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Abstract:

There are remarkably large differences in the tgnih adoption and intensity of use of new
technologies. What factors determine such diffegsficls it because of higher returns to using the
new technology, or systematic misperceptions alioeit expected returns? We address these
guestions using a unique registry dataset for atgumillion patients with implantable cardiac
defibrillators (ICDs), a medical device that redsitlee risk of sudden cardiac arrest. We develop
a structural model of Bayesian learning that alldarsmisperception of provider skill that can
lead to overly optimistic or pessimistic behavi@riefly, our estimates suggest that for ICDs, the
most rapid adopters were overly optimistic, leadioth to high utilization rates and for these early
innovators pel ow-average returns to the technology. We find that mispeticgpcan explain half

of hospital-level variation in risk-adjusted mottigland nearly three-quarters of the variation in
adoption and use. In addition, the model predimtstectly, that those hospitals exhibiting the
greatest optimism about their own ability are teothat scale back quickest. These results
suggest an important role for misperception (bgshnaistic and pessimistic) in explaining the
wide variation in adoption and use of new techniglegand suggests caution in equating rapid
diffusion to productivity gains.
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|. Introduction

A central question in the productivity literatusewhat explains the enormous variation in
the adoption and use of new technology (Comin andijH, 2004, 2009; Skinner and Staiger,
2015, Comin and Mestieri, 2018). There is no latkaiential explanations for these variations;
Grilliches (1958), for example, emphasized diffeesin the profitability of hybrid-corn adoption,
while Comin and Hobijn (2007) and Caselli and Ca@n{2006) rely on heterogeneity across
agents in the value of the new technology. Non-g&fepmnay also optimally hold back because
they are waiting for the price to decline or arttdyeat the old technology (Jovanovic and Nyarko,
1996), or because they face higher costs from ssiSuri, 2011).

A related literature seeking to explain slow difusinstead as the consequence of poorly
informed agents who lack appropriate educationndormation about potentially profitable
innovations (e.g., Foster and Rosenzweig, 1995jeycmnd Udry, 2010; Rogers, 2010; Skinner
and Staiger, 2007) or time-inconsistency and a tdatommitment devices (Duflo, Kremer, and
Robinson, 2008). All of these papers seek to erphdiy diffusion is so slow despite the clear
economic benefits of adopting new technologies, tamdmplications of this slow diffusion for
productivity growth (Comin and Hobijn, 2010, andraia and Mestieri, 2018).

In this paper, we ask a closely related questiohy\Ate some so quick to adopt a new
technology and using it intensively across a widath of applications? Nearly all of the previous
studies assume that early adopters face greatéitapifity, better information, and superior
relative advantage in the new technology. Howethexrse assumptions have been difficult to test
given that there are rarely direct measures ofrétwern for the specific adopter from using the
technology, and when they are available, it isidiff to differential between contextual factors
(e.g., risk, appropriateness) and others thatrar@sic to the adopter (e.g., skill).

We sidestep these difficulties by using a uniqumiadl registry for implantable
cardioverter defibrillators (ICDs), an expensivednal device that reduces the risk of sudden
cardiac arrest, to measure ex post productivitypfith early and late adopters in treating patients
with congestive heart failure (CHF). This allowsoagstimate a Bayesian learning model in which
adoption and intensity of use for the technologyedtels on adopter productivity. We nest within
this model the possibility that adopters can exhmibgper ception, that they could be either overly
optimistic or pessimistic about the value of thevriechnology, or about their own skill in using

the new technology. The idea of misperception orenspecifically, overconfidence in adoption
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has received attention in fields such as psycholegy., Moore and Healy, 2008), finance and
management (Malmendier and Tate, 2005; BarberCaehn, 2001, Glaser and Weber, 2007,
O’Neill, Pouder; and Buchholtz, 1998), industriaanization (Camerer and Lovallo, 1999), and
in health care (Berner and Graber, 2008; Cutlealef019), but much less attention in the
productivity literature.

Using the Medicare claims data, we find first ttiedt between 2002 and 2005, rates of
ICD use nearly doubled nationally, but with consadide variation in the speed of diffusion; in
some regions rates quadrupled, while in other regithey barely budged; since that time,
however, on average the use of ICDs has scaleddrackatically! As well, we have identified
wide variation in productivity across hospitalstiwR-year risk-adjusted mortality exhibiting a
standard deviation of 0.031 relative to its mear0@18. There has been surprisingly little
evidence of “learning by doing,” with conditionalomality for ICD procedures declining only
slightly, by 0.004, between 2006 and 2013. Finallg,find a positive correlation between the use
of ICDs in patients and risk-adjusted mortalityggesting that patients receiving ICD implants
from the most rapid adopters and users of the tdogg weremore likely to die following the
procedure.

To explain these four empirical facts, we developoptimizing Bayesian framework
where both doctors and patients are heterogeneal$erlth outcomes are uncertain. Patients
differ in the potential benefits from an ICD imptawhile providers differ in their ability in
implanting ICDs. If the providers’ perceptions abtheir skill are unbiased, those with more skill
will, on average, adopt earlier and implant morB$Cwhile those with lower skill level find fewer
patients for which the technology has positive exgtected returns (e.g., Currie and MaclLeod,
2013; Currie, MacLeod, and Van Parys, 2015; Chamach Staiger, 2007). Therefore, in the
absence of biases in perceived skill, the modaliptethat systematic variation in the intensity of
use of ICDs is entirely driven by the doctors’ kkilapplying the technology.

We introduce a new parameter nested in our modelatows for misperception of the
doctors’ own skill; we deem them to be overly opsiic when the provider gets worse outcomes
by going too deeply into the pool of potential pats, and conversely. While our model cannot

1 The “exnovation” or scaling back of use has been found in other surgical procedures during this period; see
Bekelis et al. (2017).



distinguish between the agent’'s over-optimism altbair own skill, or their overly optimistic
view of the ICD’s value relative to other treatmewe can reasonably rule out an alternative
explanation of extrinsic motivation, as in a supplnduced demand model (Chandra et al., 2611).

Our goal is to fit the theoretical model to the @émepl moments of the ICD data. We first
calibrate parameters that are common to all hdsgibamatch aggregate moments related to the
cross-sectional distribution of ICD use and motyaliates. Second, given these common
parameters, we calibrate the level of true andgyeed skills to match observed patterns at the
hospital level for ICD use and mortality. We aldlow physicians to learn over time about their
biases with Bayesian learning about their own sRilkey prediction of the model is that, other
things equal, overly optimistic physicians shoutdls back, with the speed commensurate with
the physician’s prior distribution of her own skdlvel. We also estimate the learning model using
the hospital-level panel with their associatedi@i)i misperception parameters, and test the model
by predicting mortality and utilization out-of-salaghrough 2013.

Briefly, we find that misperception is a key drivarICD use and conditional mortality,
explaining half of the variation in risk-adjusteartality and nearly three-quarters of the variation
in rates of adoption and use. Despite the sintplai the model, it explains roughly 50 percent
of the variation in the annual hospital-level chamg perceived skill. Finally, the out-of-sample
implied ICD use and conditional mortality for 20dfatches the observed variables very closely;
the model predicts the drop in ICD use rate fro2iL(er 100 to 0.14, the declines in the ICD
standard deviation and cross-sectional correlati®ta/een skill and ICD use, and the lack of
improvement in aggregate mortality rates.

In sum, these estimates suggest that systemafereptions are an important reason why
some hospitals experienced such rapid adoptionp#rets were much slower in adopting. Yet
physicians learned from their experience with ti@s/ population of patients; those who were the
most overconfident also scaled back their use Bisi@ost rapidly, leading to a (small) reduction
in the conditional mortality rate. Our findingdfdr from other studies of clinical learning-by-

doing (e.g., Jovanovic and Nyarko, 1995; Gong, 2@ithat we find no empirical evidence that

2 As we discuss in Section 5, in a supplier-inducechand model, some physicians adopt ICDs and owethesn,
despite potential harm to their patients, in otdencrease their income. In this type of modedre is no learning
and scaling back; physicians knew they were harrfieg patients from the outset, and thus wouldehizad little
incentive to scale back.



true skill improved over time. Our results alsdetiffrom earlier analyses of diffusion, in which
early adopters were the “innovators” and slow diéfts “laggards” (Rogers, 2004). This view has
been articulated in health settings by Currie, Ml and Van Parys (2015), who find that the
most aggressive physicians in treating heart attacking stents (according to then-current
standards) gained the best results. Our findimgbeareconciled with theirs by noting that for
heart attacks, the new and then unproven technabgtenting turned owx post to have been
far more advantageous than expected, while theaakedonsensus appears to be that ICDs are
less successful in practice than first envisioriddMurray, 2016). That is, heterogeneity in the
degree of misperception — whether because of gu&msm or over-pessimism — is likely to be
an important explanation for why there is so muahability in the adoption and use of new
technologies.

The rest of the paper is organized as follows. iBe@ describes the technology and
documents its diffusion patterns, while Sectione8alops the model and Section 4 the analysis.
Finally, Section 5 discusses the interpretatiotheffindings, robustness checks and generalization

of our findings to other technologies and sectorthe economy.

2. Implantable Cardioverter Defibrillators (ICDs)

Congestive heart failure (CHF) is a very commamedis especially among elderly people
(Rogers, 2013), with a prevalence of 5.8 millioogle in the U.S., far more common than acute
myocardial infarctions (or heart attacks), withrayalence of about 715,000 annually. While heart
attacks are sudden medical emergencies treatesh(sticcessfully) with a variety of medical
interventions, CHF is a chronic illness whose pesgion can only be slowed by appropriate
medical management (Kolata, 2017). The typicagmss of CHF is from the New York Heart
Association Class | (the least severe) throughlas<IV (the most severe), at which point the
annual mortality rate ranges between 20-50 pei@dnned et al., 2006).

An important risk facing CHF patients is a suddard@ac arrest, which occurs when the
heart suddenly stops functioning, typically becanfsa&rhythmia, or irregular heart rhythm. This
causes rapid and unsynchronized heartbeat, leadliliitye or no blood being pumped from the
heart, and a complete absence of a heartbeat (eys, R014). Implantable cardioverter
defibrillators (ICDs) are small electronic devicst are surgically implanted in the pectoral

region of the chest and connected with wire “leadskey locations of the heart. These leads
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serve two functions. The first is to monitor tigythm and detect tachycardia (irregular or weak
heart beats), and the second is, when necessatypti the heart with a strong electrical current,
effectively “rebooting” the conduction system. (R&p entertainment shows often show
physicians using paddles to administer electribacks? ICDs are internal automated versions.)
Over time ICDs have become more effective and kentdewer complications as the size of the
ICD shrunk, and the sophistication of the compuymergrams designed to detect arrhythmias
improved.

Initially, ICDs were developed in the 1980s and A99or people who had already
experienced and survived a cardiac arrest, and ataisk of experiencing another one. As ICDs
became more compact and reliable, attention tutmétake larger group of people with congestive
heart failure (CHF) at risk of cardiac arrest bitonhad not yet experienced the life-threatening
event; for these patients the ICD is deemed “priaveri A large 2005 randomized trial, SCD-
HeFT, found substantial mortality benefits of ufy toercentage point increases in survival 5 years
after the procedure (Bardy et al., 2005). It is am@nt to note that ICDs provide no other benefit
to patients other than a “reboot” in the case ofdenm cardiac arrest; thus mortality as a measure
of health outcomes is an apposite measure. Soenthé SCD-HeFT trial, ICDs were allowed by
Medicare in the U.S. to be used as a preventivacdefor patients with weakened hearts
(congestive heart failure, or CHF) who had notepgterienced a cardiac arrest, thus expanding
dramatically the population of those eligible f@D0s; thus the “adoption” is for the use of an
existing technology in a new population, rathentadrand-new technology. We use the Medicare
claims data linked to a Centers for Medicare andlibied Services (CMS) clinical registry of
every ICD implanted during 2006-13 with detailedonmation on key clinical variables that
characterize both appropriateness for treatmedtsabsequent risk of mortality.

The SCD-HeFT trial included only the intermediatass Il and Class Ill CHF patients
with low “ejection fractions” or the heart’s abjlito pump blood to the rest of the botd¥he
reason why the trial was limited to only these gvoups was the consensus that for Class | (the

least serious) CHF patients, the risks outweighetérial benefits given the rarity of sudden

3 An example from CSI: New Yorkhttps://www.youtube.com/watch?v=_[JCDrYxK9A

4 As well, the ejection fraction should be 35% aslén patients with Class Il or Il Heart FailurBespite the rarity
of older patients in the randomized trials, thereers guidelines that recommend against the ueél$ on the
basis of age.
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cardiac arrest in this group versus the risks okén leads or infections, while for the more severe
Class IV patients, the heart is so weakened tharnitno longer sustain pumping, no matter how
many times it reboots. For these patients, ICDslead to a series of successive and painful
shocks, sometimes delaying an otherwise peaceffisgeas the ICD continues to go off until the
batteries are drained (Friedrich and Bohm, 20@J¢spite these guidelines, a small fraction of
ICD procedures were done for those with either €law Class IV patients, or for those who had
been diagnosed with CHF only recently, and thu ot yet tried medical management. In our
analysis, we adjust for these different charadiesisbut do not address the more complex problem
of whether higher-quality physicians should be martess likely to follow guidelines.

