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Abstract—In this work, we propose to use text as input
to jointly generate video and audio with lip synchronization,
aiming at the ultra-low bit rate video conferencing problem
and other generative taking head Audio/Video scenario. Our
method focuses on employing the Denoising Diffusion Probabilis-
tic Model (DDPM) [1] with a double-branches U-Net architecture
to produce synchronized video-audio pairs from textual inputs.
Through our approach, only low-bitrate texts are transmitted
during the transmission process, allowing for efficient data
transfer. Moreover, we provide users with multiple options to
generate video content. They can create videos using video
captions, speech text, or even opt for no-text input. Additionally,
users have the flexibility to input static images to customize the
style of the output video. By revolutionizing the way video and
audio are generated and transmitted, our goal is to make a
valuable contribution to enhancing the efficiency and versatility
of multimedia applications.

Index Terms—Denoising Diffusion Probabilistic Model
(DDPM), Video conferencing, Talking head, Ultra-low bit rate

I. INTRODUCTION

Recent advancements in artificial intelligence (AI) have
spurred significant interest in media creation techniques, par-
ticularly in the domains of text-to-image [2]–[5] and text-
to-video [6], [7] generation. While existing methods have
demonstrated the capability to produce high-quality media
outputs from textual inputs, they typically focus on generating
a singular modality, which may not align with the multi-
faceted demands of real-world applications. The exploration
of techniques for generating multiple modalities concurrently
remains an area ripe for investigation. Additionally, contem-
porary video conferencing software often imposes high bitrate
requirements, leading to inefficiencies in both bandwidth usage
and adaptability to diverse contexts.

In order to address these challenges, in this work, we
propose a method that can generate synchronized video-audio
pairs using Denoising Diffusion Probabilistic Model (DDPM)
[1] from low bitrate textual inputs, as depicted in Fig.1. In
this work, we consider two users: the producer, who intends to
share video content either online or directly with the receiver,
and the receiver, who seeks to receive the shared video. Our
method transmits only low bitrates texts, thereby dramatically
reducing the transmission costs compared to sending video
directly. The producer can send video description texts and/or
talking texts, or even nothing; the receiver can generate the
synchronized video-audio pairs.

Fig. 2 illustrates the diverse options available to the receiver
for generating synchronized video content. The input on the

Fig. 1. The high-level pipeline of this project. In this setting, the generative
model gets low bitrates text as inputs and generate synchronized video-audio
pairs.

receiver side is text. Once the text is received, the user
can explore multiple possibilities to convert it into video
and audio content, including the following options: 1) They
have the option to directly convert the text to video and
audio without any modifications, as shown in Fig. 2(a), 2)
Alternatively, they can alter the video caption to generate a
different video, as depicted in Fig. 2(b), 3) Another possibility
is to modify the talking text, resulting in a video with different
talking content, as seen in Fig. 2(c), 4) Additionally, users
can input a static image to change the head or style of the
generated video, exemplified in Fig. 2(d). In addition, our text-
to-speech conditional generation operates in fully zero-shot
mode, enabling acceptance of any input texts for our model.
This crucial capability makes our technology highly versatile
and applicable in various daily life scenarios.

Our contributions can be succinctly summarized in the
following aspects:

• We introduced a novel task of generating synchronized
joint video and audio from textual inputs, effectively
reducing transmission bitrates and enhancing efficiency.

• To ensure user flexibility, we provide multiple options for
converting textual inputs into video-audio pairs, enabling
personalized and tailored video creation experiences.

