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Abstract: 
 

There are remarkably large differences in the timing of adoption and intensity of use of new 
technologies. What factors determine such differences?  Is it because of higher returns to using the 
new technology, or systematic misperceptions about their expected returns? We address these 
questions using a unique registry dataset for a quarter-million patients with implantable cardiac 
defibrillators (ICDs), a medical device that reduces the risk of sudden cardiac arrest. We develop 
a structural model of Bayesian learning that allows for misperception of provider skill that can 
lead to overly optimistic or pessimistic behavior.  Briefly, our estimates suggest that for ICDs, the 
most rapid adopters were overly optimistic, leading both to high utilization rates and for these early 
innovators, below-average returns to the technology.  We find that misperception can explain half 
of hospital-level variation in risk-adjusted mortality and nearly three-quarters of the variation in 
adoption and use.  In addition, the model predicts, correctly, that those hospitals exhibiting the 
greatest optimism about their own ability are the ones that scale back quickest. These results 
suggest an important role for misperception (both optimistic and pessimistic) in explaining the 
wide variation in adoption and use of new technologies, and suggests caution in equating rapid 
diffusion to productivity gains. 
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I. Introduction 

A central question in the productivity literature is what explains the enormous variation in 

the adoption and use of new technology (Comin and Hobijn, 2004, 2009; Skinner and Staiger, 

2015, Comin and Mestieri, 2018). There is no lack of potential explanations for these variations; 

Grilliches (1958), for example, emphasized differences in the profitability of hybrid-corn adoption, 

while Comin and Hobijn (2007) and Caselli and Coleman (2006) rely on heterogeneity across 

agents in the value of the new technology. Non-adopters may also optimally hold back because 

they are waiting for the price to decline or are better at the old technology (Jovanovic and Nyarko, 

1996), or because they face higher costs from suppliers (Suri, 2011).  

A related literature seeking to explain slow diffusion instead as the consequence of poorly 

informed agents who lack appropriate education or information about potentially profitable 

innovations (e.g., Foster and Rosenzweig, 1995; Conley and Udry, 2010; Rogers, 2010; Skinner 

and Staiger, 2007) or time-inconsistency and a lack of commitment devices (Duflo, Kremer, and 

Robinson, 2008). All of these papers seek to explain why diffusion is so slow despite the clear 

economic benefits of adopting new technologies, and the implications of this slow diffusion for 

productivity growth (Comin and Hobijn, 2010, and Comin and Mestieri, 2018). 

In this paper, we ask a closely related question: Why are some so quick to adopt a new 

technology and using it intensively across a wide swath of applications? Nearly all of the previous 

studies assume that early adopters face greater profitability, better information, and superior 

relative advantage in the new technology.  However, these assumptions have been difficult to test 

given that there are rarely direct measures of the return for the specific adopter from using the 

technology, and when they are available, it is difficult to differential between contextual factors 

(e.g., risk, appropriateness) and others that are intrinsic to the adopter (e.g., skill).  

We sidestep these difficulties by using a unique clinical registry for implantable 

cardioverter defibrillators (ICDs), an expensive medical device that reduces the risk of sudden 

cardiac arrest, to measure ex post productivity for both early and late adopters in treating patients 

with congestive heart failure (CHF). This allows us to estimate a Bayesian learning model in which 

adoption and intensity of use for the technology depends on adopter productivity.  We nest within 

this model the possibility that adopters can exhibit misperception, that they could be either overly 

optimistic or pessimistic about the value of the new technology, or about their own skill in using 

the new technology. The idea of misperception or more specifically, overconfidence in adoption 
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has received attention in fields such as psychology (e.g., Moore and Healy, 2008), finance and 

management  (Malmendier and Tate, 2005; Barber and Odean, 2001, Glaser and Weber, 2007; 

O’Neill, Pouder; and Buchholtz, 1998), industrial organization (Camerer and Lovallo, 1999), and 

in health care (Berner and Graber, 2008; Cutler et al. 2019), but much less attention in the 

productivity literature. 

 Using the Medicare claims data, we find first that that between 2002 and 2005, rates of 

ICD use nearly doubled nationally, but with considerable variation in the speed of diffusion; in 

some regions rates quadrupled, while in other regions they barely budged; since that time, 

however, on average the use of ICDs has scaled back dramatically.1  As well, we have identified 

wide variation in productivity across hospitals, with 2-year risk-adjusted mortality exhibiting a 

standard deviation of 0.031 relative to its mean of 0.218.  There has been surprisingly little 

evidence of “learning by doing,” with conditional mortality for ICD procedures declining only 

slightly, by 0.004, between 2006 and 2013. Finally, we find a positive correlation between the use 

of ICDs in patients and risk-adjusted mortality, suggesting that patients receiving ICD implants 

from the most rapid adopters and users of the technology were more likely to die following the 

procedure.  

