>

Do Smart Phones Hold the Key to Making Cities Smarter?

Smart City applications use dedicated sensors (e.g., environmental measurement and air quality sensors, light sensors, and traffic sensors) and non-dedicated sensors (e.g., light sensors and accelerometers, which reside in the smartphones of the volunteering residents).

ALBANY, N.Y. (November 30, 2017) — Whether it’s improved traffic patterns, energy savings or reduced noise pollution, cities across the world are actively introducing “smart” technologies to improve the quality of life for their citizens. But with costs and maintenance standing in the way, are there existing resources that could be deployed to bring about the same benefits to communities of the smart city movement?

University at Albany researcher Tolga Soyata and a team of students looked at one possible solution in a new study. They found that technology found in our phones and tablets have the capability to cover about two-thirds of the data that smart cities currently collect through dedicated sensors. By applying a mobile crowd-sensing (MCS) approach, communities may have the capability to transmit the same amount of data, with virtually the same level of accuracy.

Publishing in the Dec. 1, 2017, issue of IEEE Sensors Journal, Soyata and his students review the types of smart technologies currently deployed in cities, which break down into two primary categories: dedicated and non-dedicated sensors, the latter being available as a built-in capability in every smartphone.

Tolga Soyata
Tolga Soyata and a team of students have found that technology found in our phones and tablets can capture much of the data that smart cities collect through dedicated sensors. (Photo Mark Schmidt)

Most communities use a combination of cameras, microphones, temperature sensors, GPS devices and RFID (radio frequency identification) technology to monitor traffic, weather and energy consumption. These devices in turn supply data that makes it easier to track utilities, lighting, parking, health and the environment.

But among the key drawbacks to dedicated sensors are higher deployment and maintenance costs. And yet, almost all of the data cities collect can also be captured by our smartphones. The question becomes, can we trust the captured data, and protect the privacy of users who might be supplying information in lieu of a dedicated sensor network?

“The MCS concept also has known implementation challenges, such as incentivizing the crowd and ensuring the trustworthiness of the captured data, and covering a wide sensing area,” said Soyata, an associate professor of Electrical and Computer Engineering in the College of Engineering and Applied Sciences. “Considering the pros and cons of each option, the decision as to which one is better becomes a non-trivial answer. In this paper, we conduct a thorough study of both types of sensors and draw conclusions about which one becomes a favorable option based on a given application platform.”

For instance, while one smart device delivering data might diverge by up to 10 percent of dedicated sensors, as more users are added, the cumulative information was found to be within a percentage point.

According to the Mobility Report by Ericsson.com, there could be as many as 6.1 billion smart phones in circulation by 2020. That’s a vast number of potential data collectors for communities large and small.

But smart phones aren’t quite a catch-all answer for the type of data dedicated sensors currently provide.

“We show that while all sensors are available in dedicated form, about two-thirds are available in non-dedicated form,” said Soyata.

Still, the potential impact of non-dedicated sensors to make cities more efficient and improve the lives of residents is substantial.

“Based on our comprehensive survey, which followed a feasibility study of non-dedicated sensor usage, we argue that non-dedicated sensors provide a viable alternative to future smart city applications,” Soyata said.

RSS Link For more news, subscribe to UAlbany's RSS headline feeds

A comprehensive public research university, the University at Albany-SUNY offers more than 120 undergraduate majors and minors and 125 master's, doctoral and graduate certificate programs. UAlbany is a leader among all New York State colleges and universities in such diverse fields as atmospheric and environmental sciences, businesseducation, public health,health sciences, criminal justice, emergency preparedness, engineering and applied sciences, informatics, public administration, social welfare and sociology, taught by an extensive roster of faculty experts. It also offers expanded academic and research opportunities for students through an affiliation with Albany Law School. With a curriculum enhanced by 600 study-abroad opportunities, UAlbany launches great careers.