II. RELATED WORK

A. Denoising Diffusion Probabilistic Model

The Denoising Diffusion Probabilistic Model (DDPM) [1]
has garnered increasing attention owing to its formidable
generative capabilities. It belongs to the category of generative
models renowned for their adeptness at learning the underlying
distribution of a training dataset and subsequently generating
new instances. The DDPM operates through two principal
processes: forward processing, which introduces noise, and
backward processing, which reconstructs samples from pure



Fig. 2. Multiple options for the receiver to convert video-audio from texts.

noise. Notably, diffusion models [1] have demonstrated their
proficiency in unconditional generation, relying solely on ran-
dom distribution to generate novel instances that adhere to the
learned characteristics of the training dataset. However, uncon-
ditional generation lacks controllability, rendering it unsuitable
for real-world applications. Consequently, there has been a
surge in research focusing on controllable generation through
the integration of conditions, leading to the emergence of con-
ditional diffusion models. These models incorporate various
conditions, such as text [8]–[10], image [11], [12], audio [13],
[14], among others, to guide the diffusion generation process.
Beyond media creation tasks, diffusion models find application
in diverse domains, including image segmentation [15], [16],
change detection [19], [20], and image classification [17], [18],
showcasing their versatility and excellence.

B. Cross-Modal Content Synthesis

The Cross-Modal Content Synthesis task encompasses the
generation of diverse modalities from a given input modality,
including text-to-image [2]–[5], text-to-video [6], [7], text-to-
audio [21]–[23], among others. In addition to media creation
from textual descriptions, recent efforts have been directed
towards audio-driven talking-head video generation [24]–[26],
aiming to produce videos synchronized with input audio,
particularly focusing on achieving lip synchronization. How-
ever, many existing cross-modal content creation methods are
constrained to generating only one modality at a time. In 2023,
[13] introduced the first joint video-audio generation approach,
although its output lacked controllability as it was generated
from random distributions.

To overcome the limitations of previous methods and bet-
ter align with real-world applications, we propose a novel
approach: text-to-joint audio-video generation. Our method
accepts two types of input texts that are video captions and

speech content, and is capable of generating synchronized
talking-head videos. This advancement represents a signifi-
cant step forward in cross-modal content synthesis, offering
enhanced flexibility and applicability for various multimedia
generation tasks.

C. Pre-trained Models

To optimize training costs and elevate the quality of
generated outputs, we leverage two pre-trained models:
YourTTS [21] and Wav2Lip [23]. YourTTS facilitates the
conversion of text into speech audio, while Wav2Lip en-
hances synchronization between video and audio compo-
nents. Through the integration of these pre-trained models,
we achieve efficient generation of high-quality results with
enhanced coherence between video and audio elements. The
utilization of pre-trained models is pivotal for enabling zero-
shot generation from text to speech, and similar pre-trained
models can be employed interchangeably for this purpose.

III. PRELIMINARY OF DDPM

In this section, we provide a brief overview of the Denoising
Diffusion Probabilistic Model (DDPM) [1] and its fundamental
processes. The DDPM consists of two primary procedures:
forward processing and backward processing. We denote the
original sample without noise and its corresponding pure
Gaussian distribution as x0 and xT , respectively.

During forward processing, noise is incrementally added to
the original sample x0 over T time steps, gradually trans-
forming it into pure Gaussian noise xT . Conversely, backward
processing aims to reconstruct the sample from the Gaussian
distribution. The integration of these two processes enables the
DDPM to generate high-quality samples while preserving the
original data distribution. Due to its effectiveness, the DDPM
has become a preferred choice in various generative tasks.



The primary objective of DDPM is to reconstruct x0 from
xT . Therefore, the forward processing, following a Markov
Chain [27] approach, can be represented as follows:

q (xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
(1)

q (x1 : xT | x0) =

T∏
t=1

q (xt | xt−1) (2)

Where t ∈ [0, T ] is the time steps that is pre-defined, to
gradually adding noise from true data x0 to the pure Gaussian
noise xT . The diffusion forward process is used to get sample
xt from xt−1 by adding noise using normal distribution N (·).√
1− βt is the mean value and β is pre-defined variance. I is

identity matrix. Using the property of forward pass, we can
compute xt from x0 using:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1) (3)

Where αt = 1− βt and ᾱt =
∏t

i=1 αi. And ϵ is the noise
from normal distribution.

