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1 Introduction and motivations

The aim of this paper is to propose a random-coefficient autoregressive model that accommodates

the pricing of assets under the standard present-value relation of Campbell and Shiller (1987) both

according to fundamentals and in the presence of bubbles. To understand the rationale behind our

modeling choice, consider a standard present value model where the price (Pt) of a unique asset at

time t depends on the expected discounted (at rate 1 +Rt+1) value of future associated cash flows.

Campbell and Shiller (1987) show that the price of the asset at time t is function of the cash flow

Dt+1 it generates between t and t+ 1 as in:

Pt = Et

[
Pt+1 +Dt+1

1 +Rt+1

]
(1)

where Et [·] denotes the expectation conditional on information available at time t. (1 +Rt+1)
−1

is often referred to as the Stochastic Discount Factor or pricing kernel. The present-value relation

implies that the price can be decomposed into

Pt = Ft +Bt (2)

where the so called fundamental price Ft is defined as the expectation, conditional on information

available at t of discounted future cash flows:

Ft = Et

 ∞∑
j=1

Dt+j

(1 +Rt+1) ... (1 +Rt+j)

 . (3)

and satisfies the usual transversality (non-Ponzi) condition.

In expression (2), Bt denotes any process that satisfies the following “conditional exuberance”

condition

Bt = Et

[
Bt+1

1 +Rt+1

]
. (4)

There exist solutions to this condition for which Bt exhibits exponential growth and can be labeled

as “bubbles”, see inter alia, Blanchard (1979), Blanchard and Watson (1982), Hamilton (1986),

West (1987), Evans (1991), Abreu and Brunnermeier (2003), see Lansing (2010) for a recent

overview. Many of the proposed models can be represented as

Bt = atBt−1 + ηt (5)

where ηt is a martingale difference sequence and e.g. at > 1 while the bubble lasts and at = 0 when

it bursts (in Blanchard and Watson, 1982, at = 1+R
π with probability π ∈ (0, 1) and zero otherwise).

It is often assumed that it is the presence of deterministic breaks or regime switches that governs

the inception and termination of bubbles (see e.g. Campbell et al., 1996, and references therein).

Diba and Grossman (1988b) conduct a thorough analysis of the causes of the emergence of a bubble

of the form (5).

The literature has provided several techniques to test for the presence of a bubble, see Gürkaynak

(2008) for an overview. They fall into two categories. The first relies on the link between the fun-

damental price Pt and the cash flow Dt. Systematic deviations between (functions of) the two are
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seen as indicative of the presence of a bubble. This is the spirit of the tests by West (1987) and Diba

and Grossman (1988). Kenneth West uses a Haussman test for the difference of two estimators,

thus testing both model misspecification and the presence of a bubble. Diba and Grossman resort

to testing the null of cointegration between Pt and Dt, i.e. the null of the absence of a bubble. This

approach has been criticized by Evans (1991) as it is not robust to periodically collapsing bubbles.

Several authors have attempted to tackle the resulting size distortions, see inter alia Taylor and

Peel (1998) and Van Norden and Vigfusson (1998) who allow for regime switching.

The other type of tests that has been proposed, and that is closer in spirit to our approach, only

rely on testing whether prices (possibly log prices) are integrated of order 1 against an alternative

that the first difference is not stationary. This approach relies on the idea that bubbles are ‘more

explosive’ than stochastic trends and that the latter are in line with fundamental pricing. This also

corresponds to the model of bubbles as ‘charges’ of Gilles (1989) and Gilles and LeRoy (1992). The

null of the absence of a bubble can therefore be tested by a simple unit root test. Peter Phillips,

Jun Yu and several coauthors have proposed in a stream of papers (see inter alia Phillips, Wu and

Yu, 2011, and Phillips and Yu, 2009; respectively PWY and PY henceforth) to perform recursive

Dickey-Fuller tests, where right-tailed rejection is indicative of a bubble. To estimate the inception

and termination of the bubble, when the latter has been detected, these authors adapt the test

size to the number of observations. They compute critical values using the distributions derived by

Phillips and Magdalinos (2007, PM henceforth) under the assumption of a locally explosive root.

This relies implicitly on the null that the process experiences deterministic breaks at the inception

t1 and burst t2 of the bubble, as in its simplest version:

yt = yt−11 {t < t1 or t > t2}+ δT yt−11 {t1 ≤ t ≤ t2}+ εt

δT = 1 +
c

Tα
, c > 0, α ∈ (0, 1)

The Phillips-Yu approach has several advantages: (i) being univariate, it avoids the need to specify

a structural model referring to the fundamentals; (ii) it is simple to use since it relies only on

Dickey-Fuller tests and (iii) relying on functional central limit theorems, it is robust to short-run

specification and powerful in the presence of a low magnitude or periodically collapsing bubble.

Unfortunately, the methodology presents several drawbacks: (i) referring to deterministic breaks

implies some trimming of observations at the beginning and end of the sample and does not allow

for estimation of a unique model over the whole sample; also the deterministic breaks are not

forecastable and so the timing of the bubble can only be made ex-post. This also implies that the

estimators of (t1, t2) are biased. Also, (ii) the univariate setting relies on log linearization of the

present-value model as in Campbell and Shiller (1988); this approximation introduces the discount

rate as a function of the average dividend-price ratio. In the presence of bubbles, this average does

not correspond to well defined population moments. Finally, (iii) the magnitude of the bubble

is not related to its estimation whereas it seems intuitively important to tie the detection to the

observed or estimated magnitude.

Specifying that the autoregressive coefficient is stochastic, this papers nests the Phillips-Yu

models and alleviates some of the drawbacks mentioned above. We can draw inference on the whole

sample and there is no need to resort to rolling/recursive windows to test the presence of a bubble

and estimate its magnitude. In particular, there is no need to consider bubbles with a duration
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of small infinity, i.e. of order O
(

log T
T

)
in PWY. Also, we can do away with loglinearization.

The emergence of the bubble relates to the value taken by the stochastic discount factor, hence

improving the structural interpretation.

The remainder of the paper is as follows. In section 2, we provide a random-coefficient au-

toregressive process (RCAR) with loca-asymptotic parameterization. We then derive in section 3

the asymptotic properties of the process and parameter estimators. Section 4 presents the method

of inference that we propose and simulations show their validity. We apply our methodology in

section 5 to inference on the dynamic properties of U.S. house prices.

2 The model

The model we study in this paper belongs to the class of random-coefficient autoregressive (RCAR)

models and is similar to those proposed and studies by Andel (1976), Nicholls and Quinn (1982),

McCabe and Tremayne (1995) and Granger and Swanson (1997):

yt = ρtyt−1 + ηt, t = 1, · · · , T ; (6)

where ηt is assumed to be i.i.d. N
(
0, σ2

)
and ρt to be a nonnegative covariance stationary process.

The RCAR model (6) is known (see Nicholls and Quinn, 1982, and Aue, Horváth and Steinebach,

2006) to admit a strictly non-anticipatory stationary solution if and only if

E [log |ρt|] < 0 (7)

and a covariance stationary solution if

E
[
ρ2t
]
< 1. (8)

This model has a long pedigree in the econometric and statistical literatures. It has been studied

for two main purposes.

First, it is a flexible model that nests the standard AR(1) and where the unit root hypothesis can

take several forms: E[ρt] = 1, or E
[
ρ2t
]

= 1, see Granger and Swanson (1997) for a discussion. Sev-

eral authors have proposed to perform tests of the unit root hypothesis using Lagrange-Multiplier

tests within the RCAR model, see Leybourne, McCabe and Tremayne (1996), Hwang and Basawa

(2005), Distasio (2008) and Aue and Horváth (2011). When E
[
ρ2t
]
> 1, Hwang and Basawa (2005)

denote this model an Explosive Random Coefficient Autoregressive model (ERCA) and study pro-

cesses such that E
[
ρ2t
]
≥ 1 and E[log |ρt|] < 0 (which are strictly stationary but do not possess

finite second moments).