Finally, to understand the growth and subsequediiateon in the use of ICDs, it is
important to rule out the development of a new medbgy that might have led to a shift away
from ICDs. While during this time, there was gexamphasis on adherence to guideline-directed
drug prescriptions (e.g., Roth et al., 2016), three no new innovation or breakthrough developed

to reduce mortality among CHF patients (Kolata, &1

2.1 Patterns of ICD Diffusion in the M edicar e Population

To first study the evolution of ICD use, we use 108% Medicare claims data for the fee-
for-service over-65 Medicare population to deriegional utilization rates that can then be
assigned to hospitals (as described below). Becafipossible changes over time in coding
standards, we develop measures for all new ICDantptions during 2002-13 (thus excluding
replacement ICDs because of failed batteries arottasons), and not simply those designated or
coded for preventive purposédo measure utilization, we use population-baseesrat the

hospital referral region (HRR) level, of which teere 306 in the U.SThese utilization measures

5 In the context of our model below, it is possitilat higher-skill physicians could still gain goodtcomes even
for out-of-guideline patients. For this reason wendt include “within guideline” as a quality measu During the
period of analysis, CMS cracked down on hospitédlsg for out-of-guideline patients; however, tigeshanges had
no impact on risk-adjusted mortality, which adjustsall characteristics of the patient.

6 Recently a new treatment was developed for mitrble regurgitation; see Kolata (2018).

7 We begin the analysis using the claims data ir22@Men the sample of Part B claims data relevamamalysis is
20% of all fee-for-service enrollees; the sampesito 40% in 2003-05, and becomes 100% theredfeeuse CPT
33249 rather than in-hospital DRG codes to measgigence.

8 HRRs were first developed by the Dartmouth Aflegject in the 1990s to create regions based omibeation
patterns of individuals to their hospitals. Thu’Riboundaries will often follow (e.g.) interstatglways and
6



are based on the residence of the patient; ifidelesof the Memphis HRR received their ICD in
Atlanta, the ICD would be assigned to the MempHRRHather than to Atlanta’s.

Regions may differ in their use of ICDs because gfeater prevalence of disease. For
this reason, we adjusted all HRR-level rates, ohegear, using a linear-probability year-specific
risk adjustment modélWe include as predictors at the individual lewst{year age brackets (and
a category of 85+), sex, race (black, white, ame)t at least one physician visit with a diagnosis
of congestive heart failure, dual eligibility wikhedicaid (an individual indicator of serious illisgs
poverty, or both). At the ZIP code level we inclddeoverty rates and income (from the 2010
Census) and at the county level smoking, obesitgt,habetes based on Behavioral Risk Factor
Surveillance System (BRFSS) data; these lattetthbahavior measures are highly predictive of
regional mortality rates (Wennberg et al., 201Bhe regression estimates, presented in Table A.4
for three selected years (2002, 2006, and 2018icate that individual attributes are important
risk adjusters — particularly the diagnosis of CHBut that the measures of health behaviors are
less important®

In Figure 1, we present risk-adjusted populatioseolarates of ICD use by HRR between
2002-13 for the U.S., and for selected regionshwit emphasis on the regions adopting most
rapidly. Note that between 2002 and 2005, aver@@euse increased from 0.12 per 100 Medicare
enrollees to 0.23, a near doubling of average raiiéis a decline in rates to 0.15 per 1000 by 2013.

Some part of this increase could have been beaHuséstock-flow” issue; the stock of
patients newly eligible for the ICD could have lgadn uptick in utilization for 2006, generating
the increased rates. As we discuss in more degkmy the ICD registry data includes the duration
of the CHF, so we might expect that the duratio@Bi for patients getting an ICD in 2006, for
example, would be longer than for patients in 20T8is hypothesis would imply that a typical
ICD patient would have experienced CHF for a lorgeniod of time in 2006 compared to 2013.

cross state lines. Each HRR includes a majoiatgrtiospital that performs neurosurgery and carslimgery. We
use HRRs rather than the smaller hospital servieasa(HSAS) for better sample precision.

9 We use year-specific risk adjustment regressimesiuse average rates of use vary so much by year.
Alternatively, we could have specified a logistizsprobit over all years, but the computationaluiegments (e.g,
estimating 3500 individual coefficients in a samplanearly % billion observations) would have begnessive.

1'We are probably over-adjusting because more aggesshysicians are likely to both be more likelydiagnose
CHF for “gray area” patients, and prescribe ICDs.



However, if anything the opposite is found; thosthWCHF duration more than 9 months actually
rose during the period, from 72 to 82 percent.

As suggested by Figure 1, there is widespread biityain rates of utilization. Three of
the most rapid adopters were Munster IN (from 0r.2003* to 0.37 in 2006), Mason City IA
(from 0.13 in 2004 to 0.49 in 2007), and Terre Heaii (from 0.12 in 2003 to 0.55 in 2005). By
contrast, many larger metropolitan regions exhibiteich smaller increases, with rates remaining
low (e.g., Seattle, Manhattan, as well as othe¥xguch as Los Angeles not reported in the Figure)
throughout the entire period.

Figure 2 provides a map for the entire U.S. of 2000 utilization rates by HRR. This
figure confirms the geographic disparity in the 0§¢CDs across the entire U.S., with a 10-fold
difference between Victoria, Texas (0.03 in 20@6erre Haute (0.50 in 2008). Finally, we
explore whether the decline in ICD use is driventlhgse hospitals that adopted ICDs more
intensively or those that adopted them less. Fi@upéots the change in hospital-level ICD use
rate between 2002 and 2005 (x-axis), and betwe@6 28d 2013 (y-axis). The cross-hospital
correlation between initial and subsequent chand@D rates is strongly negative (-.40, p <.001),
showing that the hospitals with the most rapidiahigrowth also experienced the most rapid
decline. Despite the overall decline in the ICI2 uate, however, the coefficient of variation (the
standard deviation divided by the mean) declindg slightly, from 0.31 in 2006 to 0.28 in 2013.

While population-based rates of ICD utilization drawn from HRRs, we seek to estimate
our model at the level of the hospital that perferime ICD*® We do this by assigning to each
patient their HRR-level utilization measure (asadibed above). For example, if a hospital in the
Boston area draws from the Boston, Providence,Paorland ME HRRs for their ICD patients,
the hospital-specific rate of ICD utilization wide a weighted average of those three HRR rates;

this is shown in a schematic in Figure 4a.

11 The corresponding rate in 2002 is suppressed bedhe numerator comprises fewer than 11 obsengtibe
CMS limit for reporting data.

2 One might be concerned with small-sample biakése relatively small HRRs, but the patterns shewang
temporal trend; high rates in 2006 are matchegyen exceeded) by high rates in 2005 and 2007.

13 Measures of ICD intensity in utilization requitesth a numerator (the number of ICDs implanted givan year)
and a denominator (the number of potential patjekile regions are well suited to calculate bottmerator and
denominator (e.g., as done in the HRR-level anslgbbve), calculating the denominator of a givespital,
particularly in a city with multiple hospitals, éxceedingly difficult.
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2.2. Variation in Health Outcome Following ICD Implantation

A rare luxury in studies of technology diffusiontts have access to information on the
performance of adopters after adopting the teclgyold/hen CMS approved the use of ICDs for
preventive purposes, it was done with the undedsatgrthat hospitals would send detailed clinical
information about the patient to CMS. We use thi®% registry, linked to the Medicare
denominator file for people age 65+, during 2006uBich allows us to calculate mortality rates
based on Medicare denominator files available tinoR015* The registry includes detailed
information on the registry that includes whethiee 1ICD was for patients with CHF (e.g.,
preventive), their risk class (I through 1V) as et ejection fraction and many other clinically
relevant factors such as having ventricular tactdiaafamily history of cardiac arrest, the exact
ejection fraction, and other measures, along whiihn itlentity of the hospital performing the
proceduré® These data are far more detailed than what coeed lee recovered from Medicare
billing claims. To estimate outcomes, we focus oelatively homogenous group of CHF patients
who have never had an ICD implanted; we implicadsume that the hospital-specific mortality
effect estimated using these patients is similahéceffect for other patients receiving an 1ED.

Ideally, we would like to measure true treatmeifeas; the benefit of an ICD relative to
the status quo of medical management for CHF. Hewedecause we do not observe patients
who did not receive and ICD in our registry datar estimates and modeling are specific to
mortality rates only among those treated; we dis¢his concern, and how we address it, in the
modeling section in Section 4.

Table 1 provides summary statistics of the ICD dand = 253,613). The average age
among the Medicare enrollees (all of whom are 65%}%.5, and just 28 percent are female. Note

1 Mortality data are drawn from the 2006 mortaligtalinwww.dartmouthdiffusion.org.

15 One complexity associated with identifying hosjsiia that in some cases, the hospital was notifikh only
the NPI for the provider who performed the proceduwWe are grateful to Andrea Austin for providaagross-walk
from ICD-capable providers to the hospital whemytperformed the plurality of procedures, whichuged to
create our dataset.

16 \We recognize that some hospitals may include rii@e one cardiologist or electrophysiologist whof@ens the
procedures, but identifying pure physician effdaisn the hospital-level team that both implants afsb maintains
the ICD is problematic.
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that the mortality rate barely budged between 2862013. We also include summary statistics
for additional covariates from the registry, indhgl the ejection fraction, prior cardiac arrest,
family history, prior heart attack, and other vhatées.
Hospital-level risk-adjusted mortality is modelesging the following hierarchical
structure:
Mjie = Wi + XjieB + e (1)
where ¥;; = ICD_rate;;.I" + 0; + v;; (2)

The first equation is at the patient level, wherertality (M;;,) for patientj treated at
hospitali in yeart is a binary variable that depends on charactertdtihe patientXj;;), and a
hospital effect &,,). At the hospital level, the hospital effect imtuwepends on the hospital-level

utilization rate of ICDs in that year (ICD_rateplus a random hospital effect)(and a random
hospital-year effectv). We allow the hospital effect of mortality to éea on the utilization rate

of ICDs because that is implied by our model. Weegarticularly interested in the variance'8Bf

and its covariance with the hospital’s ICD utilipat, which depends both on the predictable
characteristics of the hospital, VEFD_rate;;I"), as well as the provider-specific error term
Var(6;). Our preferred specification is a hierarchicahdam-effects model, which provides
estimates of the key parametersi{ar(6;)) and also estimates of the individual hospitat&tf,
P,, = ICD_rate; I’ + 0; + D;;, where we use best linear unbiased predictionthéhospital and
hospital-year random effects (e.g., “shrink” thereate of the provider residual towards the fitted
valueICD_rate;, " depending on the sample size of the provider). Wéaif on random-effects
models, but in sensitivity analyses we also comsigl@st-squares regressions and models with
provider-level fixed effects. Because we wish toneate the hospital-specific effect on mortality
of ICD relative to medical management, in some sigations we add hospital-level controls (to
X) to proxy for quality of medical management sashpatient volume and the use of guideline-
consistent medical treatment for CHF patients.,

The benefits inherent in ICD implantation ariseyatfter several years (Bardy et al., 2005)

so we focus on both 1-year and 2-year mortality.tRe random-effects model, we estimate the

distribution of W, in Figure 4, which shows the risk-adjusted oneryeaiation in hospital-

specific mortality ratesAs is clear from Figure 4, there is significant iméion in conditional
10



mortality rates across hospitals; the standardatiem of one-year conditional mortality rate
across hospitals is 2.2 percentage points, withatity rates in high-mortality hospitals that are
twice as high as those in low-mortality ortésFinally, Figure 6 presents the evolution of omey
conditional mortality over time for the U.Sonditional one-year mortality declined slightlpin
12.8% in 2006 to 12.0% in 2013.

2.3 The Correlation Between | CD Diffusion and Mortality

A natural question that should help us understéreddrivers of ICD diffusion is the
relationship between ICD use and conditional miytal o this end, we combine the utilization
data (Section 2.1) and the outcome estimates (Be2tR) to compute the correlation between
conditional mortality and ICD utilization. Rathdrain report mortality rates at the hospital level,
we instead convert them back to the HRR level basedhe residence of the patient, as shown
schematically in Figure 4b. Figure 7 shows the alation between the average (2006-13) ICD
utilization rate, and the fully risk-adjusted reden hospital-level 2-year mortality. The correlatio
coefficient is 0.15 for one-year mortality, and Dftr two-year mortality. The graph also identifies
several of the more interesting regions; in paldicthose regions exhibiting both low mortality
rates and low use of ICDs (the Minneapolis-St. PHRIR); while others exhibit high rates of ICD
use, coupled with high rates of mortality, suctvaami, Terra Haute IN, and Munster, IN. That
Munster is an outlier may be explained in part bypacific cardiologist who was sued by for
inappropriate cardiac surgery and ICD placemeneg@ell, 2015).