For the backward processing, the main goal is to train a
model θ that can approximate q(xt−1|xt, x0) and Pθ(xt−1|xt).
Therefore, we have the following formula for the reverse
process:

pθ(xt−1|xt) = N

(
xt−1;µθ(xt, t);

∑
θ

(xt, t)

)
(4)

Where µθ is the mean value predicted from the trained
model θ. Normally, we apply U-Net [28] as the model θ, and
the training objective involves minimizing the loss function be-
tween the predicted noise and ground-truth noise, or between
the predicted de-noised sample and the ground-truth sample.
The training objective is:

U(θ) = Et,x0∼data,ϵ∼(0,I)
[∥ϵ− ϵθ(xt, t)∥22] (5)

Where ϵθ(xt, t) is predicted noise from U-Net.

IV. METHOD

In this section, we will provide a detailed exploration of our
methods, covering aspects such as the model architecture, un-
conditional generation, caption conditional generation, speech
text conditional generation, and static images conditional
generation. Our model demonstrates remarkable flexibility by
accommodating various types of conditional inputs, including
all, partial, or no conditional inputs. In scenarios where no
speech text input is available, we input random distribution for
audio generation, and the pre-trained YourTTS [21] is removed
from the pipeline. Despite the absence of specific speech text,
our model still generates dynamic video content by generating
audio from random distribution, thereby aligning the audio
and video components to produce synchronized output. It’s
worth noting that in the unconditional setting, the use of
Wav2Lip [23] is unnecessary since the audio is generated
from random distribution. Similarly, in the text conditional

setting, the use of Wav2Lip is optional if the input speech
text falls within the distribution of the training dataset, such as
containing the same word or words with similar pronunciation.
However, it is crucial for our model to be capable of accepting
any speech text from the user.

A. Model Architecture

As mentioned earlier, the diffusion model typically utilizes
the U-Net architecture as its foundational network structure.
However, the original U-Net architecture is constrained to pro-
cessing only one type of input, which doesn’t fully align with
the requirements of this project. To address this limitation,
drawing inspiration from [13], we employ a double-branch U-
Net capable of concurrently processing both video and audio
inputs. The high-level pipeline is depicted in Fig.3(a). Unlike
the original U-Net block, the double-branched U-Net block
can handle two inputs simultaneously. Fig.3(b) and Fig.3(c)
illustrate the video convolution block and audio convolution
block, respectively, both incorporating group normalization
and Swish activation functions [35]. Subsequently, the video
feature and audio feature undergo separate convolutional layers
to accommodate their distinct feature dimensions. Addition-
ally, a cross-attention layer is introduced to facilitate learning
the alignments between audio and video elements. We define
the cross-attention function [29] as A(·), which can be suc-
cinctly represented as follows:

A(at, vt) = Softmax

(
QaK

T
v√

dk

)
Vv (6)

Kv = linear(flatten(vt)) (7)

Where at and vt are the video and audio in the t time step,
respectively. Q, K and V are query, key and value. dk denotes
to the dimension of Kv . Similarly, A(vt, at) can be computed
using symmetrical way the same as [13].

B. Unconditional Generation

The model underwent training using a dataset consisting of
synchronized audio-video sentence pairs, enabling it to acquire
unconditional generation capability. Consequently, the model
is capable of generating video-audio content from random
distributions, demonstrating its versatility and robustness in
producing coherent multimedia outputs without specific input
constraints.

C. Caption Conditional Generation

Caption conditional generation serves to control the gen-
eration process by providing captions as input. For instance,
when we supply the caption ”A man is talking” to an un-
conditional generative model, the model can produce video-
audio content featuring a man’s head. To realize captioned
conditional generation, the same as [30], we offer two distinct
approaches: classifier guidance and conditional generative
diffusion model. Through the inclusion of video captions, the
caption conditional model achieves fine-grained control over



Fig. 3. a) The high-level pipeline of the method. b) and c) show the architecture of the video convlutional block and audio convolutional block, respectively.
The components in orange are optional pre-trained model, which aim to enhance the user flexibility and generation quality.

the generated video-audio pairs, offering a heightened level of
customization and specificity.