Second, expression (6) implies that yt exhibits conditional heteroskedasticity: assume ρt ∼
iid
(
ρ, σ2

ρ

)
then

E [yt|yt−1] = ρyt−1, Var [yt|yt−1] = σ2
ρy

2
t−1 + σ2

η

see inter alia Tsay (1987), Yoon (2002), Hwang and Basawa (2005), Ling and Li (2006), Francq,

Makarova and Zaköıan (2008) and Rahbek and Nielsen (2012). These authors, as well as others
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have also proposed functional forms that differ from (6) and that belong to the classes of double-

autoregressive or bilinear processes.

Here we follow Aue (2008) and deviate from the existing literature on RCAR à la Granger-

Swanson in the sense that we assume that both the expectation and variance of ρt are very close

to unity: we model the moments using extensions to standard local-asymptotic frameworks so

that as T → ∞ (E [ρT ] ,V [ρT ]) → (1, 0). This framework builds on Bobkoski (1983), Chan and

Wei (1987), Phillips (1987) and more recent work of Giraitis and Phillips (2006), PM , PWY, and

PY). We parameterize the distribution of ρt to ensure that its realizations take the form of local

deviation from a unit root, possibly on the explosive side. The process we consider are formally

defined as triangular arrays as the distribution of yt, for t ≤ T, is parameterized using the actual

sample size T.

Throughout the paper, we make the following assumption.

Assumption 1

ρt = exp

{
φ+ λTα/2ut

Tα

}
with ut

i.i.d.∼ N (0, 1) (9)

where (φ, λ, α) ∈ R× R+ × (0, 1) , and where ut and ηt are mutually independent.

Under assumption (9), the expectation of ρt is E [ρt] = exp
{(
φ+ 1

2λ
2
)
/Tα

}
and its variance

satisfies V [ρt] = exp
{

2φ+λ2

Tα

}(
exp

{
λ2

Tα

}
− 1
)

= λ2

Tα + O
(
T−2α

)
. So ρt admits the following

stochastic expansion:

ρt = E [ρt] +
λ

Tα/2
ut +

λ2

2Tα
(
u2t − 1

)
+Op

(
T−2α

)
(10)

It follows that the conditions (7) and (8) for strict and covariance stationarity write under assump-

tion (9):

E [log |ρt|] =
φ

Tα
< 0⇔ φ < 0

E
[
ρ2t
]

= exp

{
2
φ+ λ2

Tα

}
< 1⇔ φ+ λ2 < 0

We also notice the condition

E [ρt] < 1⇔ φ+
1

2
λ2 < 0

which will be of interest to us.

The moderately explosive processes of PM and PY are obtained when considering λ = 0. The

difference here is that ρt ∈ [0,∞): the autoregressive coefficient is allowed over time to enter the

mean reversion region (0, 1), to be close to unity and to lie on the explosive side (1,∞). The model

deviates non-trivially from that of Aue (2008) in that we allow for a greater role played by the

stochastic variation in ρt : in his setting, E [ρt]−1 = O (T−α) with α ∈ (1/2, 1) and V [ρt] = o
(
T−1

)
which implies that ρt − E [ρt] lies in a much tighter neighborhood of unity and so does not impact

the explosiveness of yt : E
[
ρ2t
]

= 2E [ρt]− 1 +O
(
T−2α

)
so the conditions E

[
ρ2t
]
< 1 and E [ρt] < 1

are asymptotically equivalent. This differs from our setting which allows for richer dynamics. We
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rule out the assumption of fixed (non-local) parameterization, i.e. α = 0. An empirical analysis of

the RCAR with E [ρt] > 1 and non-local parameters was made by Charemza and Deadman (1995)

in the context of periodically collapsing bubbles (see also, Aue and Horváth, 2011, and Wang and

Gosh, 2009). We show here that, following the recent work by P. C. B. Phillips and his coauthors,

the introduction of a local-asymptotic framework yields benefits.

In order to show the sort of dynamics the model generates, figure 2 records simulations of the

process over samples of T = 1000 observations using two sets of draws of (ut, ηt). Exuberant

periods become clearly more pronounced and explosive as φ increases or α decreases. For α = 1,

the processes exhibit near-unit roots as in Phillips (1987 ) and no type of what could be called a

“bubble” seems to appear visually. As α decreases, some bubbles appear. Some local explosive

pattern appears and disappears alternatively. Although, by visual inspection, some draws seem

to exhibit volatility clustering (random draw 1, left column), this is generically not an observed

pattern (see random draw 2).

3 Asymptotic properties

In this section, we derive asymptotic properties for the RCAR model defined in (6) and assumption

(9) that will be useful when building hypothesis tests in the next session. Proofs are given in the

Appendix.

First, the following proposition provides a Functional Central Limit Theorem for the model.

Proposition 1 Let the process yt be defined for t ≥ 0 as in (6)-(9), with y0 = 0.

For r ∈
[
0, T 1−α] and as T →∞, it holds

T−α/2y[rTα] ⇒ Kφ,λ (r) ≡
∫ r

0

exp {(r − s)φ+ λ (Wr −Ws)} dBs

where W,B are two independent standard Brownian motion such that, for (s, v) ∈ [0, 1]
2
,

T−1/2
(∑[sT ]

t=1
ut, σ

−1
∑[vT ]

t=1
ηt

)
⇒ (Ws, Bv) ,

[·] denoting the integer part.

Corollary 2 The limiting process Kφ,λ (r) rewrites as

Kφ,λ (r) = Jφ(r)− erφ+λWr

(
λ2

2

∫ r

0

XsYsds− λ
∫ r

0

XsYsdWs

)
(11)

where the Ornstein-Uhlenbeck process Jφ(r) =
∫ r
0
e(r−s)φdBs is the limit of T−α/2y[rTα] when ρt is

nonstochastic (λ = 0) as in PM, and where (Xs, Yv) =
(
e−λWs , e−φvJφ (v)

)
.

The process Kφ,λ (r) defined in Proposition 1 is distributed as

Kφ,λ (r) ∼ N

(
0, σ2

η

∫ r

0

e2(φ+λ
2)sds

)
, for r ∈

[
0, T 1−α]
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Figure 1: Simulated realizations from the model of autoregressive conditional exuberance for dif-

ferent parameter values.
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where the integral
∫ r
0
e2(φ+λ

2)sds = e
2(φ+λ2)r−1
2(φ+λ2) if φ+λ2 6= 0 and is equal to r otherwise. It shows

that the parameter

c = φ+ λ2 (12)

plays a major role for the asymptotics of the process: if c < 0, then Kφ,λ (r) admits a stationary

version given by

K∗φ,λ (r) = ecrK∗φ,λ (0) +Kφ,λ (r) with K∗φ,λ (0) ∼ N

(
0,

σ2
η

−2c

)

whereas it is not the case for c ≥ 0. Hence several cases arise since

yT =


Op
(
T
α
2

)
if c < 0

Op

(
T

1
2

)
if c = 0

Op

(
ecT

1−α
T
α
2

)
if c > 0

Equation (11) shows how the stochastic nature of the autoregressive coefficient modifies the

asymptotic distribution of yt. In addition this formulation may be useful for efficient computing of

the Monte Carlo simulations.

We are interested in studying the properties of the OLS estimator ρ̂ in the regression of yt on

yt−1. For this purpose, we introduce the following random variables.