To explain these four empirical facts, we develop an optimizing Bayesian framework 

where both doctors and patients are heterogeneous and health outcomes are uncertain. Patients 

differ in the potential benefits from an ICD implant while providers differ in their ability in 

implanting ICDs. If the providers’ perceptions about their skill are unbiased, those with more skill 

will, on average, adopt earlier and implant more ICDs, while those with lower skill level find fewer 

patients for which the technology has positive net expected returns (e.g., Currie and MacLeod, 

2013; Currie, MacLeod, and Van Parys, 2015; Chandra and Staiger, 2007). Therefore, in the 

absence of biases in perceived skill, the model predicts that systematic variation in the intensity of 

use of ICDs is entirely driven by the doctors’ skill in applying the technology. 

We introduce a new parameter nested in our model that allows for misperception of the 

doctors’ own skill; we deem them to be overly optimistic when the provider gets worse outcomes 

by going too deeply into the pool of potential patients, and conversely. While our model cannot 

                                                           
1 The “exnovation” or scaling back of use has been found in other surgical procedures during this period; see 

Bekelis et al. (2017).   
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distinguish between the agent’s over-optimism about their own skill, or their overly optimistic 

view of the ICD’s value relative to other treatment, we can reasonably rule out an alternative 

explanation of extrinsic motivation, as in a supplier-induced demand model (Chandra et al., 2011).2 

Our goal is to fit the theoretical model to the empirical moments of the ICD data.  We first 

calibrate parameters that are common to all hospitals to match aggregate moments related to the 

cross-sectional distribution of ICD use and mortality rates. Second, given these common 

parameters, we calibrate the level of true and perceived skills to match observed patterns at the 

hospital level for ICD use and mortality. We also allow physicians to learn over time about their 

biases with Bayesian learning about their own skill. A key prediction of the model is that, other 

things equal, overly optimistic physicians should scale back, with the speed commensurate with 

the physician’s prior distribution of her own skill level.  We also estimate the learning model using 

the hospital-level panel with their associated (initial) misperception parameters, and test the model 

by predicting mortality and utilization out-of-sample through 2013.  

Briefly, we find that misperception is a key driver of ICD use and conditional mortality, 

explaining half of the variation in risk-adjusted mortality and nearly three-quarters of the variation 

in rates of adoption and use.  Despite the simplicity of the model, it explains roughly 50 percent 

of the variation in the annual hospital-level change in perceived skill. Finally, the out-of-sample 

implied ICD use and conditional mortality for 2013 matches the observed variables very closely; 

the model predicts the drop in ICD use rate from 0.21 per 100 to 0.14, the declines in the ICD 

standard deviation and cross-sectional correlations between skill and ICD use, and the lack of 

improvement in aggregate mortality rates.  

In sum, these estimates suggest that systematic misperceptions are an important reason why 

some hospitals experienced such rapid adoption, and others were much slower in adopting. Yet 

physicians learned from their experience with this new population of patients; those who were the 

most overconfident also scaled back their use of ICDs most rapidly, leading to a (small) reduction 

in the conditional mortality rate.  Our findings differ from other studies of clinical learning-by-

doing (e.g., Jovanovic and Nyarko, 1995; Gong, 2017) in that we find no empirical evidence that 

                                                           
2 As we discuss in Section 5, in a supplier-induced demand model, some physicians adopt ICDs and over-use them, 
despite potential harm to their patients, in order to increase their income.  In this type of model, there is no learning 
and scaling back; physicians knew they were harming their patients from the outset, and thus would have had little 
incentive to scale back.  
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true skill improved over time. Our results also differ from earlier analyses of diffusion, in which 

early adopters were the “innovators” and slow diffusers “laggards” (Rogers, 2004). This view has 

been articulated in health settings by Currie, MacLeod and Van Parys (2015), who find that the 

most aggressive physicians in treating heart attacks using stents (according to then-current 

standards) gained the best results.  Our finding can be reconciled with theirs by noting that for 

heart attacks, the new and then unproven technology of stenting turned out ex post to have been 

far more advantageous than expected, while the medical consensus appears to be that ICDs are 

less successful in practice than first envisioned (McMurray, 2016).  That is, heterogeneity in the 

degree of misperception – whether because of over-optimism or over-pessimism – is likely to be 

an important explanation for why there is so much variability in the adoption and use of new 

technologies.  

The rest of the paper is organized as follows. Section 2 describes the technology and 

documents its diffusion patterns, while Section 3 develops the model and Section 4 the analysis. 

Finally, Section 5 discusses the interpretation of the findings, robustness checks and generalization 

of our findings to other technologies and sectors in the economy.  