Classifier Guided Model. We train a separate classifier
that can identify the video-audio using captions. The classifier
training is a supervised learning using labeled video-caption
pairs. The unconditional model is guided using the score of
the classifier given input caption y. To this end, we employed
the same U-Net blocks utilized in the main generative model.
However, two key differences were introduced: 1) the output
blocks of the U-Net were removed, and 2) a pooling layer and
a fully connected layer were added to serve as a classification
head. Initially, we focused on training a video classifier alone,
but encountered discrepancies between the generated video
and audio. Consequently, we devised a joint video and audio
classifier. It constitutes a type of noisy classifier capable
of accepting noised samples and the time step t as inputs.
This element is of paramount importance, as the classifier
plays a pivotal role in guiding each de-noising step of the
diffusion backward process. Once we have a trained classifier,
we leverage its guidance for the unconditional generative
model. The unconditional generative model can be expressed
as Pθ(vt−1, at−1|(vt, at)), where v and a refer to video and
audio, respectively. On the other hand, we define the joint
video-audio classifier as Pϕ(y|(vt−1, at−1)), with y denoting
the input caption. Consequently, the classifier-guided genera-
tion can be expressed as:

Pθ,∅(vt−1, at−1|(vt, at), y) =
Z · Pθ (vt−1, at−1|(vt, at)) · Pϕ(y|(vt−1, at−1))

(8)

Where Z is a normalizing constant, which is used to make
any probability density function to have a total probability 1.

Conditional Diffusion Model with Caption Embedding.
The Classifier-guided model, while effective, may incur sig-
nificant time and computational costs when training on large
datasets. As an alternative, we adopt the other approach in [30]
by directly incorporating caption embeddings into the diffusion
training process, eliminating the need for a separate classifier.

Since classifier requires separate classifier that contains many
parameters, which will increase the inference time. We finally
selected to use conditional diffusion model. Specifically, we
set y = [yt, yc] as time step and caption embedding. To
seamlessly integrate caption embeddings into each U-Net
block, we employ the adaptive group normalization (AdaGN)
layer [31]. By doing so, we establish the captioned conditional
layer as follows:

AdaGN(h, y) = ytGroupNorm(h) + yc (9)

Where h is the activations after the first convolutional layer
of each block.

D. Speech Text Conditional Generation

For speech text conditional generation, our fundamental
approach involves utilizing a pre-trained text-to-speech model
to convert the given input text into speech audio. Subse-
quently, we harness this text-converted audio to guide the
video generation process. we employ the YourTTS [21] model,
a versatile multi-speaker and multi-language text-to-speech
model. The incorporation of YourTTS enhances the flexibility
and expressiveness of our model, empowering us to produce
compelling video content guided by diverse textual inputs.

The guided process is the same as [32]. We define the text
converted speech audio from pre-trained YourTTS as â0. Then
we can get ât using:

q(ât | â0) = N (ât;
√
1− βtâ0, βtI) (10)

Once we have ât, we replace at with ât in the backward
processing. We then have Pθ(vt−1,at−1|(vt, ât), y). Finally,
we updated the video ṽt−1 using:

ṽt−1 = vt−1 − C · ∇vt−1
∥ât−1 − at−1∥22 (11)

Where C is a constant for the conditional scale that can be
set by the user.



E. Static Image Conditional Generation

Incorporating static images for conditional generation in-
volves two distinct cases in our project: one with speech text
input and the other without speech text input.