If λ2 < φ, let X =
√

2 (φ− λ2)σ−1η
∫∞
0
e−φs−λWsdBs which is distributed N(0, 1) . If λ2 ≥ φ, X is

not defined but we introduce instead X∗ ∼ N (0, 1) such that , when T →∞, X∗T 1−α ⇒ X∗, with

X∗T 1−α =

{
σ−1η

√
2 (λ2 − φ)e−(λ2−φ)T 1−α ∫ T 1−α

0
e−(φs+λWs)dBs if λ2 − φ > 0

σ−1η T−
1−α
2

∫ T 1−α

0
e−(φs+λWs)dBs if λ2 = φ

Similarly, we define the following random variables:

(ZT 1−α , YT 1−α , VT 1−α) =

(∫ T 1−α

0

e2(φr+λWr)dr , σ−1η

∫ T 1−α

0

eφr+λWrdBr ,

∫ T 1−α

0

eφr+λWrdWr

)

satisfying, as T →∞,(
ZT 1−α

E (ZT 1−α)
,

YT 1−α√
V ar (YT 1−α)

,
VT 1−α√

V ar (VT 1−α)

)
⇒ (Z, Y, V )

Y, V being independent standard normal random variables and Z a random variable with unit

expectation (see Matsumoto and Yor, 2005, theorems 7.2 and 7.4(ii)). When λ = 0, Z = 1 with

probability one. We now state our main result.

Theorem 3 Let the process (yt) be defined as in (6) under assumption (9) for t ≥ 0, with y0 = 0.

The OLS estimator ρ̂ in the regression of yt on yt−1 satisfies the following properties as T →∞:
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• if c < 0 :

{
T

1+α
2 (ρ̂− E (ρt))⇒ N

(
0, 3λ2 − 2c

)
T

1+α
2 (ρ̂− ρt)⇒ N (0,−2c)

• if c = 0 and λ 6= 0 :

{
T

1+α
2 (ρ̂− ρt)⇒

√
2φ Y

XZ

T (1−α)e−λ
2T 1−α

(ρ̂− E [ρt])⇒ 1
2
V
Z

• if c > 0 and if

λ2 < φ :

 Tαe(φ+λ
2)T 1−α

(ρ̂− ρt)⇒ 2
√
φ2 − λ4 Y

XZ

eφT
1−α

(ρ̂− E [ρt])⇒ λ φ+λ2√
φ+2λ2

V
Z

λ2 = φ :

{
T

1+α
2 e2λ

2T 1−α
(ρ̂− ρt)⇒ Y

X∗Z

T
1−α
2 eλ

2T 1−α
(ρ̂− E [ρt])⇒ 2λ2

√
3
V
Z

λ2 > φ :

 Tαe2λ
2T 1−α

(ρ̂− ρt)⇒ 2
√
λ4 − φ2 Y

X∗Z

Tα/2eφT
1−α

(ρ̂− E [ρt])⇒ φ+λ2√
φ+2λ2

V
Z

In all parameter combinations, we provide two asymptotic results for ρ̂ − ρt and ρ̂ − E [ρt].

This shows how the stochastic nature of the autoregressive parameter affects the properties of the

estimator. The asymptotic distribution of ρ̂− ρt is here comparable to the results of PM where φ

(the only localizing parameter since they assume λ = 0) is here replaced with c. When c < 0, the

presence of the stochastic root does not affect the asymptotic normality of ρ̂. The only difference

in this case is that λ 6= 0 leads to higher variance.

By contrast, when c ≥ 0 the results above differ from those of PM. First when c = 0, the presence

of nonzero λ implies that ρ̂ − ρt does not converge at a rate Op (T ) as in the standard unit-root

setting (since c = 0 and λ = 0 imply that ρt ≡ 1). The theorem shows that that the estimator ρ̂ is

not consistent for its expectation in only one case, when c = 0 and λ 6= 0 so E [ρt] = 1 but ρt 6≡ 1.1

The presence of a stochastic coefficient ρt implies for all cases where c ≥ 0 that the asymptotic

distribution contains a factor 1/Z that disappears when λ = 0. This is the main impact of λ 6= 0

on the asymptotic distribution of ρ̂− ρt which is otherwise similar to that in PM.

The asymptotic distribution of ρ̂−E [ρt] is notably different in that ρt−E [ρt] is the determining

element that drives the results. The distribution does not depend on B and defined as the ratio of

two uncorrelated variables driven by W.

In the next section, we show how theorem 3 can be used to conduct inference on model param-

eters.

4 Inference

4.1 Confidence Sets

The DGP we consider uses a local-asymptotic parameterization and it is well known that localizing

parameters may not be consistently estimable using standard techniques (see Phillips, 1987).2

1This result which holds even in the fixed-parameter case where α = 0 does not seem to have been established

in the literature.
2We hence rule out nonlinear extensions to the Kalman filter and the particle filter.
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Yet, these are the parameters of interest, and the key assumption we want to test is whether

(φ, λ) 6= (0, 0) , i.e. whether the market price differs from its fundamental.

To conduct inference, we resort to the standard technique that consists in inverting a test

statistic. There exists now a significant literature where such an approach is used for inference in

the near-unit root framework (originated from Stock, 1991). This technique is also common in the

context of weak instruments where there exists no fully robust estimation method, but robust tests

can be constructed (see Anderson and Rubin, 1949, Dufour, 1997, and Staiger and Stock, 1997).

Papers that discuss the mechanics of the inversion of robust tests to form confidence sets include

Zivot, Startz, and Nelson (1998), Dufour and Jasiak (2001), and Dufour and Taamouti (2005), for

a general overview see Andrews and Stock (2005) and references therein.

The technique relies on introducing a scalar function τθ,T (a test statistic) of YT = (y1, ..., yT )
′

that satisfies

τθ,T (YT )⇒ τθ (Y ) (13)

with θ =
(
φ, λ, σ2

η, y0
)′ ∈ Θ. Under the null H0 : θ = θ0, Stock (1991) constructs asymptotic

(1− ϕ) % confidence sets as Θ∗ ⊂ Θ consisting of the values θ∗ which are not rejected by τθ∗,T (YT )

at size ϕ. The finite sample corrections of Andrews (1993), Hansen (1999) and the two-sided

Romano and Wolf (2001) have been shown by Mikusheva (2007, see also 2012) to be valid also.

Elliott and Stock (2001) discuss it and refine it, using the Elliott, Rothenberg and Stock (1996)

unit-root test. In this setting, the least rejected parameter θ∗ may constitute a biased estimator of θ

but median-unbiased estimation is feasible under the weak convergence assumption, provided that

the quantile function is monotonic (Stock, 1991, Andrews, 1993, 1994). When τ is a continuously-

updated GMM statistic, θ∗ can be seen as the continuously updated estimator (see Stock, Wright

and Yogo, 2002) and it inherits its properties.

Here we conduct inference under the null

H0 : (φ, λ) = (φ0, λ0) .

Since yt − EH0
[ρT ] yt−1 = (ρt − EH0

[ρT ]) yt−1 + ηt ≡ vt, we use the moment condition:

Cov (yt − EH0 [ρT ] yt−1, yt−1) =
H0

0

The test we choose for simplicity follows the pseudo Dickey-Fuller autoregression

yt − EH0 [ρT ] yt−1 = βyt−1 + ηt (14)

and we set τθ,T to be the OLS estimator β̂ scaled by the asymptotic rate given in theorem 3.

Confidence sets are obtained by grid search over all possible values of (φ, λ) . The parameter σ2
η is

a scaling that does not affect the asymptotic distribution of β̂ so we may fix it to unity. Also, α is

not identified using the method above so we fix it also, to 1/2 in the empirical application.

Alternative test statistics have been proposed in the literature: the locally best invariant

Lagrange-Multiplier test of Leybourne et al. (1996) which was modified by Distaso (2008) was

shown in its original version not to be consistent under the unit root hypothesis against explosive

alternatives (see Nagakura, 2009) so we do not use it although we have not analyzed its modified
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version. Also, Aue and Horvath (2011) propose a Quasi-Maximum Likelihood Estimator that is

consistent for (E [ρt] ,V [ρt]) conditional on knowing σ2
η. Since β̂ above is scale invariant, the latter

seems preferable to us. Also Hwang and Basawara suggest a weighted least-squares estimator of

E [ρt] that is consistent (and asymptotically equivalent to the QMLE of Nicholls and Quinn, 1982).

Yet, a test based on this estimator requires estimating V [ρt] and σ2
η in a first-step. Estimators

thereof where suggested by Schick (1996), under the assumption of covariance stationarity but the

properties of these when yt is explosive are not established. Also, in the context of near-integrated

AR(1) models, Jansson and Moreira (2006) recommend a Likelihood Ratio test, see also Müller

(2011).

