thermore, we also analyze and compare the image manipu-
lation localization results on five mainstream public datasets,
including CASIAv1 [11], COVERAGE [12], Columbia [10],
NIST16 [13], and DSO-1 [14]. These datasets were selected
for their diverse coverage of temporal spans and manipulation
techniques. Details for these datasets can be found in Table I.

Mainstream datasets evaluation details: To assess and
compare our proposed model against mainstream models,
we selected five diverse datasets featuring various types of
manipulations and image scenes. Each method is tasked with
generating a heat map, subsequently converted into a binary
mask using a consistent threshold of 0.5 across all participants
to ensure fairness. An Intersection over Union (IoU) score
is computed based on the overlap between the generated
manipulation binary mask and the ground truth mask. The
average IoU score is then generated by averaging all image-
level IoU scores to derive the overall IoU for each dataset.

SemaFor evaluation 5 dataset comprises 140 manipulated
images and 140 pristine images, with dimensions ranging
from 2, 000× 2, 000 to 4, 000× 4, 000 pixels. The manipula-
tion methods used are generative fill and generative expand.
Generated fill involves selecting a region of the image and
synthesizing a new object to splice into that region. Generative
expand similarly generates new content, but expands the image
into a larger size instead of modifying an existing region. This
evaluation set was created to mimic realistic manipulations in
real-world image scenes.

SemaFor evaluation 5 task details: To evaluate our
proposed method along with other state-of-the-art (SoTA)
methods against image manipulation datasets that contain
generative fill and expand manipulations, we participated in the
SemaFor evaluation image manipulation detection task. Due to
the nature of the SemaFor program, all unpublished performer
method names are replaced with a performer ID. The positive
detection rate at a five percent false alarm rate is evaluated
using two equations provided below. The true positive rate

(TPR), which represents the positive detection rate, is calcu-
lated using the TPR equation. Conversely, the false positive
rate (FPR), which denotes the false alarm rate, is determined
using the FPR equation. The variables TP, FN, and TN denote
true positive, false negative, and true negative, respectively.
These measures are critical because a high positive detection
rate at a low false alarm rate is essential in digital forensics
applications. False detection not only wastes limited resources
but also damages the trustworthiness of the model.

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(1)

A. Evaluation on mainstream datasets

Table II shows a quantitative comparison of our proposed
method against 14 SoTA methods. We have observed that the
incorporation of a third branch dedicated to semantic segmen-
tation within our proposed framework has yielded an average
performance enhancement of 3% relative to the baseline of
CAT-NET v2 [4]. Our approach secured the second position
overall among existing state-of-the-art methods while TruFor
achieved first place based on the average IoU metric across
all five datasets. Notably, our method achieved first place in
the CASIA and Columbia datasets. However, in the remaining
public datasets, including Coverage, NIST16, and DSO-1,
our method secured the second position. This is primarily
due to the considerable performance disparity between our
baseline Cat-Net v2 and TruFor. Therefore, while we observed
a substantial performance improvement over our baseline,
the disparity between Cat-Net v2 and TruFor remained too
substantial for these specific datasets.

In general, our observations indicate that the proposed mod-
ifications have enhanced the localization performance of the
baseline Cat-Net v2 model. We selected the Cat-Net v2 model
due to its well-established performance and the convenience of
its codebase, which includes both training and testing modules.
Although we contemplated augmenting the TruFor model with
an additional module focused on semantic segmentation to
explore the impact of transformer-based architectures atop the
CNN Cat-Net framework, the current version of the released
code lacks any training components.

Regarding results in Table II, the most notable performance
improvements were noted in the COVERAGE and DSO-
1 datasets, whereas the least enhancement was observed in
NIST16. Various factors may contribute to the relatively lower
performance increase in the NIST16 dataset. Overall, it is evi-
dent that, among all participating datasets, NIST16 exhibits the
lowest average scores across all existing mainstream method-
ologies. Additionally, the manipulated images within the NIST



Method Casiav1 Coverage Columbia NIST16 DSO-1 Average
ADQ [16] 0.302 0.165 0.401 0.146 0.421 0.287

Splicebuster [17] 0.143 0.192 0.565 0.174 0.372 0.289
EXIF-SC [18] 0.106 0.164 0.798 0.227 0.442 0.347
CR-CNN [19] 0.481 0.391 0.631 0.300 0.289 0.418

RRU-NET [20] 0.408 0.279 0.575 0.154 0.312 0.346
ManTraNet [21] 0.180 0.317 0.508 0.172 0.412 0.318

SPAN [22] 0.112 0.235 0.759 0.228 0.233 0.313
AdaCFA [23] 0.128 0.183 0.403 0.106 0.235 0.211
IF-OSN [24] 0.553 0.304 0.753 0.330 0.470 0.482

MVSS-NET [25] 0.528 0.514 0.729 0.320 0.358 0.490
PSCC-NET [26] 0.520 0.473 0.604 0.113 0.458 0.434
Noiseprint [27] 0.137 0.229 0.513 0.196 0.439 0.303

CAT-NET v2 [4] 0.752 0.381 0.859 0.308 0.584 0.577
TruFor [28] 0.737 0.600 0.859 0.399 0.930 0.705

Proposed Method 0.761 0.460 0.872 0.310 0.630 0.607
TABLE II

IMAGE LOCALIZATION IOU RESULTS FROM EXISTING STATE OF THE ART
METHODS ON FIVE PUBLICLY AVAILABLE MAINSTREAM DATASETS.