In Table 2, we report summary estimates of the OlaBdom effect, and fixed-effect
models, limited to just two-year mortality; regressresults are reported in the Appendix for OLS
in Table A.1, random effects in Table A.2, and hiadfixed-effects in Table A.3 that also include
one-year mortality. As shown in Table 2, there @asistent positive correlation and significant
correlation between the rate of use of ICDs invegiyear, and risk-adjusted mortality rates, in
both the OLS and random-effects model, suggestirtgda reduced form that patients of the most
rapid diffusers experience worse outcomes. Thetpestimates are much smaller and not
significant in the fixed-effect model; this is besa most of the identification is from cross-

sectional variation.

17 Recall that these estimates are derived fromahdam-effects model, and are therefore alreadyn&erutowards the mean; a
fixed-effects model would have exhibited even magability.
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As sensitivity analysis, we also include the loganhual volume of all ICD performed at
the hospital for the over-65 population (includiman-CHF patients), to adjust for the conventional
finding that higher-volume hospitals yield betteta@mes. The coefficients on these variables are
as expected; an increase in log-volume of 1 leads 1.4 percentage-point decline in 2-year
mortality in the random-effects model (Column 4 Tadble 2). Another sensitivity analysis
included quality measures for regional medical ngangent specific to ICD patients (Roth et al.,
2016). The idea is that for hospitals with poor IGdtcomes, ICDs may provide a better option
than the alternative — medical management — ifiglarss at that hospital do an even worse job of
medical management (e.g., Chandra and Staiger) 20Ufile the coefficient estimates are in the
expected direction (worse medical management andstdume are both associated with worse
outcomes for ICD patients), including them as aalstrdoes not significantly attenuate the
coefficient on utilization.

To sum up, we find wide variation in rates of dgilon across the U.S. with regard to ICD
use; reversion to the mean with regard to utilaatin the sense that regions with the most rapid
growth were most likely to “exnovate” or scale bawk their use (Bekelis et al., 2017); wide
variability in ICD mortality rates across hospitadsd a positive correlation between utilization
and mortality. We turn next to developing a maithalt can potentially explain these empirical

patterns.

3. The Modd

Our goal is to develop a model of technology adwytise that helps us understand the
empirical patterns of ICD utilization and conditedmortality. It builds on an optimizing Bayesian
framework where both physicians and patients aterbgeneous and health outcomes are
uncertain. Patients differ in the potential bersfiiom an ICD implant while physicians and their
teams differ in their ability in implanting ICDs.dditionally, we recognize that physicians may
have biased perceptions about their true abilityaout the intrinsic value of ICD implants.

We use the model in three different ways. Firstdtps us study how the decision to
implant an ICD and the mortality conditional onl&b implant depend on the health provider's
perceived and actual skills. Second, it helps ti®malize the risk adjustments made in the
empirical measures of ICD use and mortality cooddi on ICD implant. By formalizing this link

we can better ascertain the required assumptianeuio measures to be unbiased. Finally, we
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extend the model by allowing physicians to leaomfipatient outcomes. This allows us to study
the role of learning in the evolution of ICD usedamortality by comparing the out-of-sample
model predictions with the actual data.

We note that while our model is couched in termglofsician decisions, our data is at the
level of the hospital. This is because ICD proceduare typically team efforts; nurses,
electrophysiologists, contribute at various stagdsetter or worse outcomes. For many hospitals,
there is only one primary ICD-capable physicianwirich case this assumption is innocuous; for
larger hospitals we will be blending the choiceswas or more physician$.

3.1 Static setting

We begin with the decision problem from the persipecof the physician. There is a
continuum of patient typesthat differ in their potential value of the ICD jtant and of the
alternative treatments. The value of the implantpiatientj depends on the patient typg; and
on the doctor’s skill leved;; given that the only goal of the ICD is to keep tratient alive in the
event of sudden cardiac arrest; can reasonably be viewed as survival. In padicuihe value
for a patient after an ICD implant'fs

vx; +a; ()

We, as econometricians, do not observe the patygme but only some patient
characteristicsX;, which we assume to be a zero-mean vector in tpmlption; X; is also
observable by the doctor. In addition, the pattgpe is also defined by a componen, that is
unobservable to us.

vxj = Xj*xv v 4)

The value of patierjtif she receives an alternative treatmewy;, also has a component
that depends on the patient observable charaaterist = 6, and a component that is unobservable
to us,w;:

WXj:Xj*5+Wj (5)

8 We also assume that the ICD-capable physician sidieefinal decision about which patients to chooBee
networks of primary care physicians and how theegtf’ patients to the ICD-capable hospitals may afferct
choices of patients; see for example Moen et alL§2.

9 Without loss of generality, we normalize the cadtanplanting an ICD to O.
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Let uy; denote the difference between the patient's patergtlue from receiving an ICD
implantvy; and her value from alternative treatmenmtg;. That is
Uxj = Vxj — Wx; = Xj * B + 1 (6)
The distribution of patient's net value from treatrh conditional on her observable

characteristics is normal. In particular,

Wyl X;i~N(X;B + @1, 07), (7)

whereji is the population mean gf,. The precision of the prior ¢f; is denoted by, = ﬁ The

u

two components of the net value from treatmengndw;, are normally distributed and, for the
time being, we assume that they are independenehae this assumption below. Therefasg,=
o2 + ag2.

Doctor’s information structure and priors. We make three assumptions about how
doctors perceive the patient’s typey;, and their skill levelga;. First, doctors do not directly
observeuy;. They just observe an imperfect signakgf that takes the form:

Sxj = Mxj t € (8)
whereg is normal with mean 0 and varianggé.

Second, we allow doctors to have a biased priothennet value of ICD implants in

population. In particular, the prior distributioh mi(j|X]- for doctori is

H§(j|Xj~N(Xjﬂ + [, 0), 9)

whereji; — fi is the bias in doctats perception of the average net value of ICD imda
If g; — >0, doctorn believes that ICD implants are on average bettar thhat they actually are.

Third, doctors do not know their true skid;; aF denotes the mean of the doctor’s prior
distribution ofa;. We refer ta@? as perceived skill. The gap between the perceavettrue skill
is the misperception biag;. If dﬁ’ > a; the physician is overly optimistic (or overconfimdewith
regard to her skill, while ifa? < a; she is under-confident or pessimistic.df = a; the doctor
is unbiased.

Treatment decisionDoctori will implant an ICD to patient if the expected value from
implanting an ICD given the observable informatigrand his private signal; is greater than
the expected value from alternative treatment. ihat

Ei[vXj - WXj + ai|SX]-,Xj] = 0. (10)
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Given the information structure, the posteriorriisition of the patient’s net type is

i —p _Ohoé
qulszlXj~N(Mi,leﬁ+0§) (11)
where the posterior mean is

2
with a = ﬁ and withs; = sy; — X; 8 being the signal net of the observable charatiesis

Using the expression (11) for the posterior meam‘}(plfsxj,xj, condition (10) becomes

X+ (1 —a)i +as;+a; =0, (13)
which using the definitions qf; andaf, implies
Unbiased net benefit Physician bias
Xip+(A—-a)jip+asi+a;+1—-a)(l; — ) +6; =0 (14)

Expression (14) decomposes the net benefits froptamting an ICD perceived by the
physician into two components. The first componetdbelled unbiased net benefit — is the net
benefit that would perceive a physician that dogsmsperceive her skill or the net value of ICD
implants. The second term captures the physiciamsperceptions about the improvement
resulting from the ICD. Note from (14) that frometperspective of the decision to implant an
ICD, these doctor biases are isomorphic. Therefeeesan subsume the doctor biases into a unique
term that we denote Hy. Using this notation, we can rewrite the conditionan ICD implant as

Xip+(Q—-—a)i+asj+a;+b;=0 (15)

Expression (15) implies that doctors implant an J@Ehey receive a signaj greater than
a thresholds(a?’, X;) defined by:

p

5 =s(ab,x)=-E2p-2E % (16)
where the variable? = a; + b; is the sum of the doctor’s true skill plus hersiis due to her
misperceptions in her true ability and on the retue of ICDs. For brevity, we refer u:f as
perceived skill but the reader should remember tiigt variable also includes the bias in the
doctor’s prior aboufi.

ICD usage.The probability of implanting an ICD for a doctoitlvperceived skillaﬁ7 ina

patient with observable characteristi;ss
Pr(ICD = 1|a?,X;) = fs?af'xj) f(s)ds, (17)
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wheres(af,XJ-) is defined by equation (4) and whéf¢ is the pdf of the signal,. That is, itis a
normal distribution with meap, and variance; + oZ.

Propositionl (Determinants of diffusion)Ceteris paribus, the use of ICDs increases with
perceived skilledg? .

Proof:

apr(1cp= 1|ap)
6al.

( (al,X)) %4 > 0, because, from expression ( ,p <0.0

Intuitively, the threshold signal required to impti@n ICD decreases with perceived skill.
Therefore, doctors with a high perceived skill arere likely to observe a patient’ signal above
their threshold. Note that what matters for thadance of ICDs is the doctors perceived signal,

a’. (Recall thata? = a; + b;.) Therefore, for a given skilla,, the use of ICDs increases with

greater optimism (or overconfidence), Similarly, for a given level obi, higher (true) skill
induces a greater use of ICDs. Note also that egme (17) shows that the only doctor-specific
parameter that affects the ICD use rate is theapezd skilled of the docton?. Therefore, given
the population parameters that define the distidbudf signalsi anda, we could (and will) use
the observed ICD use rates to infer the doctortfsgaeed skill level.

Outcomesln our dataset we have information on the mortalitg conditional on an ICD
implant. To use this information, we need to trateslvhat death means in our model. Naturally,
the event of death (in the near term) should becasted with a low ex-post value for the patient.
It also seems reasonable that a death that ocadref in the future is associated with a higher
ex-post utility for the patient. By applying thigjic, we can establish a mapping between mortality
and utility. In particular, we interpret the deaththe patient withirx years as an ex-post utility
below a threshold,, wherek, is increasing ix.

Thex-years mortality rate conditional on an ICD impléorta doctor with perceived skill,

a?’, and actual skillg;, is

Pr(v, < ke —a;n ICD =1
Pr(v; +a; < k. |ICD = 1,0f, 0, X)) = ( {Dr( Icb —llla X;) ) )

f_ f_ fs(s’)fw(w’)<f( pX )+ . ,fv(vl)dvl>da)ld£/
J

= 13
S ) Fo(sas! (13)

16



wheref,(.) is the pdf fore, f,(.) andf,(.) are the pdf for patient’s typgandw;, andf,(.) is
the pdf for the signad. While utilization is affected only by perceivekils conditional mortality

is affected by both the doctor’ true skill and meved skill. This observation is the basis to
identifying the true skill levels.

Proposition 2 (Determinants of mortality conditiohaon ICD implant). (i) The
probability of death conditional on implanting &0 increases with the doctor’s misperception,
bi, and (ii) Skill has an ambiguous effect on thedibanal mortality rate.

Note that in both of these results we do not camaibn patient’s characteristics, other than
for the fact that they have received an ICD.

Proof: The proofs are as follows:

(i)
OPr(v; + a; < k| ICD = 1,0} ,a;) _
ab; B
S 0 0 ! ! p S =& ! !
[1-Pr(v; < k| ICD = 1,a7, a))] (— %) S oo felen o futslay 1) enderde >0

[ ACH ffiofw(wo(f:("aprxj)m,_g, fv(v')dv'>dw'd€'
(14)
Both the first and third terms are positive, b Key is the middle expression; that when

overconfidence rises, the “hurdle” point at whible physician does the procedure declines, thus

expanding the number of patients for which thelbsetefit is negative.

(i
oPr(y + @ <l 16D = Lala) | T e fo (@) (e — a)do'de
oa [ 15 1o @) ([ ) fo@A ) d e’
4 [1=Pr@vsex icD=1,a7 ap)] [52 Fe(enful@nf(s(al X j)—ender (15)

a

oot fg(ef)fw(wf)<f5°(°ap_xj)_£ fu(v')dvl>dwldsr

Expression (8) shows that skill affects mortaliyitmproving the outcomes for patients

who would have been treated anyway (first termj,dbso by bringing in more patients with net
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benefit, but whose underlying mortality probabiliyuld be higher as well (second tedh)As a
result, the net effect of skill on conditional maiity is ambiguous. Of course, if we controlled for
patient characteristics, expression (8) collapsetstfirst term and skill exerts an unambiguously
positive effect on health outcomes.