4.2 Evaluation

4.2.1 Power

The τθ,T statistic from the pseudo Dickey-Fuller regression was chosen above for its simplicity,

but it may not be the most efficient. A significant issue here concerns the powers of the test. In

the spirit of PWY, it may seem natural to perform a one-sided right-tail test for H0 since the

alternative we consider is that of bubbles. Yet, as the sign of parameter λ is not identified – so

we have assumed it positive – the right-tail test holds very little power to reject λ0 = 0 under the

alternative that λ 6= 0. By contrast a two-sided test is much more powerful.

To assess the power of the inference technique that we propose, figures 3,2 and 4 report, for a

given value of E [ρt] = ρ, the asymptotic rejection probabilities of the null H0 : (φ, λ) = (Tα log ρ, 0)

at the nominal size of 10% under the alternative (φ, λ) which preserves E [ρt] = ρ (this is indexed

by λ). Each figure considers a different value of α ∈ {1/4, 1/2, 3/4} .
Starting with figure 2 where α = 1/2, we see that our method of inference only rejects the null

of a non-stochastic root with a high probability when λ is large or φ + λ2/2 > 0, i.e. E[ρt] > 1.

Highest power is achieved when λ is large, close to unity with φ close to zero, i.e. when the source

of explosiveness is stochastic, not deterministic. Notice that as φ + λ2/2 increases, the rejection

probabilities converge to values in the range 0.40-0.50. This confirms the analysis by Evans (1991)

that stochastic bubbles, being non-permanent by nature, can be difficult to detect even when their

magnitude is large.

Now figure 3 considers the case where α = 1/4, which we have shown in the simulations of

section 2 to generate more explosive patterns. Correspondingly, the proposed technique is even

more capable of rejecting the incorrect null of a nonstochastic autoregressive coefficient when the

autoregressive root is close to unity, i.e. φ + λ2/2 ≈ 0. Yet, rejection probabilities remain low for

φ + λ2/2 ≤ 0 and stabilize at around 0.50 when φ + λ2/2 > 0. Finally, figure 4 presents the case

where α = 3/4 and we then see that the power is very low at all values, unless λ is large. This

shows that for large values of α, the resulting dynamics may not differ significantly enough from

an AR(1).
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Figure 2: Rejection probabilities at the nominal size of 5% corresponding to the null H0 : (φ, λ) =

(φ0, 0) under the alternative that the process follows a random coefficient autoregressive model

with E[ρt] = exp (φ0T
−α). The value of α = 0.50.
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Figure 3: Rejection probabilities at the nominal size of 5% corresponding to the null H0 : (φ, λ) =

(φ0, 0) under the alternative that the process follows a random coefficient autoregressive model

with E[ρt] = exp (φ0T
−α). The value of α = 0.25.
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−α). The value of α = 0.75.
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4.2.2 Monte Carlo: finite samples

We now provide a short evaluation of the finite sample probability coverage of confidence intervals.

Contrary to the issue of power in the previous section, Monte Carlo simulations show that the

two-sided intervals have very poor probability coverage but that one-sided intervals against an

explosive alternative perform reasonably. Table 1 reports the simulated finite sample (T = 300)

coverage probability of 95% confidence intervals constructed using the asymptotic distribution

under α = 1/2. The table shows that the asymptotic distribution is only correct for negative φ

and λ is large (above unity). When φ ≤ 0, and λ is low, the confidence sets are too narrow.

When φ > 0, the test is liberal and the confidence intervals too wide when λ is low; the test is

conservative and the intervals too narrow (even empty) when λ is large. Unreported simulations

show that confidence intervals at a lower nominal probability behave accordingly.

The method of asymptotic inference that was introduced by Stock (1991) was modified by

Hansen (1999) who recommend the use of a so called grid bootstrap. Such bootstrap aims at

replacing the use of the asymptotic distribution (13) by the finite-sample bootstrap distribution

whose critical values can be obtained by repetitive sampling from the empirical distribution of the

errors vt ≡ yt−EH0 [ρT ] yt−1 (which are observed under H0). Given the possible strong dependence

in yt, it is important to correct the standard bootstrap. We used for this purpose the Maximum

Entropy bootstrap (see Vinod, 2006) which is known to perform well in the presence of strong

dependence.

Noticing that

vt =

[
λ

Tα/2
ut +

λ2

2Tα
(
u2t − 1

)
+Op

(
T−2α

)]
yt−1 + ηt

is asymptotically serially uncorrelated, it appears possibly sufficient to use a boostrapping technique

that is immune to heteroskedasticity, such as the wild bootstrap. The lower rows of table 1 show

that when φ ≥ 1, the bootstraped confidence intervals are better when λ is large. So we use it also

in the empirical applications.

5 Application to Housing Prices

We follow Campbell and Shiller (1987) in assuming that the cash flow Dt is integrated of order 1,

and, for simplicity, that it follows a random walk Dt = Dt−1 + ζt, with ζt white noise. We also

assume that Rt is i.i.d. stationary and independent of Dt. This implies that, Ft = 1
RDt where

R < ∞ satisfies (1 +R)
−1

= E
[
(1 +Rt)

−1
]
. Under the simplifying assumption that the ex-post

return rt+1 = Pt+1+Dt+1

Pt
− 1 is constant and equal to R, the present-value relation (1) then admits

the solution (with minimal number of state variables, see McCallum, 1983)

∆Pt = (1 + (1− δ)R+ δRt) ∆Pt−1 − ζt (15)

for some δ ∈ [0, 1] (see derivation in the appendix). Bubbles occur when (1− δ)R+ δRt > 0.

We apply our methodology to the seasonally adjusted monthly Case-Shiller housing market

price index maintained by Standard and Poor’s (288 observations). The series is presented figure

5: the price exhibits sustained growth over the 1987-2005 period followed by a sharp collapse. The
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Finite Sample probability coverage for a nominal 95% Confidence Interval

λ = 0 0.1 0.2 0.3 0.5 1 1.5 2

Asymptotic Distibution

φ = -0.2 0.97 0.97 0.98 0.96 0.93 0.97 0.98 0.98

-0.1 0.94 0.94 0.92 0.90 0.93 0.97 0.97 0.98

0 0.94 0.79 0.84 0.89 0.92 0.95 0.95 0.95

0.1 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

0.2 0.99 1.00 1.00 1.00 1.00 0.00 0.00 0.00

0.3 0.98 1.00 1.00 1.00 1.00 1.00 0.00 0.00

0.4 0.96 1.00 1.00 1.00 1.00 1.00 0.00 0.00

Standard Bootstrap

φ = -0.2 1.00 1.00 1.00 1.00 0.93 0.98 0.98 0.98

-0.1 1.00 1.00 1.00 1.00 0.93 0.97 0.98 0.98

0 1.00 0.99 0.98 0.96 0.95 0.96 0.97 0.98

0.1 1.00 1.00 1.00 1.00 1.00 0.95 0.96 0.97

0.2 1.00 1.00 1.00 1.00 1.00 0.95 0.96 0.98

0.3 1.00 1.00 1.00 1.00 1.00 0.94 0.96 0.97

0.4 1.00 1.00 1.00 1.00 1.00 0.93 0.96 0.96

Normal Wild Bootstrap

φ = -0.2 1.00 1.00 1.00 1.00 0.93 0.97 0.98 0.98

-0.1 1.00 1.00 1.00 1.00 0.94 0.97 0.98 0.98

0 1.00 0.99 0.97 0.97 0.96 0.97 0.97 0.98

0.1 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.98

0.2 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.97

0.3 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.97

0.4 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97

Maximum Entropy Bootstrap

φ = -0.2 1.00 1.00 1.00 1.00 0.93 0.99 0.98 0.98

-0.1 1.00 1.00 1.00 1.00 0.94 0.97 0.98 0.98

0 1.00 1.00 1.00 0.99 0.97 0.96 0.97 0.98

0.1 1.00 1.00 1.00 1.00 1.00 0.96 0.97 0.98

0.2 1.00 1.00 1.00 1.00 1.00 0.94 0.96 0.97

0.3 1.00 1.00 1.00 1.00 1.00 0.94 0.96 0.96

0.4 1.00 1.00 1.00 1.00 1.00 0.94 0.95 0.96

Table 1: Simulated Finite Sample Probability Coverage of one-sided confidence intervals at an

asymptotic nominal probability of 0.95, together without distributions obtained using the standard,