In the case with speech text input, we employ the text-
converted speech audio to drive the static image using the
pre-trained Wav2Lip [23] model. The Wav2Lip accepts image
and audio as input, in most of the cases, the inputs are not
synchronized. It can generate synchronized video using their
synchronization expert model. It can accept both latent and
audio/image native format as inputs. This allows us to syn-
chronize the static image with the corresponding speech audio,
producing a coherent and immersive video-audio combination.
For the latter case, where speech text input is absent, we
generate the audio using random distribution and subsequently
use it to drive the static image. By leveraging this approach,
we can still achieve dynamic and engaging video content, even
in scenarios where specific speech text input is unavailable.

F. The Use of Pre-trained Models

To ensure user flexibility and enhance the quality of
generated outcomes, we integrated two pre-trained models:
YourTTS [21] and Wav2Lip [23].

YourTTS emerges as a powerful zero-shot text-to-speech
audio model, boasting pre-training with multiple speakers and
languages. It takes inputs of texts, language IDs, and speaker
IDs, rendering it an essential component of our project. Given
that our model was exclusively trained using English speech
audio, we establish a fixed language ID set to English. Regard-
ing speaker ID, in the absence of caption input, we randomly
select a speaker index from the entire pool of speakers.
However, when a caption is provided, the choice of female or
male speaker index is determined accordingly. The resulting
audio output is converted into a tensor format, serving as a
guiding element for the subsequent video generation process.
The significance lies in achieving text-to-speech video-audio
generation without inflating the training parameters of the
diffusion model. Indeed, the utilization of YourTTS stream-
lines our project and empowers us to achieve video-audio
generation with enhanced flexibility. By incorporating the
capabilities of YourTTS, we can readily adapt and generate
speech audio from diverse texts, pre-defined language IDs,
and pre-defined speaker IDs. The pre-defined language IDs
and speaker IDs are limited to the YourTTS training data. This
flexibility enhances the versatility of our system, enabling us
to cater to a wide range of applications and scenarios. With
YourTTS as an integral part of our project, we can effortlessly
produce video-audio content with various linguistic nuances
and speaker characteristics, significantly enriching the overall
user experience.

Given that our project revolves around generating synchro-
nized video-audio pairs for talking heads, our primary focus
lies in achieving precise lip motion and audio synchronization.
However, the subtlety of lip motions poses a challenge, making
synchronization difficult. Additionally, discrepancies in lip-
sync can be easily noticeable in videos compared with natural

ambient sounds like ocean waves or wind, impacting the over-
all viewing experience. To address these concerns, we have
integrated the pre-trained Wav2Lip model into our system.
This model is specifically designed to enhance lip pose and
audio synchronization. Wav2Lip leverages a pre-trained Lip-
synchronization expert during training, with the objective of
minimizing synchronization loss. We strategically incorporate
this model after the final de-noising step, enabling us to
significantly improve the synchronization of generated audio-
video pairs. By leveraging the capabilities of Wav2Lip, we
aim to produce talking head videos with remarkably accurate
lip motion and audio coherence, delivering a seamless and
immersive viewing experience.

V. IMPLEMENTATION DETAILS

In this section, we provided an overview of several imple-
mentation details pertaining to our proposed model.

A. Diffusion Training

In the U-Net setting, we configured the number of
ResNet [33] blocks for each U-Net block as 2, and the
number of head channels was set to 64. The video and audio
fps were chosen as 16 and 16,000, respectively. A fixed
learning rate of 0.0001 was employed, and model saving was
performed every 5,000 time steps during the training process.
To schedule the diffusion noise, we utilized the linear method,
the total diffusion steps T during inference is set as 1,000. To
ensure meaningful outcomes, the model underwent training
for a minimum of 50,000 time steps. The primary objective
during training was to minimize the loss function between the
predicted noise and the ground-truth noise. Furthermore, all
video inputs were resized to 64 × 64. We define B as the batch
size, F is the video frames, C is the channel number and Ad

as input audio data points. Therefore, the input video tensor
size is [B,F,C, 64, 64] and audio tensor size is [B, 1, Ad].