3.2 Dynamics through learning

We explore the dynamic properties of the modelllnang doctors to learn about their
true skill. The learning problem we pose is onemsltoctors are uncertain both about the level of
their skill but are certain about the precisiorha signals they receive. Additionally, doctors may
differ in the precision of their priors about thekill.

We start by describing the nature of the signatstae priors. After implanting ICDs
for patients newly covered by the CMS rules, dacteceiven imperfect signal{s;}, };-,. Signals
are random draws from a normal distribution witlkniwwn value of the meany and known value
of the precision, . In particular, the signal}, = a; + &, where the noise terfg, is distributed
according to a normal with zero mean and pregigio The doctor’s prior of the distribution of
a; is normal with mean! and precision; such thati>0 and—o < af < co.

Note that, in addition to the bias in the gap bemverue and perceived skill
(overconfidence), doctors may have a different b@as in the precision of the conditional prior
distribution of skill. For any given level of pereed skill, some doctors may be very confident
about the accuracy of their estimate (stubborn)embihers may be too unsure (insecure). One
way to measure this bias in confidence is by tliferdince between the precision in the prior

distribution of skill,t, and the precision of skill implied by the sigegl (that is, the signal net of

, Psap
noise).p, = - sar%

. Therefore, ifti-p, a physician is stubborn andrifp, she is insecure.

The following Lemma, helps us characterize the @vah of perceived skill over time.
Lemma 1 (Posterior distribution of skillfhe posterior distribution af; is normal with
meanal’ and precisioni+npg,, where

v _
ap' _ iy +Nnpgast (16)

t TitNPsa

20 This is one reason why some highly-skilled physisimay appear to be lower quality; because théypwith
the most difficult patients.
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Proof: See De Groot (1971), page 167

Lemma 1 describes the evolution in perceived sBiibtractinga; in both sides of

expression (9) and substituting the tildes by tgulescripts we obtain

a€t+1 - aft = —qj * (aft - ai) + af * X=1Sit (17)
where
aiét‘ = & > 0 (17)
Ti + npsa

is the learning coefficient.
Replacing ina}, — a; by o; ¢, we obtaif*
a€t+1 - aft = —ajp * b + ajp * Y= &ie (18)
Becauseax,; Is, in principle, independent of the bias, equaiib2) shows that the larger
the bias in perceived skill, the larger the expgaterrection in the perceived skilled, and
conversely.
Adding and subtracting; to the left-hand-side of (12), we can expresddieof motion
for misperception as
bitr1 — bie = —ajp * by + ajp * Xg—1 $ir (19)
Equation (19) shows that learning induces meantsewe in the level of doctor
misperception, whether overconfidence or underidente.
The speed of learning in our model is capturedHey doefficienta;. Expression (17)
shows thatrf. varies across doctorsf, decreases in the precision of the prior precisibskill

(t;), and increases in the precision of the sigpgl)(and in the number of signals/ICD implants

21 Subtracting and adding to the right-hand side of (14) we obtain the faflog expression for the evolution of
overconfidence:

Abjiy1 = —Qgp * by + aqr * & whereAb = by q — byy.
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(n).?2 Other things equal, a more stubborn doctor wakhemore slowly (i.e. will have a lower

adi).

4. Analysisand M odel Estimation

We next use the model to study the determinantsngdirical patterns of ICD use and
conditional mortality documented in Section 2. Quriategy has 3 steps. First, we use the values
of aggregate moments to calibrate parameters afiftebutions of patient type, and doctor true
and perceived skill. These parameters are commm@ssabospitals and impact the decision rules
of doctors and the outcomes from implanting ICDscdhd, using the common parameters and
the hospital-level data on usage rate of ICDs aodatity conditional on ICD, we identify the
hospital-level true and perceived skill, and ag’t. Third, we use the identified parameters to: (i)
explore determinants of ICD use and conditionaltaliby in the cross-section and time series; (ii)
conduct counterfactual exercises of “turning offisperception, and (iii) using out-of-sample
approaches, study the ability of the learning madgredict the evolution of misperception, ICD

use and mortality over time.

4.1 | dentification
Unit of observation.As noted earlier, while our model captures deoisiaking process
of individual physicians, our unit of observatianthe hospital, where treatment decisions and
guality are typically determined by small teamsenflead by a cardiologist or electrophysiologist.
Aggregate parametersiVe start by calibrating the parameters that are comawnss
hospitals. Without loss of generality can normalize average skill in populatiom;, and the

average utility of a patient with heart failuretime absence of ICD treatmenig, to 0. These

22 Furthermoregy: evolves over time. In the special case whegrg, is constant in any given hospital, we can use Lamm

1 to derive the following difference equation tqy;:

Xat
1+ag:

Aat+1 =

The solution to this difference equation is
_ Qo
%at = Tteag;
2

o.p
wherea,; = —2 is the learning coefficient in the initial period.
”aP+”i§
0
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parameters are isomorph@v in the ICD use equation (5), anddpin the mortality rate equation
(6).

An important aspect of the calibration is to badbe conceptual gap between the units in
the model (i.e., utility) and in the outcomes wes@ilve (i.e., mortality after the ICD implant). We

do this by calibrating the thresholxd_,g to match the unconditional mortality rates forigats with
congestive heart failure (CHFE)} Specifically, we set, SO that the cdf of;is equal to the-years

mortality of patients with CHF.

These leaves 7 parameters to calibrate, the avéragkin population of misperception
and the value of ICDsh(and?), and the variance in population of three patienél@arameters,
vj, w;, €, and two hospital/doctor level parametersindb; (o7, 055, 67, 02, o). To calibrate these
parameters, we use 8 moments: the mean and vatli@Dagse rate across hospitals, the mean and
variance conditional 1- and 2-year mortality acrbaspitals, and the cross-hospital correlations
between the ICD use rate and the 1- and 2-yeaiitoomal mortality rate€? Note that our system
is over-identified.

A narrative for the model identification is as tmlis?® For the time being, let's take as
given the values of the variance of the three patavel variables M= (62, 02, 62). Given these,
the average level of over- or under-optimismand ICDs valuey, determine the average ICD
use rate, while the variancem ceived skill (62 + 67) determines the variance of ICD use across
hospitals. Conditional mortality across hospitalslétermined by Mg, and the average value of
the ICD,v,, while the variance of one- and two-year condiiomortality helps us pin down the
variance of true skill across hospitals/doctors tedrelative variance of v and w.

The variance ofi, (62 + 62), and the noise of the signals?] is identified from the

correlation between ICD use rates and conditionadtatities. Intuitively,o; is identified by the

23 The rate of ICD use among potentially appropratents, 18.5 percent, is derived from Al Khatahle(2012)
based on their study of ICD use in a cohort of QGidkents; we assume that variation in this paraniste
proportional to observed variation in populatiorséd utilization, which is of course much lower. Wew the
mortality rate among those treated with an ICD,\wetimpute the mortality for those without an 1Cahd the

average treatment effe¢rj ) used estimates from the largest randomized txiaich showed no impact after one
year, and an approximately 2.5 percentage pointatezh in mortality after 2 years (Bardy et al. 030).

24 All of these moments are computed over the pe2@b-2013.

25 In reality, some of the parameters affect more thrae moment for example, the variances of all italsievel
variables affect the variance of ICD use rates @t ag the one- and two-year conditional mortaditie
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correlation between ICD use and one-year mortabtyditional on ICD implant; a higlnreduces
the sensitivity of the decision of implanting arDi@ the level of perceived skilt?. Therefore,
those doctors with higher perceived skill (relatteeactual skill) will not go as deep into the
distribution of patients whem is low. For this reason, their marginal patierg &&ighep, leading

to lower mortality rates. As a result, a highes associated with a lower correlation between ICD
use and mortality conditional on having an ICD.

Table 3 reports the data and model-implied momente model does a good job of
matching aggregate moments. The only target thatntiodel misses is the average 2-year
mortality. Table 4 reports the calibrated valuesii@ aggregate parameters. Considering first the
baseline estimates, on average for ICD use, hds@ta overly optimistic with regard to their
skill, with the mean ob; equal to 0.098. Variation in misperception isoassibstantial, with a
standard deviation of 0.02, roughly 2.5 times ttamdard deviation of variation in skill (0.008).
Pessimistic or under-confident hospitals are tloeeefare in our sample. Perhaps not surprising,
patient-level variation in individual outcomes abkso estimated to be large, suggesting the
presence of unmeasured health-related factorsisthiscessary to match the relatively low cross-
sectional dispersion of conditional mortality rates

Hospital level parameterOnce we have calibrated the common parametergjemtify
for each hospital and year the true skill and degremisperception that produce the observed
ICD use rate and conditional mortality. Given tlygregate parameters, equation (5) shows that
the ICD use rate is fully determined by the peredigkill of the hospital. Therefore, we can
identify perceived skill by inverting the expressifor ICD use rate (5). Proposition 2 shows that,
for a given perceived skill, the conditional maitials decreasing in true skill. Therefore, we can
invert equation (6) to identify the hospital/yeare skill level.

We start by analyzing the identified levelsagfando;; reassuringly, the distributions of
hospital-level skill and overconfidence look appmately Normal, and the variance @f andb;
are close to the estimatesaff ands? identified in the calibration of the aggregategmaeters®
We note in passing geographic differences in mcggeion; the regions with greater optimism or
overconfidence are in the South (e.g. Texas), Sha#t, and the Great Lakes (Michigan, Indiana,
Ohio).

26 The variance of overconfidence is equal to 0.02®1é& hospital-level identification vs. 0.025 i taggregate calibration while
the variance of skill is 0.0076 in the hospitaldeidentification vs. 0.0057 in the aggregatehraliion.
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To further understand the nature of variation ie bospital level estimates of skill and
misperception we conduct a variance covariance rdposition. Specifically, let x;; be the
estimate ok in hospitali and yeat, for x;, = {al,, a;., b;;}. Then we can decompose the variance
of x;; into the “within hospital” over time componentdattie “between hospital” component (See
Table 5)?’ For all three parameters, the variance of theiwitomponent is smaller than the
variance of the between component. However, thersignificant variation in the relative
contribution of the within and between componegtess the three variables. For perceived skill,
the variance of the within component is approxitydialf the variance of the between component.
By contrast, for skill, the variance of the witldiamponent is less than one fourth the variance of
the between component. That is, providers are neffiective in learning about the bias in
perceived skill, than they are with learning-by+upiwhich would induce time-variation in true
skill.

4.2 Analysis

Now that we have identified the key parametershefrnodel at both the aggregate and
hospital level, we can return to our primary gaghich is to assess the relative contribution of
skill and overconfidence for the evolution of ICBlimation and health outcomes.

4.2.1 Determinants of ICD use and conditional molitg. We start by exploring the
empirical consequences of skill and misperceptoon@D use and mortality. First, we decompose
the fraction of observed variation attributed tifedences across providers in skill, and difference
in misperception. These simulations allow us towdate the fraction of the variance in ICD use,

or the variance of conditional mortality, attribbla to variations in misperceptions across

27 Specifically, letT; denote the number of observations correspondimgsepitali, x; the average of in hospitali, andx be the
average ok across all hospitals. Then the within hospiitedriance ok is

Var, = Zt(xitl_fi)z
The between hospital variance is defined as
Var,, = 25
Then variance af;; can be expressed as:
Var(x;) = El+j"‘ + Vary,
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hospitals. Table 6 reports these calculations. dde@mposition indicates that 72 percent of the
hospital variation in ICD utilization is due to Vation in misperception, with the remaining 28

percent because of variation in skill. Similarly6% of the hospital variation in (one-year)

conditional mortality is due to variation in mispeption, with the remainder owing to differences
in skill. Therefore, we conclude that mispercepisa major contributor to the observed variation
in the adoption and diffusion of ICDs, and of equabortance in explaining variations in health

outcomes.

Table 7 provides results from the structural maal@thich the mean level of misperception
is set equal to zero (but with an unchanged vaelgnehere the variance is set equal to zero, and
in the final column, both the mean and variancesateequal to zero, essentially “turning off”
misperception. Turning off misperception is préeelitto reduce average ICD utilization rates from
17.5 percent to 13.9 percent, or a 21 percent tenucSimilarly, the extent of variation in ICD
use is predicted to be cut to just 36 percentebitiginal standard deviation (from 4.46 percent to
1.64 percent), while mortality is predicted to deelby 7 percent (with a corresponding decline in
the standard deviation of mortality of 22 perceiit)ese counterfactual exercises provide more
support for the importance of misperception in exphg variation in technology adoption and

use.