Gaussian wild, and Maximum Entropy bootstraps. The simulated sample size is T = 300 with

α = 1/2.
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Figure 5: The seasonally adjsuted monthly Case-Shiller Housing price index for the United-States

(Pt) and its first-order difference ∆Pt.

figure shows that the difference in prices seem to exhibit patterns similar to those that arise under

model (6)-(9). RCAR models such as (6) have also been used in the literature for the price level or

log price of an asset, see e.g. Leybourne, McCabe and Mills (1996), Gonzalo and Lee (1998). Yet,

we believe that because the model does not preclude negative values of the process, it is better

suited for differences, since differencing an explosive process does not remove the explosive root.

The model is applied to the solution to the present value model, expression (15), using the

expansion presented in (10). To construct confidence sets, we perform grid searches using uniform

draws of the parameters φ ∈ (−1, 1) and λ ∈ (0, 1) , setting α = 1/2.3

Figure 6 record parameter draws which were not rejected using the asymptotic distribution

under the null. These parameter values were concentrated around the value φ = 0, which we showed

to exhibit maximum asymptotic power. Corresponding statistics are presented in table 5. The least

rejected parameter combination yields for an explosive root E [ρt] = 1.07 with (φ, λ) = (0.016, 1.58)

so c = φ + λ2 >> 0. Yet the null that the process follows a pure random walk is only rejected at

the 0.12 significance level.

3The reported results in this preliminary version of the paper still use too few parameter draws, namely 1000).
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Figure 6: The figure reports parameter combinations which are not rejected at the .9, .8 and .6

probabilities according to the asymptotic distribution ot the OLS estimator β̂ in expression (14).
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Least Rejected Confidence Interval
Test

(φ, λ) = (0, 0)

ρ̂ [pvalue] (φ, λ)
∗

0.90 0.80 0.60 pvalue

Asymptotic 0.972 [0.738]
(−0.016, 1.58)

E [ρ∗t ] = 1.076

λ : [0, 1.58]

φ : [−0.016, 0.085]

λ : [0.11, 1.58]

φ : [−0.016, 0.085]

λ : [0.58, 1.58]

φ : [−0.016, 0.020]
0.112

Bootstrap

Wild bootstrap 0.972 [0.99]
(−0.93, 1.06)

E [ρ∗t ] = 0.978

λ : [−0.040, 1.41]

φ : [−1.00, 0.085]

λ : [−0.035, 1.37]

φ : [−1.00, 0.00]

λ : [−0.028, 1.22]

φ : [−0.98,−0.077]
0.246

Max. Entropy 0.972 [0.42]
(−0.99, 0.026)

E [ρ∗t ] = 0.943

λ : [0, 0.51]

φ : [−1.00,−0.80]

λ : [0, 0.51]

φ : [−1.00,−0.88]

λ : [0.026, 0.026]

φ : [−0.99,−0.99]
0.000

Table 2: The table reports statistics regarding inference on the dynamics of house prices. pvalues were computed under the null of the least rejected

parameter values.
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Figures 7 and 8 together with the lower part of table 5 present the inference results under

the wild (standard normal) bootstrap and the maximum entropy bootstrap of Vinod (2006). The

confidence sets under the bootstrap and Maximum entropy methods are much different from the

asymptotic, in that they are much wider and centered on negative values of φ. According to the

Wild bootstrap, most values such that E[ρt] ≤ 0 cannot be rejected. The maximum entropy

bootstrap by contrast yields confidence sets which cover only very negative values of φ.

Conclusion

The paper aims also to provide an empirical application to validate the model of local-asymptotic

RCAR and show its applicability. On a theoretical side, it seems important to relax the assumption

that ut is i.i.d. since the latter is unlikely to hold in practice. Some persistence in the stochastic

discount factor is indeed expected.

The empirical application we present here needs to be assessed further. In particular, it seems

important to assess the properties of the bootstrap techniques. In turn, inference about the

parameters (φ, λ) will allow to draw conclusions about the probabilities that bubbles appear or

terminate.
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Figure 7: The figure reports parameter combinations which are not rejected at the .9, .8 and

.6 probabilities according to the distribution ot the OLS estimator β̂ in expression (14). The

distribution of β̂ was computed using the wild Bootstrap with standard normal weights.
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Figure 8: The figure reports parameter combinations which are not rejected at the .9, .8 and .6

probabilities according to the asymptotic distribution ot the OLS estimator β̂ in expression (14).

The distribution of β̂ was tabulated using the Maximum Entropy bootstrap of Vinod (2006).
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Appendix

Proof of Proposition 1

We write, given y0, and setting
∏−1
j=0 ρj := 1

yt =

t−1∏
j=0

ρt−j

 y0 +

t−1∑
i=0

i−1∏
j=0

ρt−j

 ηt−i

=

(
t∏
i=1

ρi

)
y0 +

t∑
i=1

 t∏
j=i+1

ρj

 ηi

= exp

{
tT−α/2φ+ λSt

Tα/2

}
y0 +

t∑
i=1

exp

{
(t− i)T−α/2φ+ λ(St − Si)

Tα/2

}
ηi.

We evaluate the increment yt−y0 using the blocking method as in Phillips and Magdalinos (2005).

Setting, for t = 1 to T , t = [jTα] + k ([x] denoting the integer part of x) for j = 0, · · · , [T 1−α]− 1,
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and k = 1, · · · , [Tα], and letting k = [pTα] for some p ∈ [0, 1], we can write

1

Tα/2
(y[jTα]+[pTα] − y0) =

1

Tα/2

(
exp

{
[jTα] + [pTα]

Tα
φ+ λ

S[jTα]+[pTα]

Tα/2

}
− 1

)
y0 +

σ

[jTα]+[pTα]∑
i=1

exp

{
[jTα] + [pTα]− i

Tα
φ+ λ

S[jTα]+[pTα] − Si
Tα/2

}
ηi√
σ2Tα

=
1

Tα/2

(
exp

{
[jTα] + [pTα]

Tα
φ+ λ

S[jTα]+[pTα]

Tα/2

}
− 1

)
y0 +

σ

∫ j+p

0

exp

{
[jTα] + [pTα]− [sTα]

Tα
φ+ λ

S[jTα]+[pTα] − S[sTα]

Tα/2

}
dBTα(s)

using Proposition A1 in Phillips and Magdalinos (2004) in the last equality, where BTα(s) :=

1

σTα/2

[sTα]∑
i=1

ηi.

When applying the FCLT to S̃T (s) :=
S[sTα]√
Tα

(0 ≤ s ≤ 1), we obtain that the process
(
S̃T

)
converges in distribution, as T →∞, to a BM on [0, 1] that we denote by W .

By the same theorem, we can also say that the process (BTα) defined above converges in

distribution , as T → ∞, to a BM on [0, 1] that we denote by B and which is independent of W

by assumption on the sequences (ui) and (ηj).

Then we can deduce (using e.g. Th.8.3.1 in Liptser and Shiryaev, 1989) that∫ j+p

0

exp

{
[jTα] + [pTα]− [sTα]

Tα
φ+ λ

S[jTα]+[pTα] − S[sTα]

Tα/2

}
dBTα(s)

converges, as T →∞, to∫ r

0

exp {(r − s)φ+ λ (Wr −Ws)} dBs, with r = j + p.

This last integral can be written as

erφ+λWr

∫ r

0

XsdYs where Xs = e−λWs and dYs = e−sφdBs.