Performer ID PD@0.05 FAR EER
1 0.577 0.175
2 0.288 0.289
3 0.158 0.367
4 0.150 0.442
5 0.042 0.468

Proposed 0.319 0.273
TABLE III

SEMAFOR EVALUATION IMAGE MANIPULATION DETECTION TASK
RESULTS

dataset often depict synthetic scenes featuring checkerboards
and a series of 3D shapes. These highly synthetic scenes are
often not included in the training, as most existing datasets
train off of natural images.

B. Results from SemaFor IMD Evaluation

As shown in Table III, all participating performers struggled
to detect the image manipulations in this task. This indicates
that existing state-of-the-art methods still have difficulty adapt-
ing to new types of image manipulations, such as generative
stable diffusion, generative fill, and generative expand. No-
tably, generative expansion conflicts with many assumptions
made by current image manipulation detection and localization
models. Defensive models often make the assumption that the
manipulated region contains only a single object. However,
generative expansion typically creates a manipulation region
in the form of a rectangular region. This region can contain
multiple entities or background regions.

This new image manipulation capability requires defen-
sive models to move beyond focusing solely on objects as
the manipulation region. This highlights the importance of
having multiple input streams that can capture a variety of
manipulation-relevant artifacts. By doing so, future defensive
models will be better equipped to adjust to new manipulation
types, improving their robustness and adaptability in the face
of evolving image manipulation techniques.

C. Qualitative Analysis

In our comprehensive evaluation across all five datasets, the
prominence of the spliced object within the image emerges
as a crucial factor. Most failure instances are associated with
spliced objects that differ significantly from those encoun-
tered during training. This trend is particularly evident in the

NIST16 dataset, where many manipulated objects consist of
wooden geometric shapes set against a checkerboard back-
ground. Such scenes are vastly different from typical real-
world imagery, highlighting the importance of the semantic
context of the tampered object during model training.

This observation aligns with the notion that while models
strive to capture abstract low-level signatures, the semantic
content of the tampered object remains highly important
at inference time. This explains why all performers in the
SemaFor evaluation struggled to identify the correct tampered
region. The generative expand technique creates manipulated
regions that are not confined to a specific tampered object;
instead, these regions are typically rectangular and completely
synthetic. This divergence from traditional manipulation pat-
terns emphasizes the need for models that can adapt to new
types of image manipulations by incorporating diverse input
streams and focusing on a variety of manipulation artifacts.

Figure 5 showcases the localization results of a proposed
image forgery detection method, displayed in grayscale with
manipulated areas highlighted in color. Correctly identified
manipulated regions are marked in green, while misidentified
areas, including false positives and negatives, are shown in
red. The figure spans results across five different datasets,
each featuring varied types of image scenes. Datasets like
DSO-1, CASIA, and Coverage mainly contain natural scenes
that mirror real-life environments. In contrast, the NIST16
dataset includes images with synthetic qualities that are less
typical of natural settings, making it the most challenging
dataset for image manipulation detection among the five. The
Columbia dataset, although synthetic, tends to have lower-
quality manipulations, which are easier for most defense
methods to detect compared to the high challenge posed by
NIST16.

An analysis of binary masks produced by the proposed
model across multiple datasets revealed a distinct trend: the
masks are either characterized by high Intersection over Union
(IoU) scores or are nearly blank, indicating a significant
polarization in the model’s decision-making. This polarization
shows that the model is effective in reducing false positives but
has the risk of missing actual manipulations (non-detections
or mis-detections).

D. Overall Evaluation Analysis

Based on the observed results, integrating a third input
stream dedicated to semantic segmentation can significantly
improve the performance of CNN-based defensive models in
image manipulation localization tasks. Our results indicate
an average enhancement of three percent IoU across five
mainstream methodologies. However, it is evident that current
defensive models struggle to adapt to emerging manipulation
techniques. It is foreseeable that the efficacy of defensive
methods will continue to improve as the community develops
a more extensive array of training and testing resources.

Limitations: While semantic segmentation can enhance
image manipulation localization, it can also introduce noise



Fig. 5. Qualitative examples showing the proposed method localization results for all five participating mainstream datasets. Green regions represent image
regions that have been correctly identified as manipulated. Red regions represent image regions that have been mis-identified. This can take the form of false
positive and false negative image regions.

by including irrelevant regions. There is also a risk of incom-
plete segmentation, where object boundaries are inaccurately
defined. This can limit its effectiveness by failing to adequately
support partially detected manipulation regions.

V. CONCLUSION

In this study, we introduced a novel approach to enhance
the detection and localization of image manipulation by inte-
grating semantic segmentation into an end-to-end model. This
integration incorporates object awareness and balances visual,
JPEG compression, and segmentation artifacts, addressing the
limitations of current techniques that often overly rely on a
single artifact type. Our method significantly improves the
robustness and accuracy of spliced object localization, as
demonstrated by extensive evaluations on established datasets.
Additionally, our research provides valuable insights into the
adaptability of existing digital defense models against emerg-
ing image tampering techniques like generative fill and genera-
tive expand. This adaptability is crucial as image manipulation
methods continue to evolve.

Future Works: To minimize the chances of the semantic
segmentation introducing additional noise, we would like to
explore filtering the semantic segmentation of interest. One
plausible approach to filtering irrelevant segmentation is filter
segmentation based on entities present in the image caption or
description. The assumption is that the image manipulation is
semantically significant. Therefore, this newly spliced entity
will be present within the image description.
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the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of
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U.S. Government.

Acknowledgments. This work is supported by the DARPA
Semantic Forensics (SemaFor) Program under contract
HR001120C0123 and NSF CCSS-2348046. The authors ap-
preciate the computational resource provided by the University
at Albany.



REFERENCES
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