4.2.2 Correlated skill and misperception

We generalize the baseline model by assuming#haty * a; + €. This assumption

implies that the variance of overconfidencefs= y2d2 + ogzb, Whereagzb is the variance of?,
i i

the variance of perceived skill a'ép = (1+y)%c?+ a:b, and the correlation between true skill

Y
2
O'Eb
141
y2ag

and misperception isorr(a;, b;) =

172"

The calibration of the aggregate parameters irsetisng differs from the baseline in two respects.
First, we need to calibratg. Second, instead of calibrating the variance & éxtent of
misperception, we need to calibrate the variance’ ofn terms of identification, the correlation
between true skill and overconfidence affects thieetation between ICD use and conditional
mortality across hospitals. For a given variancpeteived skill, a higher value pfimplies that

those doctors that conduct more ICDs are also slolled. Therefore, increasingwhile keeping
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constany’, should lead to a lower correlation between ICD arsé conditional mortality across
hospitals.
Table 4 provides evidence from a regression arslyst favors a positive correlation

between skill (3 and misperception {l the estimate ofy is 0.47. Given that risk-adjusted

mortality is also higher in high-utilization regignthese estimates imply that in high-utilization
hospitals, the adverse effects on clinical qualftpverconfidence more than compensates for the
somewhat higher skill levels. (In Column 3 of TaB| we also find a positive covariance between
skill (&) and the value to patients of being treateg)).(Wote that these estimates imply that
hospitals with greater skill are also overly opstrg, since the correlation betweenpandb is

Still, our key structural estimates are largely hanged regardless of the assumption about the

covariance structure, so we continue to use owlin@sestimates in the subsequent simulations.

4.2.3 Learning and the evolution of perceived skillext, we turn our attention to the time
variation in overconfidence, and in perceived skill particular, we explore the ability of the
learning model posed in section 2 to explain thelidion of perceived skill and conditional
mortality. To this end, we first estimate the faliog econometric counterpart to the model

dynamics characterized by equation (12):

p

P
it+1 — @4

a e = Qo — & xbye +ue. (14)
Comparing specification (14) with equation (12), ea® interpret the coefficients,; and

af. The intercepiy,; captures the average realizatiomfif+ &;, for hospital. Unlike the learning

coefficient in equation (12), we force the coe#itia;* to be constant over time though it can vary

across hospitals. Thereforg; captures the average learning rate in hospital

Column | of Table 8 reports the median valueogf and af* across hospitals. For
comparison purposes, column Il reports the estisnateen the two parameters are restricted to be
the same across hospit&isThe key finding is that, despite its simplicithetlearning model
captures a significant portion of the annual vaiain perceived skill. In the baseline specifioati

(with hospital-specific coefficients), the learnimgpdel accounts for 50% of the variation in the

28 The difference in the number of observations betweoth specifications is due to the fact that egiire
hospitals to have at least four observations tiones¢ the hospital-specific parameters.

25



change of perceived skill, while in the version wehboth the intercept and learning coefficients
are restricted to be the same across hospital®?thtil is 23%.

As predicted by our model, the median learningfaceht af* is significantly positive and
between zero and one. The median point estimd@eliswhich implies that the variance of the
noise in the signal about the doctor’s skill is rp@Mately the same as the variance of the prior
of perceived skill. Interestingly, there is sigoént variation in the estimated learning coeffitsen
The standard deviation of* across hospitals is 0?6 For comparison, the standard deviation of
the intercept in (14) across hospitals is 0.13.

To gain further insights about the learning procese estimate the cross-hospital
association between the learning coefficiefitand the overconfidenceé;f) and skill @;y) in
2006, the initial year. That is, we run

ai' =¥ + Yobios * YaQios + € (15)

The fit of this specification is quite good with R? of 0.57, which implies that initial
overconfidence and skill account for much of thessrhospital variation in how quickly they learn
about their overconfidence. Both coefficientg,andy,, are negative and significattThe fact
that hospitals with lower learning coefficiany; are both overly optimistic, and have better-than-
average skill suggest that such hospitals haveetigtriors about their skill. As a result, they
perform more ICD procedures and, despite the great@ber of signals, they learn more slowly
about their true skill, cutting too gradually thete of ICD use relative to other, more nimble
hospitals.

We conclude our analysis of the drivers of the dhoin perceived skill by studying the
relationship between the hospital level intercaptl4),a,;, and initial overconfidence and skill.
To this end, we run a version of equation (15) sihg ay; as the dependent variafeThe
coefficient on skill is negative (-0.1) and mardipasignificant, but the coefficient on
overconfidence is positive. This suggests thatrtean reversion in perceived skill is not a

mechanical artifact that more overconfident hospiteave lower intercepts in (14). It really

2% In 8% of the hospitals the estimate of the leaymioefficient is negative, while in 21% it is greathan one.
30 Their point estimates are -1.01, and -0.96 resgagtwith standard errors equal to 0.1 and 0.245.

31 The R2 is lower (0.38).
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follows from the fact that hospitals learn abouwitloverconfidence and update their perceived
skill.

The role of initial skill in the evolution of pereed skill is also of interest. Other things
equal, hospitals with higher initial skill experan larger declines in perceived skill. This
observation seems to downplay the role of learbiyngloing -- true skill improves as hospitals
implant more ICDs -- in the evolution of perceiviedé skill. To assess more directly the relevance
of improvements in skill from implanting ICDs (Ieang-by-doing) is by estimating the following
specification

Qie+1 — Qe = @ + 811CD; + 605 + €51 (16)
where ICL is the ICD use rate in hospital | in year t. Tlognp estimates from this regression are

8, = —0.127, andé, = —0.04, both statistically significant. Therefore, oththings equal, we

find no association between the secular trendiih akd the lagged ICD use rate.

4.2.4 Out-of-sample implications of learning for I use and conditional mortalityNow
that we have shown that our stylized learning masgehble to capture quite accurately the
evolution of perceived skill, we directly explorédhether the decline in ICD use and conditional
mortality between 2006 and 2013 can be a consequariearning about misperception.

To investigate this hypothesis, we use the estsnatéhe learning model (column | of
Table 8) to build a counterfactual measure of peeceskill due to learning. Then, we use our
model to simulate the ICD use and conditional mibytdevels in 2006 and 2013 for the
counterfactual measures of perceived skill. Thenoompare the evolution of the relevant
moments under the counterfactual with those obseitvéhe data. Table 9 presents the results
from this exercise.

The first three columns of Table 9 report the motséor the ICD use rate, with the first
two rows corresponding to 2006 and the second oma rcorresponding to 2013. The similarity
in the moments for 2006 between model and datg isolstruction since we take the initial
estimated misperception (or overconfidence) antl perameters for each hospital and those
produce the same ICD use rates and conditionalatitaas we observed in the data. However, the
predictions of the model for 2013 are out of sangjbee the values of skill and misperception we
use to generate them are produced by the learnatteihinstead. Therefore, only if the learning
dynamics capture the evolution of true and perckskell that we see in the data, we can expect
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the distributions of ICD use and conditional matyahcross hospitals in 2013 to be similar to the
data. The key finding from Table 9 is that the m@deut-of-sample predictions for 2013 also
provide a close match to the actual 2013 values |&&rning moddllly accounts for the observed
6.8 percentage point decline in the ICD use rdiee learning model also predicts the reduction
in the dispersion in ICD usage rates across hds@tal the reduction in the correlation between
skill and ICD use that we have observed in the @d¢aline from 0.94 to 0.895 in our out-of-
sample prediction vs. from 0.94 to 0.905 in theaylat

The second three columns present the moments docdhditional mortality rate. In the
data, we observed a mild decline in the one-yeaditional mortality rate from 12.8% to 12.0%.
Our learning model fully accounts for this reduntin the conditional mortality. Furthermore, the
cross-sectional dispersion of conditional mortalit013 and its correlation with true skill across
hospitals is very similar in the model and in tloaicterfactual. Thus the evolution of physician
beliefs about the efficacy of ICDs for this new ptation of CHF patients can explain both the
sharp decline (or exnovation) in the use of ICDsduthis period, as well as a more modest

decline in conditional mortality rates.

5. Discussion

What drives the diffusion of new technologies? desh in economics has focused on
factors primarily related to rates of return, wiegthecause of input prices, differential factor
productivity, or higher rates of return; the puzass often been why so many economic agents
diffuse so slowly. In this paper, we allow for dfelient determinant of technological adoption
and use -- misperception — where an individualieg@egtion of their own skill and ability causes
them to step up or scale back the use of a newmtdatpy, even when true skills do not
correspond to their beliefs. In the case of a $patiedical technology, implantable
defibrillators (ICDs), these behavioral biases @ppe be important quantitatively and explain
otherwise puzzling empirical regularities.

How should the misperception parameter be integdf2tAs noted above in Section 3, we
cannot distinguish between a misperception abautptipulation-based mean of the treatment
from a misperception about the physician’s ownisk#lative to others. Another explanation not
previously considered is simply supplier-inducethdad; the physician knows that the procedure

is suboptimal for her patients, but she does tbequture anyway to make more money Chandra,
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et al.,, 2011). However, the supplier-induced deinatory is at odds with results from the
calibrated learning model; why should the mostfegmteneurial” physicians who are cognizant of
their bias towards net income over patient headtthie ones most likely to scale back over tifne.
While we cannot rule out “outlier” physicians walstrong weight on revenue over patient welfare
(as in the case of the Munster Indiana physiciasud@nted by Creswell, 2015), we view these
as exceptions rather than the rule. More generailgn if we accept that “misperception” is a
portmanteau that includes a number of alternatkpa@ations, the major point of our estimation
approach is that this is quantitatively importamiekplaining why there is so much variation in
adoption and utilization of technological innovaiss®

We acknowledge several limitations to the studysiod which are related to the
specificity of the ICD technology. Many studiesl@rning-by-doing find improvements in
mortality over time (Gong, 2017; Jovanovik and Nyarl995; although see Huesch, 2009).

The lack of strong progress in mortality that weetye may be explained by the long years of
experience many physicians already have with intplgrCDs in other types of patients. The
change in coverage for an entirely new populatiopatients (e.g., CHF patients) means it is less
surprising that the learning that we observe ind#i@ was with regard to appropriateness for
patients, rather than technical skir se.

Still, one might expect to see a sharp declin€€id Implantation rates for hospitals with
the poorest mortality outcomes (as in Chandra.eR@l6). Yet there was little or no way for
most physicians (or referral physicians) to obsénes own skill, and to know whether their
own risk-adjusted rates were above or below averdgpe SCD-HeFT trial could have provided
a rough guideline for mortality (roughly 8 percembrtality in the first year), but the patient mix
in the community was substantially older than imd@mized trials, so community-level
physicians had no benchmark against which theydconinpare outcomes in their patients

compared to the trial physicians.

32 One could argue that the entrepreneurial physicieere pressured to scale back because of préssor€MS
because CMS began to question out-of-guideline |@Rkthreaten not to pay for them. However, wadb(n
unreported analysis) there was essentially no lative between rates of ICD use and the fractionaftguideline,
nor was there a strong correlation between conditimortality and the fraction out-of-guideline.

33 Another alternative explanation is potential dedhaitle factors — e.g., patient pressures to seegribcedure —
that could also lead to systematically overusingraterusing the procedure. While patient prefergace likely to
be important at the individual level, there iddittvidence that such preferences can explainmabifferences
(Cutler et al., 2019).
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More problematic is that ICDs appear to have bess successful than expected (e.g.,
MacMurray, 2016) in part because of their sideatffethus physicians may have viewed the
initial trials as a particularly favorable signbayt they updated views over time. This pattern of
enthusiasm followed by disappointment is not uncamror medical procedures; as Jupiter and
Burke (2013) have written:

Artelon® arthroplasty, thermal shrinkage, Vioxx®etal-on-metal hip

arthroplasty, and Infuse® bone grafting in the sp#all had come onto the

“market” with enthusiastic reports only to fall frograce to unhappy outcomes,

permanent disabilities, and malpractice litigatigm.249).

By contrast, other innovations have begun with moerer expectations, but ended up
delivering large patient benefits. For examplesriéuMaclLeod, and Van Parys (2015) found
that cardiologists who were more aggressive than-tlurrent guidelines for percutaneous
coronary interventions (PCI, or stenting) gainetldvgesults; in this case physicians gradually
updated their priors that stents were more prode¢hian expected. We need not take a stand on
the average level of misperception, whether pasitivnegative (or zero); the key finding is that
at least for ICDs, the variance of misperceptiolaige and persistent, thus explaining why we
observe such a large variance in both adoptiortladse of this technology.