The covariation process of two independent BM being identically 0 (see e.g. Klebaner, 2005,, th

4.19), the stochastic integration by parts reduces to the usual integration by parts formula and

provides

erφ+λWr

∫ r

0

XsdYs =

∫ r

0

e(r−s)φdBs − erφ+λWr

∫ r

0

YsdXs = Jφ(r)− erφ+λWr

∫ r

0

YsdXs (16)

where Jφ(r) =
∫ r
0
e(r−s)φdBs which corresponds to the limit obtained in Phillips and Magdalinos

(2005).

Since Xs satisfies the SDE dXs = λ2

2 Xsds− λXsdWs, the second term on the RHS of (16) can be

written as

erφ+λWr

(
λ2

2

∫ r

0

XsYsds− λ
∫ r

0

XsYsdWs

)
(17)

with Ys =

∫ s

0

e−uφdBu = e−sφBs + φ

∫ s

0

e−uφBudu.
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Proof of Thoerem 2

5.0.3 Proposition

We first prove the following:We use the notation Syy =
∑T
t=1 y

2
t , Syη =

∑T
t=1 yt−1ηt and Syyu =∑T

t=1 y
2
t−1ut.

Proposition 4 Let the process (yt) be defined as in (6)-(9) for t ≥ 0, with y0 = 0. As T → ∞
and for x ∈ {yy, yη, yyu}

σ−2η φTxSx ⇒ Ux

where (φT , Ux) are defined as follows

φyyT φyηT φyyuT

c < 0
√
−2cT−1−α

√
−2cT−

1+α
2

2√
3
cT−

1+2α
2

c = 0 2
(
φ− λ2

)
T−(1+α)

√
2 (φ− λ2)T−

1+α
2 2

√
φ+ 2λ2e−2λ

2T 1−α
T−

3α
2

c > 0

λ2 < φ 4
(
φ2 − λ4

)
e−2cT

1−α
T−2α 2

√
φ2 − λ4e−cT 1−α

T−α 4
(
φ− λ2

)√
φ+ 2λ2e−(c+λ2)T 1−α

T−
1+2α

2

λ2 = φ 2
(
φ+ λ2

)
e−2cT

1−α
T−(1+α)

√
2 (φ+ λ2)e−cT

1−α
T−

1+α
2 2

√
φ+ 2λ2e−(c+λ2)T 1−α

T−
1+2α

2

λ2 > φ 4
(
λ4 − φ2

)
e−4λ

2T 1−α
T−2α 2

√
λ4 − φ2e−2λ2T 1−α

T−α 4
(
λ2 − φ

)√
φ+ 2λ2e−(4λ2−φ)T 1−α

T−3α/2

and

Uyy Uyη Uyyu

c < 0 1 N (0, 1) N (0, 1)

c = 0 X2Z XY X2V

c > 0

λ2 < φ X2Z XY X2V

λ2 = φ X∗2Z X∗Y X∗2V

λ2 > φ X∗2Z X∗Y X∗2V

Proof.

Recall that c = φ+ λ2.

• Case c < 0

From Proposition 1, we have

T−α/2y[nαr] ⇒ Kφ,λ (r) ∼ N

(
0,
e2cr − 1

2c
σ2
η

)
Let us introduce K∗φ,λ (r) = ecrK∗φ,λ (0) +Kφ,λ (r) with K∗φ,λ (0) ∼ N

(
0,

σ2
η

−2c

)
,

so K∗φ,λ (r) ∼ N
(

0,−σ
2
η

2c

)
and is stationary.

Then

T−(1+α)
T∑
t=1

y2t ⇒ −
σ2
η

2c

T−
1+α
2

T∑
t=1

yt−1ηt ⇒ N

(
0,−

σ4
η

2c

)
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The result concerning
∑T
t=1 y

2
t−1ut similary follows from the martingale ξt = T−

1+2α
2 y2t−1ut

which admits conditional variance
∑T
t=1 Et−1

(
ξ2t
)

= T−(1+2α)
∑T
t=1 y

4
t−1 ⇒

3σ4
η

4c2 . A Lindberg

condition ensures then that

T−
1+2α

2

T∑
t=1

y2t−1ut ⇒ N

(
0,

3σ4
η

4c2

)

• Case c ≥ 0

. Assume λ2 < φ.

Note that under this assumption, X =
∫∞
0
e−φs−λWsdBs is well defined.

To cover both cases c > 0 and c = 0 given in Proposition 2, we introduce

φn1−α =

 ecn
1−α
√
2c

, c > 0

n
1−α
2 c = 0

The proof follows the main steps given in Phillips & Magdalinos (2004); hence we keep their

notation, namely set T = n and let κn = nα
[
n1−α

]
and q = n1−α −

[
n1−α

]
; we also assume

w.l.o.g. ση = 1.

– First let us consider the sample variance. of yt. We can write

1

n2α

n∑
t=1

y2t =
1

n2α

[n1−α]−1∑
j=0

[nα]∑
k=1

y2[nαj]+k +
1

n2α

n∑
t=[κn]

y2t +Op
(
n−α

)
= U1n + U2n +Op

(
n−α

)
On one hand, we have

U2n =

∫ q

0

(
1

nα/2
y[κn]+[nαp]

)2

dp+Op
(
n−2α

)
where

n−α/2y[κn]+[nαp] ⇒
∫ [n1−α]+p

0

e
φ([n1−α]+p−s)+λ

(
W[n1−α]+p−Ws

)
dBs

then

U2n =

∫ q

0

e
2
(
φ([n1−α]+p)+λW[n1−α]+p

)(∫ [n1−α]+p

0

e−φs−λWsdBs

)2

dp+ op (1)

=

(∫ [n1−α]+q

0

e−φs−λWsdBs

)2 ∫ q

0

e
2
(
φ([n1−α]+p)+λW[n1−α]+p

)
dp+ op (1)

=

(∫ [n1−α]+q

0

e−φs−λWsdBs

)2(∫ [n1−α]+q

0

e2(φs+λWs)ds−
∫ [n1−α]

0

e2(φs+λWs)ds

)
dp.

Let ψ2
n such that ψ2

n1−α := E
[∫ q

0
e
2φ([n1−α]+p)+2λW[n1−α]+pdp

]
= e2c[n

1−α] e2cq−1
2c , hence

e−2c[n
1−α]ψ2

n1−α →

{
e2cq−1

2c c > 0

q c = 0

and ψ2
n1−α ∼ φ2n1−α − φ2[n1−α]
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It follows that

φ−2[n1−α]U2n ⇒

{
X2 (Z − Z∗) e

2cq−1
2c c > 0

X2 (Z − Z∗) q c = 0

where Z is defined by

φ−2n1−α

∫ q

0

e
2
(
φ([n1−α]+p)+λW[n1−α]+p

)
⇒ Z s.t. E [Z] = 1.