B. Classifier Training

During the training of the classifier, we established the
initial learning rate as 0.001 and implemented learning rate
decay to optimize its performance. To prevent overfitting and
enhance generalization, we set the weight decay to 0.05. Given
the classifier’s role in handling noised input, we utilized the
uniform method as the schedule sampler. We conducted a total
of 300,000 iterations to ensure robust convergence and the
acquisition of meaningful classification results.

C. Inference Setting

During the inference phase, we established the total de-
noising steps as 1,000 and employed a linear noise schedule to
effectively guide the de-noising process. To ensure the highest
possible generation quality, we opted for the DDPM reverse
sampling method.



Fig. 4. Generated results of our method.

D. Dataset

We utilized a dataset introduced in [34], consisting of
talking-head videos from 34 speakers, comprising 16 females
and 18 males. To optimize training efficiency and cost, we
selected a subset of 24 speakers, evenly distributed between
12 females and 12 males. Each speaker contributed 40 videos
to the dataset. We further optimized training efficiency and
cost by extracting one-second segments from each video, each
featuring a single digit alongside one keyword. Consequently,
the entire training dataset spans a duration of 16 minutes.
To facilitate caption conditional generation, we meticulously
labeled the videos with two distinct captions: ”A man is
talking” and ”A woman is talking.” The original resolution
of each video is 360× 288.

VI. RESULTS

We present some sample frames generated by our
model in Fig. 4. The model has the capability to
accept two different video captions and any speech
text to generate synchronized talking-head audio-
video pairs. For additional generated talking videos,
please refer to https://docs.google.com/presentation/d/
1EqwP7UIr-brgw9A8L5Ww9sVd3dIMo sH/edit?usp=drive
link&ouid=101411429973563845085&rtpof=true&sd=true.

VII. LIMITATION

The limitations of this work can be identified in the fol-
lowing aspects: 1) Achieving high-quality content generation
with the diffusion de-noising technique requires numerous de-
noising steps to reconstruct samples from pure Gaussian noise.
However, the time-consuming nature of multiple de-noising
steps may not be suitable for generating long videos efficiently,

2) While our model demonstrates the ability to generate
natural talking head videos with dynamic head motion and eye
blinking when provided with several static images representing
continuous video frames as input (image batch condition), it
tends to focus mainly on lip movements and exhibit limited
head motion when using only one static image as input,
3) Due to GPU memory constraints, we had to resize the
training video resolution to 64 × 64 pixels, which may be too
low to satisfy the requirements of real-world content creation
scenarios, 4) The model training process still relies on labeled
video data for the caption conditional model. Presently, our
methods accept only two kinds of captions, which may limit
the diversity of generated content. These limitations highlight
areas for future research and improvement in our proposed
approach.

VIII. CONCLUSION

In conclusion, our work successfully realizes the task of
text-to-joint talking-head video and audio generation, offering
users a range of options for producing synchronized video-
audio pairs. With the model’s capability to accept any speech
texts as input, it holds considerable promise for a wide array
of everyday user applications. Moreover, the adoption of
low-bitrate text inputs notably mitigates transmission costs
during the generation process. This contribution underscores
the practicality and versatility of our proposed approach in
facilitating accessible and cost-effective multimedia content
creation.

For future work, we can focus on expanding video caption
categories, improving generation speed, fine-tuning model for
unlabeled data guidance, and enabling talking head video
generation from a single static image.

https://docs.google.com/presentation/d/1EqwP7UIr-brgw9A8L5Ww9sVd3dIMo_sH/edit?usp=drive_link&ouid=101411429973563845085&rtpof=true&sd=true
https://docs.google.com/presentation/d/1EqwP7UIr-brgw9A8L5Ww9sVd3dIMo_sH/edit?usp=drive_link&ouid=101411429973563845085&rtpof=true&sd=true
https://docs.google.com/presentation/d/1EqwP7UIr-brgw9A8L5Ww9sVd3dIMo_sH/edit?usp=drive_link&ouid=101411429973563845085&rtpof=true&sd=true
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