Still, how generalizable is the case of ICDs tdtexlogy outside of health care? The
result that physicians overestimate their own $&itel is certainly consistent with other data
from laboratory experiments in which hypotheticatrepreneurs are overconfident about their
own ability and enter into markets or games whailerk is likely (Camerer and Lovallo, 1999).
And a pattern of overconfidence is common acrosspiysicians, as for example with regard to
individual assessment of one’s own driving skiBs€nson, 1981). Further data and case studies
are clearly required, but despite these caveatppiears there is a first-order role for
misperception in both explaining the wide variaiom the adoption and diffusion of new
technologies, and in attenuating the aggregateustoaty of new technologies.
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Figure 1. Risk-Adjusted Rates of ICD use per 100 Medicare Enrolleesfor Selected Hospital
Referral Regions, 2002-13.
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Figure 2. Implantable Cardioverter Defibrillator (ICD) rates per 100 Medicare enrollees,
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Figure 3. Correlation between 2002-05 and 2006-13 increases in Risk-Adjusted 1CD
Utilization Rates, at the HRR level (Rates per 100 Medicare enrolleesfor all types of ICDs).
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Figure 4a: Assigning regional ICD use
rates to hospitals

Figure 4b: Assigning hospital-level
mortality to HRRs
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Figure 4: Schematic to show how ICD utilization rates are assigned to hospitals, and how
hospital mortality rates are assigned to hospital referral regions (HRRS).
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Table 1: Summary Statisticsfor |CD Registry Data

Standard
Variable Mear Deviatior
2-Year Mortality: 200¢-13 0.21¢ 0.41:
2-Year Mortality: 200! 0.21¢ 0.41¢
2-Year Mortality: 201 0.21¢ 0.411
1-Year Mortality: 200-13 0.12: 0.32¢
1-Year Mortality: 200 0.12: 0.32¢
1-Year Mortality: 201, 0.11¢ 0.32:
Fraction Inappropria 0.09¢ 0.29
Ejection Fraction (Percentay 25.76¢ 7.31¢
Fraction with EF > 35¢ 0.03¢ 0.18:2
Fraction Class 0.02¢ 0.16¢
Fraction Class I 0.04: 0.20z
Age 74.89° 6.24¢
Previous cardiaarres 0.02( 0.14:
Family history: Sudden de 0.03( 0.171
Ventricular tacchycardi 0.22¢ 0.41¢
Nonr-ischemic dilated cardiomyopai  0.32( 0.46
Ischemic heart disee 0.69¢ 0.46(
Previous myocardial infarcti 0.54¢ 0.49¢
Previous CAB( 0.39¢ 0.48¢
Previous PC 0.34: 0.47¢
Electrophysiology stuc 0.08: 0.27¢
VT indication (ES stud 0.021 0.14:
Femalt 0.28: 0.45(
Black 0.101 0.301
Hispanic (Medicare 0.052 0.222
Other rac 0.02¢ 0.157
Hispanic ethnicity (Registr 0.051] 0.21¢
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Table 2: Regression Coefficientsfor OL S, Random, and Fixed Effects Models: Two-Year Mortality

&y 2 3) (4) (5) (6)
Random Random Fixed Fixed
VARIABLES OLS OLS Effect Effect Effect Effect
HRR-level ICD Rat 0.0765*+ 0.103***  (.128**  0.0952*** 0.044:!  0.053:
(0.0291 (0.0290) (0.0263  (0.0276  (0.0470  (0.0445
-0.0133*** -
Ln(volume -0.0130%** 0.00925***
(0.00139) (0.00130 (0.00277
HRR-level Rx Rat -0.122%** -0.126%** -0.098¢
(0.0186) (0.0183 (0.0987
Observation 254,23 253,24’ 254,23 254,23 254,23  253,59¢
R-square 0.05] 0.05] 0.057 0.057
Number of Groug 1,54¢ 1,54z

Note: Covariates included in all regressions —Ayggendix Tables A.1 (OLS), A.2 (Random Effects)dan
A.3 (Fixed Effects) for full sets of estimateRobust standard errors in parenth.
% n<0.01, ** p<0.05, * p<0.’
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Table 3: Estimated M oments and M odel Fit

Average use of ICDs among candidates for an ICD

Standard deviation (risk-adjusted) of the use obDdCacross
hospital:

One-year mortality rate conditional on an I

Two-year mortality rate conditional on an ICD

Standard deviation of one-year mortality rate cbadal on ICD
across hospitals

Standard deviation of two-year mortality rate coiodial on ICD
across hospita

Correlation between ICD use and one-year mortaliaye
conditional on ICD use, across hospitals

Correlation between ICD use and two-year mortaligte
conditional on ICD use, across hospitals
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Data

0.18¢

0.04

0.12-

0.21¢

0.0z3

0.021

0.14¢

0.111

Baseline

0.18¢

0.04-

0.11-

0.30:

0.02(

0.03¢

0.14¢

0.13-



Table 4: Parameter Estimates with Sensitivity Testswhen a, o, and v are correlated

Baseline Correlated Correlated
a2,
) 1.090 1.075 1.283
al
: 0.020 0.022 0.022
o2
& 0.008 0.008 0.009
2
0, 1.163 1.062 1.126
2
Ty 0.764 0.879 1.071
5 0.098 0.105 0.116
v-w—a -1.066 -1.126 -1.043
. 0.47¢
N 0.251
Ks/lap In 0.072 0.051 0.055
oment:
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Table5: Variance Covariance Decomposition of Hospital-L evel Parameters

ap a 0
Within 0.0168 0.0015 0.0086
Component

Between 0.0215 0.0049  0.0139
Component

Total Variance 0.0383 0.0064  0.0225

Table 6: Contribution of Skill and Overconfidenceto | CD use and Conditional Mortality

A8 Conditional Mortality
Use
Skill 27.6% 44 .5%
Overconfidence 72.4% 55.5%

46



Table 7: Counterfactual Policy Experiments

Data Mean ¢ =0
Average ICD rat 0.175: 0.142:
Std(ICD rate 0.044¢ 0.041"
Average Conditional
Mortality 0.124 0.11¢
Std(Conditional Mortality 0.014¢ 0.014«
Correlation (ICD rate,
Conditional Mortality 0.21¢ 0.32¢

STD(q)=0

0.156:

0.017¢

0.124:

0.012¢

-0.994:

Mean 90=0 &
STD(a)=0

0.0138

0.016¢

0.11¢

0.011¢

-0.989¢

Table 8: Regression Results from the L earning Model

Learning Model
I I
oo -0.023% 0.0281
(0.0013) (0.0113)
o 0.471% 0.1953
(0.007) (0.0067)
N 7776 8359
R? 0.49 0.23
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Table9: Time-Variation Induced by L earning

ICD use Conditional Mortality
Corr with Corr with
Mean Std ai Mean Std ai
2006 Data 0.21 0.053 0.94 0.128 0.016 0.65
Model 0.21 0.053 0.94 0.129 0.018 0.695
2013 Data 0.142 0.033 0.905 0.1205  0.0152 0.644
Model 0.142 0.032 0.895 0.1198 0.0174 0.708
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Appendix

Expression (4) defines the diffusion of ICD for @ctbr/hospital with a given perceived skill. To
compute the aggregate diffusion of ICDs we justdneecompute the expectation of (4) over the
initial distribution of perceived skills across Ipidals. Formally, the diffusion of ICD in populatio

is given by

Pr(ICD) = [, far () Pr(ICD = 1l9)dq = [, far (@) (f3,, f(s)ds)da (A1)
wheref ,»(.) is the distribution of perceived skill in poputaii

Similarly, we can compute the standard deviatiothefuse of ICD’s across hospitals as

Std(ICD;) = SQRT[[". far(q)(Pr(ICD = 1|q) — Pr(ICD))?dq] (A.2)
The mortality rate conditional on ICD implant is

Pr(vj<k—a;n ICD = 1)
Pr(ICD)

Pr(vj+a; <k|ICD =1) =

o Faap @A) oo S oo Fe(€ ) (W) (fy gy - s Fu(0 )" )aerawr) dqaqP
- Pr(ICD)

(A.3)
wheref, o»(.,.) is the joint distribution of the duple skill, apérceived skill in population.
The standard deviation of mortality rates acrosgphals is computed as

Std(Mort;) = SQRT [fjooofa,ap(q, qp)(Pr(vj +a; < E|ICD =1,q%,q) —Pr(vj +a; <
k|1CD = 1)) dq dq? | (A4)

Finally, the correlation between mortality and 1@Ee across hospitals is computed as

__ Covar(ICD;,Mort;)
PMort, 1cD; = Seqicpystacmort;)

(A.5)
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TableA.1l: Mortality (One& Two Years) OL SRegression

1) (2) (3) (4) (5) (6)
VARIABLES deathly deathly deathly death2y death2y death2y
HRR-level ICD Ratt 0.0711*** 0.105%** 0.0849%*** 0.0765*** 0.130%** 0.103***
(0.0225) (0.0229) (0.0226) (0.0291) (0.0297) (0.0290)
Ln(volume 0.00829***  0.00826*** -0.0133*** -0.0133%**
(0.00108) (0.00108) (0.00140) (0.00139)
HRR-level Rx Rat -0.0921*** -0.122%**
(0.0140) (0.0186)
Ejection Fraction (EF) <20 0.00345***  0.00346***  0.00348***  -0.00442***  -0.00444***  -0.00448***
(0.000382)  (0.000381)  (0.000381)  (0.000473) (0.000472) (0.000471)
EF 2(-25% 0.00459***  0.00459***  0.00457*** -0.00548***  -0.00548***  -0.00546***
(0.000407)  (0.000407)  (0.000407)  (0.000502) (0.000501) (0.000502)
EF 25-30% 0.00224***  0.00227***  0.00227*** -0.00388***  -0.00393***  -0.00393***
(0.000355)  (0.000355)  (0.000356)  (0.000449) (0.000449) (0.000451)
EF 3(-35% -0.000740*  -0.000734* -0.000732* -0.00109** -0.00108** -0.00106*
(0.000415)  (0.000414)  (0.000414)  (0.000555) (0.000552) (0.000552)
EF > 35% 0.00151***  0.00150*** 0.00149***  0.00197*** 0.00195*** 0.00191***
(0.000324)  (0.000323)  (0.000323)  (0.000398) (0.000398) (0.000399)
EF Missing 0.0226*** 0.0213*** 0.0211*** 0.0319*** 0.0297*** 0.0278***
(0.00719) (0.00720) (0.00725) (0.00967) (0.00966) (0.00959)
NY Heart AssocClass | 0.00293 0.00245 0.00160 0.00583 0.00506 0.00399
(0.00342) (0.00339) (0.00338) (0.00489) (0.00482) (0.00481)
NY Heart Assoc. Class 0.0480*** 0.0476*** 0.0465*** 0.0707*** 0.0701*** 0.0687***
(0.00346) (0.00341) (0.00340) (0.00490) (0.00480) (0.00480)
NY Heart Assoc. Class | 0.154%** 0.153%** 0.151%** 0.191%** 0.188*** 0.187***
(0.00583) (0.00583) (0.00584) (0.00728) (0.00722) (0.00724)
NY Heart Assoc. Class missi 0.0549%*** 0.0520*** 0.0516*** 0.0928*** 0.0883*** 0.0880***
(0.0106) (0.0105) (0.0106) (0.0131) (0.0129) (0.0131)
Age 7(-74 0.0150*** 0.0151*** 0.0153*** 0.0275*** 0.0277*** 0.0276***
(0.00165) (0.00165) (0.00165) (0.00206) (0.00205) (0.00205)
Age 7579 0.0367*** 0.0368*** 0.0368*** 0.0648*** 0.0651*** 0.0651***
(0.00181) (0.00181) (0.00182) (0.00228) (0.00227) (0.00227)
Age 8(-84 0.0633*** 0.0635*** 0.0636*** 0.110%** 0.110%** 0.110%***
(0.00213) (0.00213) (0.00213) (0.00258) (0.00258) (0.00258)
Age 8t-89 0.103%*** 0.103%*** 0.102%** 0.176*** 0.176*** 0.175%**
(0.00333) (0.00334) (0.00334) (0.00410) (0.00413) (0.00410)
Age 904 0.184%** 0.184%** 0.183*** 0.276*** 0.276%** 0.276***
(0.0107) (0.0107) (0.0107) (0.0124) (0.0124) (0.0123)
Previous cardiac arre 0.0578*** 0.0569***  0.0569***  0.0578*** 0.0564*** 0.0567***
(0.00549) (0.00549) (0.00550) (0.00631) (0.00632) (0.00633)
Family history sudden arre -0.0116***  -0.0119***  -0.0116***  -0.0190*** -0.0195%** -0.0192%**
(0.00401) (0.00394) (0.00392) (0.00492) (0.00483) (0.00481)
Ventricular tacchycard 0.0447***  0.0449***  0.0447***  0.0570*** 0.0573%** 0.0570***
(0.00193) (0.00193) (0.00193) (0.00230) (0.00230) (0.00230)
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Non-ischemic dilated cardiomyopai -0.0218***  -0.0211***  -0.0209***  -0.0320*** -0.0310*** -0.0306***
(0.00247) (0.00248) (0.00247) (0.00316) (0.00317) (0.00316)
Ischemic heart disez 0.0167***  0.0172***  0.0171***  0.0262*** 0.0269*** 0.0269***
(0.00271) (0.00271) (0.00271) (0.00332) (0.00333) (0.00333)
Previous myocardial infarctic 0.00764***  0.00796***  0.00805***  0.0122*** 0.0127%** 0.0129%**
(0.00171) (0.00171) (0.00171) (0.00223) (0.00222) (0.00222)
Previous CAB( 0.00882***  0.00891*** 0.00867*** 0.0204*** 0.0206*** 0.0203***
(0.00165) (0.00165) (0.00165) (0.00201) (0.00200) (0.00200)
Previous PC 0.00985***  0.00984***  (0.00985***  -0.0124*** -0.0123*** -0.0124%**
(0.00162) (0.00163) (0.00162) (0.00197) (0.00198) (0.00198)
Electrophysiology stuc -0.0185***  -0.0170***  -0.0176***  -0.0267*** -0.0244*** -0.0249***
(0.00297) (0.00286) (0.00289) (0.00411) (0.00392) (0.00399)
VT indication (ES stud» -0.00531 -0.00446 -0.00481 -0.00742 -0.00606 -0.00654
(0.00512) (0.00514) (0.00510) (0.00655) (0.00656) (0.00665)
Female -0.0070***  -0.0070***  -0.0071***  -0.0165*** -0.0164*** -0.0164%**
(0.00148) (0.00148) (0.00148) (0.00186) (0.00186) (0.00186)
Black 0.0350%*** 0.0348*** 0.0342%*** 0.0557*** 0.0554*** 0.0546***
(0.00242) (0.00242) (0.00238) (0.00300) (0.00296) (0.00294)
Hsipanic (Medicare 0.0124** 0.0115** 0.0121%** 0.0183*** 0.0169*** 0.0169***
(0.00506) (0.00505) (0.00505) (0.00646) (0.00646) (0.00646)
Other rac 0.0153*%** 0.0143*** 0.0138*** 0.0222*** 0.0206*** 0.0196***
(0.00419) (0.00418) (0.00417) (0.00533) (0.00534) (0.00533)
Hispanic ethnicity (Registry 0.00873* 0.00751 0.00621 0.00506 0.00311 0.00216
(0.00496) (0.00496) (0.00499) (0.00631) (0.00634) (0.00639)
2007.yes 0.00390 0.00556** 0.00515** 0.00490 0.00755** 0.00687**
(0.00239) (0.00240) (0.00239) (0.00299) (0.00302) (0.00300)
2008.yes 0.00906***  0.0111*** 0.0105*** 0.00809** 0.0114%*** 0.0104***
(0.00260) (0.00261) (0.00260) (0.00338) (0.00340) (0.00337)
2009.yes 0.00845***  0.0107*** 0.00980***  0.0105*** 0.0141%*** 0.0128***
(0.00274) (0.00275) (0.00276) (0.00345) (0.00344) (0.00345)
2010.yes 0.0123*** 0.0143*** 0.0132%%** 0.00713** 0.0103%*** 0.00873**
(0.00290) (0.00290) (0.00291) (0.00353) (0.00357) (0.00355)
2011.yes 0.00755** 0.00922***  0.00783** 0.0108*** 0.0134%*** 0.0114%**
(0.00307) (0.00311) (0.00314) (0.00382) (0.00386) (0.00386)
2012.yes 0.0130%*** 0.01471*** 0.0125%** 0.0138*** 0.0155%*** 0.0131***
(0.00325) (0.00327) (0.00328) (0.00398) (0.00403) (0.00399)
2013.yes 0.0129*** 0.0142%*** 0.0123%%** 0.0193*** 0.0214%%** 0.0189***
(0.00324) (0.00325) (0.00327) (0.00395) (0.00400) (0.00397)
Constar 0.0965*** 0.125%** 0.187%** 0.164%** 0.209%** 0.293%**
(0.00957) (0.0100) (0.0135) (0.0123) (0.0126) (0.0177)
Observation 254,237 254,237 253,596 254,237 254,237 253,596
R-square 0.034 0.035 0.035 0.057 0.057 0.057