On the other hand, we have

φ−2[n1−α]U1n = φ−2[n1−α]

∫ [n1−α]

0

(
n−α/2y[nαr]

)2
dr + op (1)

= φ−2[n1−α]

∫ [n1−α]

0

e2(φr+λWr)

(∫ r

0

e−φs−λWsdBs

)2

dr + op (1)

=

(∫ [n1−α]

0

e−φs−λWsdBs

)2

φ−2[n1−α]

∫ [n1−α]

0

e2(φr+λWr)dr + op (1)

(18)

Let us prove this last equation.

yt =

t−1∑
i=0

exp

 φ

nα
i+

λ

nα/2

t∑
j=t−i+1

uj

 ηt−i

=

t∑
i=1

exp

(
φ

nα
(t− i) +

λ

nα/2
(Ut − Ui)

)
ηi

y2t =

t∑
i=1

exp

(
2
φ

nα
(t− i) + 2

λ

nα/2
(Ut − Ui)

)
η2i

+ 2

t∑
i=1

t∑
j=i+1

exp

(
φ

nα
(t− i+ t− j) +

λ

nα/2
(2Ut − Ui − Uj)

)
ηiηj

= exp

(
2φ

nα
t+

2λ

nα/2
Ut

) t∑
i=1

exp

{
−2

(
φ

nα
i+

λ

nα/2
Ui

)}
η2i

= exp

(
2φ

nα
t+

2λ

nα/2
Ut

)[ t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
and

t∑
k=1

y2k =

t∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)[ k∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2

=

(
t∑

k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

))[ t∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi

]2
+Rt

where Rt = −
∑t−1
k=1 exp

(
2φ
nα k + 2λ

nα/2
Uk

) [∑t
i=k+1 exp

(
− φ
nα i−

λ
nα/2

Ui

)
ηi

]2
can be

shown to be negligible.
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Therefore

U1n =
1

n2α

[n1−α]−1∑
j=0

[nα]∑
k=1

y2[nαj]+k

=

n−α [nα[n1−α]]∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

)
 1

nα/2

[nα[n1−α]]∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi


2

+R[nα[n1−α]]

where

1

nα/2

[nα[n1−α]]∑
i=1

exp

(
− φ

nα
i− λ

nα/2
Ui

)
ηi =

∫ [n1−α]

0

e−φn
αs−λW (nαs)dBnα (s) + op (1)

⇒
∫ ∞
0

e−φs−λW (s)dB (s)n−α [nα[n1−α]]∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

) =

∫ [n1−α]

0

e2φs+2λW (s)ds+ op (1)

φ−1[n1−α]

n−α [nα[T 1−α]]∑
k=1

exp

(
2φ

nα
k +

2λ

nα/2
Uk

) = φ−1nα[n1−α]

∫ [n1−α]

0

exp

(
2φ

nα
[kna] +

2λ

nα/2
U[kna]

)
dk

with

E

(∫ [n1−α]
0 exp

(
2φ
nα [kna] + 2λ

nα/2
U[kna]

)
dk

)
= φ−1[n1−α]

∫ [n1−α]
0 exp

(
2c [kn

a]
nα

)
dk → 1.

Hence the result (18).

Now, combining the results for U2n and U1n and noticing that

φ−1[n1−α]

∫ [n1−α]

0

e2(φr+λWr)dr ⇒ Z∗

provides

φ−2n1−α

n2α

n∑
t=1

y2t ⇒ X2Z

– Let us look now at the covariance terms.

Let (
ecn

1−α

c

)−1
Yn1−α = ce−cn

1−α
∫ n1−α

0

eφr+λWrdBr ⇒ Y ∼ N (0, 1)

then

φ−1n1−α

nα

n∑
t=1

yt−1ηt =

(∫ n1−α

0

e−(φs+λWs)dBs

)
φ−1n1−α

(∫ n1−α

0

eφr+λWrdBr

)
+ op (1)

⇒ XY

31



Let us check the convergence of
φ−2

n1−α
nα

∑n
t=1 y

2
t−1ut where

T−1∑
t=0

y2t ut+1

=

T−1∑
t=0

exp

(
2φ

Tα
t+

2λ

Tα/2
Ut

)[ t∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2
(Ut+1 − Ut)

=

(
T−1∑
k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)
(Uk+1 − Uk)

)[
T∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2
+R∗t (19)

The latter summation in the previous expression was defined previously. We focus on

the stochastic integral. Again, we must use a Lindberg Condition, this time regarding

ζk+1 =

(
Tα/2

e2(φ+2λ2)n1−α

2
√
φ+ 2λ2

)−1
exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)
(Uk+1 − Uk)

with

T−α

(
e4(φ+2λ2)n1−α

4 (φ+ 2λ2)

)−1∑
k

E
[
ζ2k+1|Ik

]
= T−α

(
e4(φ+2λ2)n1−α

4 (φ+ 2λ2)

)−1∑
k

exp

(
4φ

Tα
k +

4λ

Tα/2
Uk

)
We have

T−1∑
k=1

exp
(

2φ
Tα k + 2λ

Tα/2
Uk

)
e2(φ+2λ2)T1−α

2
√
φ+2λ2

Uk+1 − Uk
Tα/2

= 2
√
φ+ 2λ2e−2(φ+2λ2)T 1−α

∫ T 1−α

0

e2(φr+λWr)dWr+op (1)

so

2
√
φ+ 2λ2e−2(φ+2λ2)T 1−α

T 3α/2

T∑
t=1

y2t−1ut =

(∫ T 1−α

0

e−(φs+λWs)dBs

)2 ∫ T 1−α

0
e2(φr+λWr)dWr√

e4(φ+2λ2)T1−α−1
4(φ+2λ2)

+op (1)

and

2
√
φ+ 2λ2e−2(φ+2λ2)T 1−α

T 3α/2

T∑
t=1

y2t−1ut ⇒ X2V

and if φ+ 2λ2 = 0, then T−
1+2α

2

∑T
t=1 y

2
t−1ut ⇒ X2V .

. Assume λ2 ≥ φ.

The main difference is that, now,
∫ n1−α

0
e−(φs+λWs)dBs diverges as n → ∞. Since it is

normally distributed, we only need to scale it by it standard deviation. It comes∫ n1−α

0
e−(φs+λWs)dBs√∫ n1−α

0
E
[
e−2(φs+λWs)

]
ds

=

∫ n1−α

0
e−(φs+λWs)dBs√∫ n1−α

0
e2(−φ+λ2)sds

=

∫ n1−α

0
e−(φs+λWs)dBs√

e2(−φ+λ
2)n1−α−1

2(−φ+λ2) σ2
η

so

ifφ+ λ2 > 0 : X∗n1−α = e−(−φ+λ2)n1−α
∫ n1−α

0

e−(φs+λWs)dBs ⇒ X∗ ∼ N

(
0,

σ2
η

2 (−φ+ λ2)

)

ifφ+ λ2 = 0 : X∗n1−α = n−
1−α
2

∫ n1−α

0

e−(φs+λWs)dBs ⇒ X∗ ∼ N
(
0, σ2

η

)
Hence the result of the proposition.
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Proof of Theorem 3

Theorem 3 will be directly deduced from the results obtained in Proposition 4.

• Case c < 0

Since we have, as T →∞,

yt =
(
E (ρt) + λT−α/2ut +Op

(
T−α

))
yt−1 + ηt

and noticing that
∑T
t=1 y

2
t−1ut is asymptotically uncorrelated with

∑T
t=1 yt−1ηt,

then the OLS estimator given by ρ̂ =
∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

satisfies

ρ̂− E (ρt) = λT−α/2
∑
t y

2
t−1ut∑

t y
2
t−1

+

∑
t yt−1ηt∑
t y

2
t−1

= λ
T−1−αT−

1+2α
2

∑
t y

2
t−1ut

T−
1+α
2 T−1−α

∑
t y

2
t−1

+
T−1−αT−

1+α
2

∑
t yt−1ηt

T−
1+α
2 T−1−α

∑
t y

2
t−1

from which we deduce, using Proposition 2,

T
1+α
2 (ρ̂− E (ρt)) = λ

T−
1+2α

2

∑
t y

2
t−1ut

T−1−α
∑
t y

2
t−1

+
T−

1+α
2

∑
t yt−1ηt

T−1−α
∑
t y

2
t−1

⇒ N
(
0, 3λ2 − 2c

)
When ut is observed, we can use the result T

1+α
2 (ρ̂− ρt)⇒ N (0,−2c).