Robust standard errors in parenth
#+% n<0.01, ** p<0.05, * p<0.:
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Table A2: Mortality (One & Two Years) Random Effects Regression

1) (2) 3) 4) (5) (6)
VARIABLES deathly deathly deathly death2y death2y death2y
HRR-level ICD Rat: 0.0717*** 0.100*** 0.0848*** 0.0734*** 0.116%** 0.0952***
(0.0220) (0.0219) (0.0218) (0.0280) (0.0277) (0.0276)
Ln(volume -0.00852***  -0.00846*** -0.0129%** -0.0130%**
(0.00103) (0.00102) (0.00131) (0.00130)
HRR-level Rx Rat -0.0930%*** -0.126%**
(0.0142) (0.0183)
Ejection Fraction (EF) <20 -0.00358***  -0.00358***  -0.00359***  -0.00464***  -0.00465***  -0.00467***
(0.000341) (0.000341) (0.000341) (0.000427) (0.000427) (0.000428)
EF 2(-25% -0.00459***  -0.00459***  -0.00457***  -0.00550***  -0.00549***  -0.00547***
(0.000394) (0.000393) (0.000394) (0.000493) (0.000493) (0.000493)
EF 25-30% -0.00225***  -0.00226***  -0.00225***  -0.00388***  -0.00390***  -0.00390***
(0.000383) (0.000383) (0.000383) (0.000480) (0.000480) (0.000480)
EF 3(-35% -0.000778* -0.000769* -0.000773* -0.00109* -0.00108* -0.00107*
(0.000465) (0.000465) (0.000465) (0.000582) (0.000582) (0.000583)
EF > 35% 0.00150*** 0.00150*** 0.00149*** 0.00198*** 0.00198*** 0.00195***
(0.000294) (0.000294) (0.000294) (0.000368) (0.000368) (0.000368)
EF Missing 0.0188*** 0.0182*** 0.0186*** 0.0270*** 0.0262*** 0.0251***
(0.00690) (0.00690) (0.00693) (0.00864) (0.00864) (0.00867)
NY Heart Assoc. Class 0.00249 0.00246 0.00194 0.00509 0.00505 0.00445
(0.00394) (0.00393) (0.00394) (0.00493) (0.00493) (0.00493)
NY Heart Assoc. Class 0.0478*** 0.0479*** 0.0474*** 0.0705*** 0.0706*** 0.0700***
(0.00387) (0.00387) (0.00387) (0.00484) (0.00484) (0.00485)
NY HeartAssoc. Class I 0.154%** 0.153%** 0.153%** 0.189*** 0.189*** 0.188***
(0.00491) (0.00491) (0.00492) (0.00615) (0.00615) (0.00615)
NY Heart Assoc. Class missi 0.0507*** 0.0492%%** 0.0492%*** 0.0870*** 0.0849%** 0.0852***
(0.0117) (0.0117) (0.0117) (0.0147) (0.0147) (0.0147)
Age 7(-74 0.0150*** 0.0151%*** 0.0152*** 0.0276*** 0.0277*** 0.0277***
(0.00182) (0.00182) (0.00182) (0.00228) (0.00228) (0.00228)
Age 7579 0.0366*** 0.0367*** 0.0367*** 0.0647*** 0.0648*** 0.0649***
(0.00183) (0.00183) (0.00183) (0.00229) (0.00229) (0.00230)
Age 8(-84 0.0625*** 0.0626*** 0.0628*** 0.108*** 0.109%** 0.109***
(0.00201) (0.00200) (0.00201) (0.00251) (0.00251) (0.00251)
Age 8t-89 0.100%*** 0.100*** 0.100%*** 0.173%** 0.173%** 0.173%**
(0.00288) (0.00287) (0.00288) (0.00360) (0.00360) (0.00360)
Age 904 0.179%** 0.179%** 0.179%** 0.270%** 0.270%** 0.271%**
(0.00781) (0.00781) (0.00782) (0.00978) (0.00978) (0.00979)
Previous cardiac arre 0.0563*** 0.0559%** 0.0558*** 0.0557*** 0.0550%*** 0.0552***
(0.00454) (0.00454) (0.00455) (0.00569) (0.00569) (0.00569)
Family history sudden arr¢ -0.0115%** -0.0116%** -0.0115%** -0.0183*** -0.0184*** -0.0183***
(0.00378) (0.00378) (0.00378) (0.00473) (0.00473) (0.00473)
Ventricular tacchycard 0.0446*** 0.0446%** 0.0444%** 0.0569*** 0.0569*** 0.0567***
(0.00160) (0.00160) (0.00160) (0.00201) (0.00201) (0.00201)
Non-ischemic dilated
cardiomyopath -0.0202*** -0.0199*** -0.0198*** -0.0299*** -0.0295*** -0.0293***
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Ischemic heart disez

Previous myocardial infarctic

Previous CAB(

Previous PC

Electrophysiology stuc

VT indication (ES stud)

Femal¢

Black

Hsipanic (Medicare

Other rac

Hispanic ethnicity (Registry

2007.yes

2008.yes

2009.yes

2010.yes

2011.yes

2012.yes

2013.yes

Constar

Observation
Group:

Robust standard errors

parenthese

*x n<0.01, ** p<0.05, * p<0.’

(0.00231)
0.0173%x*
(0.00246)
0.00855***
(0.00165)
0.00883***
(0.00156)
-0.0100%**
(0.00153)
-0.0189%***
(0.00277)
-0.00436
(0.00522)
-0.00718%**
(0.00147)
0.0301%***
(0.00225)
0.00903*
(0.00505)
0.0118%**
(0.00417)
0.00483
(0.00514)
0.00387
(0.00256)
0.00885%**
(0.00265)
0.00816***
(0.00266)
0.0115%**
(0.00279)
0.00677**
(0.00306)
0.0122%**
(0.00316)
0.0122%**
(0.00320)
0.102%**
(0.00923)
254,237
1,54¢

(0.00231)
0.0176%**
(0.00246)
0.00862***
(0.00165)
0.00885***
(0.00156)
-0.00999***
(0.00153)
-0.0180***
(0.00277)
-0.00401
(0.00522)
-0.00716%**
(0.00147)
0.0300%**
(0.00225)
0.00867*
(0.00505)
0.0113%**
(0.00417)
0.00443
(0.00514)
0.00558**
(0.00256)
0.0109%**
(0.00266)
0.0105%**
(0.00267)
0.0136%**
(0.00279)
0.00829%***
(0.00305)
0.0132%**
(0.00315)
0.0134%**
(0.00319)
0.130%**
(0.00977)
254,237
1,54¢

(0.00231)
0.0176%**
(0.00247)
0.00866***
(0.00165)
0.00868***
(0.00156)
-0.0100%**
(0.00153)
-0.0183***
(0.00277)
-0.00400
(0.00522)
-0.00716%**
(0.00147)
0.0299%**
(0.00225)
0.00957*
(0.00506)
0.0112%**
(0.00417)
0.00346
(0.00515)
0.00530**
(0.00256)
0.0105%**
(0.00266)
0.00984***
(0.00267)
0.0129%**
(0.00279)
0.00746**
(0.00306)
0.0122%**
(0.00315)
0.0122%**
(0.00319)
0.191%**
(0.0135)
253,596
1,543

(0.00289)
0.0270%**
(0.00308)
0.0130%**
(0.00207)
0.0204%**
(0.00195)
-0.0123***
(0.00191)
-0.0262%**
(0.00347)
-0.00620
(0.00654)
-0.0166***
(0.00184)
0.0494%**
(0.00283)
0.0138**
(0.00633)
0.0175%**
(0.00523)
0.000432
(0.00644)
0.00473
(0.00316)
0.00760**
(0.00328)
0.00997***
(0.00330)
0.00563
(0.00346)
0.00915**
(0.00382)
0.0121%**
(0.00395)
0.0176%**
(0.00400)
0.175%**
(0.0116)
254,237
1,54¢

(0.00289)
0.0275%**
(0.00308)
0.0131%**
(0.00206)
0.0205%**
(0.00195)
-0.0123%**
(0.00191)
-0.0250%**
(0.00346)
-0.00563
(0.00653)
-0.0166***
(0.00184)
0.0493%**
(0.00282)
0.0133**
(0.00632)
0.0168***
(0.00522)
-0.000123
(0.00644)
0.00733**
(0.00317)
0.0107***
(0.00329)
0.0135%**
(0.00331)
0.00874**
(0.00346)
0.0115%**
(0.00380)
0.0137%**
(0.00392)
0.0195%**
(0.00397)
0.216***
(0.0123)
254,237
1,54¢

(0.00290)
0.0275%**
(0.00309)
0.0133%**
(0.00207)
0.0203%**
(0.00195)
-0.0124%**
(0.00191)
-0.0251%**
(0.00347)
-0.00563
(0.00654)
-0.0165***
(0.00184)
0.0493%**
(0.00282)
0.0136**
(0.00634)
0.0163***
(0.00522)
-0.000673
(0.00645)
0.00681**
(0.00317)
0.0101***
(0.00329)
0.0126%**
(0.00331)
0.00768**
(0.00347)
0.0102***
(0.00381)
0.0120%**
(0.00393)
0.0178%**
(0.00398)
0.300%**
(0.0171)
253,596
1,543
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Table A.3: Mortality (One& Two Year) OL S Fixed Effects Regression

1) (2) (3) (4) (5) (6)
VARIABLES deathly deathly deathly death2y death2y death2y
HRR-level ICD Rat: 0.0582* 0.0723** 0.0698** 0.0332 0.0554 0.0531
(0.0348) (0.0352) (0.0353) (0.0440) (0.0442) (0.0445)
Ln(volume -0.00567***  -0.00586*** -0.00888***  -0.00925***
(0.00220) (0.00222) (0.00274) (0.00277)
HRR-level Rx Rat -0.0713 -0.0986
(0.0781) (0.0987)
Ejection Fraction (EF) <20 -0.00367***  -0.00367***  -0.00369***  -0.00480***  -0.00480***  -0.00483***
(0.000380) (0.000381) (0.000381) (0.000471) (0.000471) (0.000472)
EF 2(-25% -0.00454***  -0.00454***  -0.00452***  -0.00544***  -0.00544***  -0.00541***
(0.000408) (0.000408) (0.000409) (0.000501) (0.000501) (0.000502)
EF 25-30% -0.00225***  -0.00225***  -0.00225***  -0.00387***  -0.00386***  -0.00387***
(0.000356) (0.000356) (0.000357) (0.000451) (0.000451) (0.000452)
EF 3(-35% -0.000749* -0.000750%* -0.000757* -0.00104* -0.00104* -0.00102*
(0.000413) (0.000412) (0.000413) (0.000549) (0.000549) (0.000550)
EF > 35% 0.00151*** 0.00152*** 0.00150*** 0.00198*** 0.00199*** 0.00195***
(0.000316) (0.000316) (0.000316) (0.000390) (0.000390) (0.000390)
EF Missing 0.0158** 0.0158** 0.0165** 0.0243** 0.0242** 0.0238**
(0.00768) (0.00768) (0.00774) (0.0101) (0.0101) (0.0101)
NY Heart Assoc. Class 0.00226 0.00230 0.00185 0.00497 0.00504 0.00452
(0.00348) (0.00348) (0.00348) (0.00495) (0.00495) (0.00496)
NY Heart Assoc. Class 0.0478*** 0.0479*** 0.0476*** 0.0708*** 0.0709*** 0.0706***
(0.00350) (0.00350) (0.00351) (0.00494) (0.00494) (0.00495)
NY Heart Assoc. Class | 0.154%** 0.154%** 0.153*** 0.189%** 0.189*** 0.189***
(0.00585) (0.00585) (0.00586) (0.00731) (0.00731) (0.00733)
NY Heart Assoc. Class missi 0.0448%*** 0.0447*** 0.0449%*** 0.0825*** 0.0823*** 0.0828***
(0.0111) (0.0111) (0.0111) (0.0144) (0.0144) (0.0144)
Age 7(-74 0.0151*** 0.0151*** 0.0152*** 0.0277*** 0.0277*** 0.0276***
(0.00166) (0.00166) (0.00166) (0.00206) (0.00206) (0.00206)
Age 7579 0.0365*** 0.0365*** 0.0366*** 0.0647*** 0.0647*** 0.0647***
(0.00182) (0.00182) (0.00183) (0.00228) (0.00228) (0.00229)
Age 8(-84 0.0617*** 0.0618*** 0.0620*** 0.108*** 0.108*** 0.108***
(0.00214) (0.00214) (0.00214) (0.00257) (0.00257) (0.00258)
Age 8t-89 0.0978*** 0.0978*** 0.0979*** 0.170%** 0.170*** 0.170***
(0.00330) (0.00330) (0.00330) (0.00411) (0.00411) (0.00412)
Age 904 0.173*** 0.173*** 0.174%** 0.265%** 0.265*** 0.266***
(0.0107) (0.0107) (0.0107) (0.0125) (0.0125) (0.0125)
Previous cardiac arre 0.0544*** 0.0543*** 0.0541%** 0.0532%*** 0.0531%** 0.0531%***
(0.00549) (0.00549) (0.00549) (0.00631) (0.00631) (0.00632)
Family history sudden arre -0.0114%** -0.0115%** -0.0115*** -0.0176*** -0.0177*** -0.0177***
(0.00362) (0.00362) (0.00362) (0.00467) (0.00467) (0.00467)
Ventricular tacchycard 0.0442*** 0.0442*** 0.0441*** 0.0565*** 0.0565*** 0.0563***
(0.00191) (0.00191) (0.00191) (0.00228) (0.00228) (0.00228)
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Non-ischemic dilated

cardiomyopath -0.0186*** -0.0186*** -0.0186*** -0.0281*** -0.0280%*** -0.0279%**
(0.00243) (0.00243) (0.00243) (0.00315) (0.00315) (0.00315)
Ischemic heart disee 0.0185*** 0.0185*** 0.0185%** 0.0285%** 0.0285*** 0.0286***
(0.00264) (0.00264) (0.00264) (0.00330) (0.00330) (0.00330)
Previous myocardial infarctic 0.00906***  0.00908***  0.00916***  0.0132*** 0.0132%** 0.0134%**
(0.00172) (0.00172) (0.00172) (0.00220) (0.00220) (0.00220)
Previous CAB( 0.00886*** 0.00884*** 0.00874*** 0.0202%** 0.0202%*** 0.0202%***
(0.00165) (0.00165) (0.00165) (0.00201) (0.00201) (0.00201)
Previous PC -0.00996***  -0.00997***  -0.0101*** -0.0122%** -0.0122%%** -0.0123%%**
(0.00163) (0.00163) (0.00163) (0.00200) (0.00200) (0.00200)
Electrophysiology stuc -0.0193%*** -0.0193*** -0.0193*** -0.0259*** -0.0259%** -0.0257%**
(0.00282) (0.00282) (0.00282) (0.00381) (0.00381) (0.00382)
VT indication (ES stud) -0.00444 -0.00427 -0.00400 -0.00726 -0.00699 -0.00676
(0.00514) (0.00514) (0.00514) (0.00659) (0.00661) (0.00662)
Femalt -0.00726***  -0.00724***  -0.00722***  -0.0169*** -0.0168%** -0.0168%**
(0.00147) (0.00147) (0.00147) (0.00186) (0.00186) (0.00186)
Black 0.0257*** 0.0256*** 0.0258%** 0.0444%** 0.0444%** 0.0448%***
(0.00231) (0.00231) (0.00232) (0.00292) (0.00293) (0.00293)
Hsipanic (Medicare 0.00468 0.00470 0.00573 0.00944 0.00946 0.00986
(0.00509) (0.00509) (0.00510) (0.00646) (0.00646) (0.00648)
Other rac 0.00767* 0.00763* 0.00771* 0.0132** 0.0132** 0.0130**
(0.00424) (0.00424) (0.00425) (0.00551) (0.00551) (0.00551)
Hispanic ethnicity (Registry 0.000784 0.000786 -0.000117 -0.00384 -0.00384 -0.00418
(0.00498) (0.00498) (0.00499) (0.00632) (0.00631) (0.00632)
2007.yes 0.00375 0.00480* 0.00485* 0.00439 0.00603* 0.00602*
(0.00247) (0.00250) (0.00250) (0.00305) (0.00311) (0.00310)
2008.yes 0.00852%*** 0.00974%** 0.00975*** 0.00666* 0.00858%** 0.00859**
(0.00265) (0.00270) (0.00271) (0.00345) (0.00352) (0.00353)
2009.yes 0.00710** 0.00852*** 0.00836*** 0.00838** 0.0106*** 0.0104***
(0.00277) (0.00283) (0.00284) (0.00351) (0.00358) (0.00359)
2010.yes 0.0100%*** 0.0113%*%** 0.0112%%** 0.00284 0.00478 0.00463
(0.00304) (0.00309) (0.00309) (0.00375) (0.00378) (0.00378)
2011.yes 0.00493 0.00575* 0.00587* 0.00519 0.00647 0.00666
(0.00344) (0.00346) (0.00346) (0.00444) (0.00445) (0.00446)
2012.yes 0.0104*** 0.0110%*** 0.0107*** 0.00787* 0.00871* 0.00834*
(0.00375) (0.00376) (0.00376) (0.00473) (0.00472) (0.00473)
2013.yes 0.0104*** 0.0110%*** 0.0108%*** 0.0132%** 0.0142%** 0.0141%**
(0.00378) (0.00378) (0.00378) (0.00473) (0.00473) (0.00474)
Constar 0.105%** 0.126%** 0.172%** 0.182*** 0.215%** 0.279%**
(0.0111) (0.0136) (0.0509) (0.0142) (0.0175) (0.0646)
Observation 254,237 254,237 253,596 254,237 254,237 253,596
R-square 0.045 0.045 0.045 0.045 0.045 0.045

Robust standard errors in parentheses.

**x 0<0.01, ** p<0.05, * p<0.1

55



Table A 4: Risk Adjustnment Regressions for |ICD Rates

A 4.1 Year = 2002
N = 4,964,561 (20% sanpl e).
R-squared = 0. 01x

Par amret er St andar d
Vari abl e DF Esti mat e Error t - Val ue
Age 65-69 0. 00190 0. 00005412 35. 08
Age 70-74 0. 00196 0. 00005403 36. 24
Age 75-79 0. 00183 0. 00005491 33.32
Age 80-84 0.00124 0. 00005852 21.17
Femal e -0. 00175 0. 00004916 35. 55
Bl ack 0. 00010194 0.00011105 0. 40
White 0. 00028484 0.00008870 3.21
ZI P | ncone 1 0. 00000161 0.00009434 0.02
ZI P Poverty rate -0. 00072561 0.00042969 -1.69
Dual Eligible (yes=1) -0.00074099 0.00005040 -14.70
County Snoking Rate -0. 00002326 0.00000668 -3.48
County Diabetic Rate -0.00003132 0.00002310 -1.36
County Obesity Rate 0. 00000141 0.00000765 0.18
County Drinking Rate 0. 00000285 0. 00001061 0. 27
Di agnosed CHF (yes=1) 0.00684 0. 00004263 160. 52

Ref erence groups: Ml e, Age 85+, O her race. HRR fixed effects included.

A 4.2: Year = 2006
N = 24, 606, 213

R-squared = 0.014

Par amret er St andar d

Vari abl e Esti mat e Error t - Val ue

Age 65-69 0. 00336 0. 00003208 104. 79
Age 70-74 0. 00352 0. 00003263 107.77
Age 75-79 0. 00342 0. 00003307 103. 44
Age 80-84 0. 00239 0. 00003468 68. 94
Femal e -0. 00264 0. 00002731 -96. 80
Bl ack -0. 00004876 0. 00006464 -0.75
White 0. 00010578 0. 00005058 2.09
ZI P | ncone - 0. 00007070 0. 00005687 -1.24
ZI P Poverty - 0. 00058706 0. 00026231 -2.24
Dual -El i gi bl e (yes=1) -0.00114 0. 00003058 -37.22
County Snoki ng -0. 00001244 0. 00000384 -3.24
County Di abetes - 0. 00005567 0. 00001212 -4.59
County QObesity 0. 00001787 0. 00000427 4.19
County Drinking 0. 00002902 0. 00000707 4. 11
Di agnosed CHF (yes=1) 0. 01329 0. 00002588 513. 57

Ref erence groups: Ml e, Age 85+, O her race. HRR fixed effects included.
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A 4.3. Year = 2013

N = 24, 236, 818
R-squares = 0.011

Par amret er St andar d
Vari abl e Esti nmate Error t - Val ue
Age 65-69 0. 00231 0. 00002522 91.75
Age 70-74 0. 00243 0. 00002620 92.73
Age 75-79 0. 00236 0. 00002755 85. 66
Age 80-84 0. 00180 0. 00002903 62.13
Femal e -0. 00147 0. 00002258 -64. 96
Bl ack 0. 00000132 0. 00004891 0.03
Wit e - 0. 00000656 0. 00003605 -0.18
ZI P | ncone 0. 00004656 0. 00004611 1.01
ZI P Poverty rate 0.00017423 0. 00021617 0.81
Dual -eligible (Yes=1) -0. 00065135 0. 00002520 -25.85
County Snoki ng 0. 00000428 0. 00000341 1.25
County Di abet es - 0. 00003945 0. 00000854 -4.62
County QObesity 0. 00001063 0. 00000326 3.26
County Drinking 0. 00000949 0. 00000529 1.79
CHF Di agnosis (yes=1) 0. 01024 0. 00002266 451. 75
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