• Case c = 0

The convergence of the OLS estimator as T →∞ comes from the following convergences.√
2 (φ− λ2)T−

1+α
2

∑T
t=1 yt−1ηt

2 (φ− λ2)T−(1+α)
∑T
t=1 y

2
t

=
T

1+α
2√

2 (φ− λ2)

∑T
t=1 yt−1ηt∑T
t=1 y

2
t

⇒ Y

XZ√
2 (φ− λ2)T−

1+α
2

∑T
t=1 yt−1ηt

4 (φ− λ2)
√

(φ+ 3λ2) (φ+ 2λ2)e−2λ2T 1−αT−(1+α)
∑T
t=1 y

2
t

=

e2λ
2T 1−α

T
1+α
2√

2 (φ− λ2)
√

(φ+ 3λ2) (φ+ 2λ2)

∑T
t=1 yt−1ηt∑T
t=1 y

2
t

⇒ Y

XZ∗

4(φ−λ2)
√
φ+2λ2e

−(φ+2λ2)T1−α

T 3α/2

∑T
t=1 y

2
t−1ut

2 (φ− λ2)T−(1+α)
∑T
t=1 y

2
t

= 2
√
φ+ 2λ2e−λ

2T 1−α
T (1−α/2)

∑T
t=1 y

2
t−1ut∑T

t=1 y
2
t

⇒ V

Z

4(φ−λ2)
√
φ+2λ2e

−(φ+2λ2)T1−α

T 3α/2

∑T
t=1 y

2
t−1ut

4 (φ− λ2)
√

(φ+ 3λ2) (φ+ 2λ2)e−2λ2T 1−αT−(1+α)
∑T
t=1 y

2
t

=
T 1−α/2eλ

2T 1−α√
(φ+ 3λ2)

∑T
t=1 y

2
t−1ut∑T

t=1 y
2
t

⇒ V

Z∗

• Case c > 0

– If λ2 < φ

2
√
φ2−λ4e

−(φ+λ2)T1−α

Tα

∑
t yt−1ηt

4(φ2−λ4)e−2(φ+λ2)T1−α

T 2α

∑
t y

2
t−1

=
Tαe(φ+λ

2)T 1−α

2
√
φ2 − λ4

∑
t yt−1ηt∑
t y

2
t−1

⇒ Y

XZ

2
√
φ2−λ4e

−(φ+λ2)T1−α

Tα

∑
t yt−1ηt

4(φ−λ2)
√

(φ+3λ2)(φ+2λ2)e−2(φ+2λ2)T1−α

T 2α

∑
t y

2
t−1

=
Tαe(φ+3λ2)T 1−α

2
√
φ2 − λ4

√
(φ+ 3λ2) (φ+ 2λ2)

∑
t yt−1ηt∑
t y

2
t−1

⇒ Y

X

1

Z∗
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and

4(φ−λ2)
√
φ+2λ2e

−(φ+2λ2)T1−α

T 3α/2

∑T
t=1 y

2
t−1ut

4(φ2−λ4)e−2(φ+λ2)T1−α

T 2α

∑
t y

2
t−1

=

√
φ+ 2λ2Tα/2eφT

1−α

(φ+ λ2)

∑T
t=1 y

2
t−1ut∑

t y
2
t−1

⇒ V

Z
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√
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T 3α/2
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t=1 y

2
t−1ut

4(φ−λ2)
√

(φ+3λ2)(φ+2λ2)e−2(φ+2λ2)T1−α

T 2α

∑
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2
t−1

=
Tα/2e(φ+2λ2)T 1−α√

(φ+ 3λ2)

∑T
t=1 y

2
t−1ut∑

t y
2
t−1

⇒ V

Z∗

– If λ = φ

√
2(φ+λ2)e

−(φ+λ2)T1−α

T
1+α
2

∑T
t=1 yt−1ηt

2(φ+λ2)e−2(φ+λ2)T1−α

T 1+α

∑T
t=1 y

2
t

=
T

1+α
2 e(φ+λ

2)T 1−α√
2 (φ+ λ2)

∑T
t=1 yt−1ηt∑T
t=1 y

2
t

⇒ Y
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T
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2

∑T
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2
√

(φ+3λ2)(φ+2λ2)e−2(φ+2λ2)T1−α

T 1+α
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2
t

=

√
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1+α
2 e(φ+3λ2)T 1−α√

2 (φ+ 3λ2) (φ+ 2λ2)
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√
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2
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∑T
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2
t

=

√
φ+ 2λ2T 1/2eφT
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(φ+ λ2)

∑T
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2
t−1ut∑T
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2
t
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Z

2
√
φ+2λ2e

−(φ+2λ2)T1−α

T
1+2α

2

∑T
t=1 y

2
t−1ut

2
√

(φ+3λ2)(φ+2λ2)e−2(φ+2λ2)T1−α

T 1+α

∑T
t=1 y

2
t

=
T 1/2e(φ+2λ2)T 1−α√

(φ+ 3λ2)

∑T
t=1 y

2
t−1ut∑T

t=1 y
2
t

⇒ V

Z∗

– If λ2 > φ

2
√
λ4−φ2e−2λ2T1−α

Tα

∑T
t=1 yt−1ηt

4(λ4−φ2)e−4λ2T1−α

T 2α

∑T
t=1 y

2
t

=
Tαe2λ

2T 1−α

2
√
λ4 − φ2

∑T
t=1 yt−1ηt∑T
t=1 y

2
t

⇒ Y

X∗Z

2
√
λ4−φ2e−2λ2T1−α

Tα

∑T
t=1 yt−1ηt

2(λ2−φ)
√

(φ+3λ2)(φ+2λ2)e−6λ2T1−α

T 2α

∑T
t=1 y

2
t

=

√
λ2 + φTαe4λ

2T 1−α√
(φ+ 3λ2) (φ+ 2λ2) (λ2 − φ)

∑T
t=1 yt−1ηt∑T
t=1 y

2
t

⇒ Y

X∗Z∗

4(λ2−φ)
√
φ+2λ2e

−(4λ2−φ)T1−α

T 3α/2

∑T
t=1 y

2
t−1ut

4(λ4−φ2)e−4λ2T1−α

T 2α

∑T
t=1 y

2
t

=

√
φ+ 2λ2Tα/2eφT

1−α

(φ+ λ2)

∑T
t=1 y

2
t−1ut∑T

t=1 y
2
t
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Z

4(λ2−φ)
√
φ+2λ2e

−(4λ2−φ)T1−α

T 3α/2

∑T
t=1 y

2
t−1ut

2(λ2−φ)
√

(φ+3λ2)(φ+2λ2)e−6λ2T1−α

T 2α

∑T
t=1 y

2
t

=
Tα/2e(φ+2λ2)T 1−α

2
√

(φ+ 3λ2)

∑T
t=1 y

2
t−1ut∑T

t=1 y
2
t
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5.1 Present Value Model

Consider the standard definition of an ex-post asset return

rt+1 =
Pt+1 +Dt+1

Pt
− 1
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see e.g. Campbell, Lo and McKinlay (1996, expression (7.1.1)) and assume rt+1 constant and equal

Rc then

Pt =
Pt+1 +Dt+1

1 +Rc

which is compatible with

∆Pt = (1 + (1− δ)R+ δRt) ∆Pt−1 − ζt

where Rt is iid and E
[
(1 +Rt)

−1
]

= (1 +R)
−1
.

Proof:

∆Pt = (1 + (1− δ)R+ δRt) ∆Pt−1 − ζt

implies that

Pt+1 +Dt+1 = Pt + (1 + (1− δ)R+ δRt+1) ∆Pt − ζt+1 +Dt + ζt+1

Pt+1 +Dt+1

1 +Rt+1
=
Pt + (1 + (1− δ)R+ δRt+1) ∆Pt

1 +Rt+1
+

Dt

1 +Rt+1

=
Pt + (1 + (1− δ)R) ∆Pt

1 +Rt+1
+ δ

Rt+1

1 +Rt+1
∆Pt +

Dt

1 +Rt+1

Now, if

Pt = Et
Pt+1 +Dt+1

1 +Rt+1

then

Pt =
Pt + (1 + (1− δ)R) ∆Pt

1 +R
+

Dt

1 +R
+ δEt

[
1 +Rt+1

1 +Rt+1
− 1

1 +Rt+1

]
∆Pt

=
Pt + (1 +R) ∆Pt

1 +R
+

Dt

1 +R

=
Pt +Dt

1 +R
+ ∆Pt

i.e.

Pt−1 =
Pt +Dt

1 +R

qed.

35