 

2. Implantable Cardioverter Defibrillators (ICDs) 

Congestive heart failure (CHF) is a very common illness especially among elderly people 

(Rogers, 2013), with a prevalence of 5.8 million people in the U.S., far more common than acute 

myocardial infarctions (or heart attacks), with a prevalence of about 715,000 annually. While heart 

attacks are sudden medical emergencies treated (often successfully) with a variety of medical 

interventions, CHF is a chronic illness whose progression can only be slowed by appropriate 

medical management (Kolata, 2017).  The typical progress of CHF is from the New York Heart 

Association Class I (the least severe) through to Class IV (the most severe), at which point the 

annual mortality rate ranges between 20-50 percent (Ahmed et al., 2006). 

An important risk facing CHF patients is a sudden cardiac arrest, which occurs when the 

heart suddenly stops functioning, typically because of arrhythmia, or irregular heart rhythm.  This 

causes rapid and unsynchronized heartbeat, leading to little or no blood being pumped from the 

heart, and a complete absence of a heartbeat (van Reys, 2014). Implantable cardioverter 

defibrillators (ICDs) are small electronic devices that are surgically implanted in the pectoral 

region of the chest and connected with wire “leads” to key locations of the heart.  These leads 
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serve two functions.  The first is to monitor the rhythm and detect tachycardia (irregular or weak 

heart beats), and the second is, when necessary, to shock the heart with a strong electrical current, 

effectively “rebooting” the conduction system. (Popular entertainment shows often show 

physicians using paddles to administer electrical shocks;3 ICDs are internal automated versions.) 

Over time ICDs have become more effective and entailed fewer complications as the size of the 

ICD shrunk, and the sophistication of the computer programs designed to detect arrhythmias 

improved.  

Initially, ICDs were developed in the 1980s and 1990s for people who had already 

experienced and survived a cardiac arrest, and were at risk of experiencing another one. As ICDs 

became more compact and reliable, attention turned to the larger group of people with congestive 

heart failure (CHF) at risk of cardiac arrest but who had not yet experienced the life-threatening 

event; for these patients the ICD is deemed “preventive.” A large 2005 randomized trial, SCD-

HeFT, found substantial mortality benefits of up to 7 percentage point increases in survival 5 years 

after the procedure (Bardy et al., 2005). It is important to note that ICDs provide no other benefit 

to patients other than a “reboot” in the case of sudden cardiac arrest; thus mortality as a measure 

of health outcomes is an apposite measure. Soon after the SCD-HeFT trial, ICDs were allowed by 

Medicare in the U.S. to be used as a preventive device for patients with weakened hearts 

(congestive heart failure, or CHF) who had not yet experienced a cardiac arrest, thus expanding 

dramatically the population of those eligible for ICDs; thus the “adoption” is for the use of an 

existing technology in a new population, rather than a brand-new technology. We use the Medicare 

claims data linked to a Centers for Medicare and Medicaid Services (CMS) clinical registry of 

every ICD implanted during 2006-13 with detailed information on key clinical variables that 

characterize both appropriateness for treatment, and subsequent risk of mortality.  

The SCD-HeFT trial included only the intermediate Class II and Class III CHF patients 

with low “ejection fractions” or the heart’s ability to pump blood to the rest of the body.4 The 

reason why the trial was limited to only these two groups was the consensus that for Class I (the 

least serious) CHF patients, the risks outweighed potential benefits given the rarity of sudden 

                                                           
3 An example from CSI: New York:  https://www.youtube.com/watch?v=_lJCDrYxK9A  
 
4 As well, the ejection fraction should be 35% or less in patients with Class II or III Heart Failure.  Despite the rarity 
of older patients in the randomized trials, there are no guidelines that recommend against the use of ICDs on the 
basis of age. 
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cardiac arrest in this group versus the risks of broken leads or infections, while for the more severe 

Class IV patients, the heart is so weakened that it can no longer sustain pumping, no matter how 

many times it reboots. For these patients, ICDs can lead to a series of successive and painful 

shocks, sometimes delaying an otherwise peaceful demise as the ICD continues to go off until the 

batteries are drained (Friedrich and Bohm, 2007).  Despite these guidelines, a small fraction of 

ICD procedures were done for those with either Class I or Class IV patients, or for those who had 

been diagnosed with CHF only recently, and thus have not yet tried medical management.  In our 

analysis, we adjust for these different characteristics, but do not address the more complex problem 

of whether higher-quality physicians should be more or less likely to follow guidelines.5  

Finally, to understand the growth and subsequent reduction in the use of ICDs, it is 

important to rule out the development of a new technology that might have led to a shift away 

from ICDs.  While during this time, there was greater emphasis on adherence to guideline-directed 

drug prescriptions (e.g., Roth et al., 2016), there was no new innovation or breakthrough developed 

to reduce mortality among CHF patients (Kolata, 2017).6   

 

2.1 Patterns of ICD Diffusion in the Medicare Population 

To first study the evolution of ICD use, we use the 100% Medicare claims data for the fee-

for-service over-65 Medicare population to derive regional utilization rates that can then be 

assigned to hospitals (as described below).  Because of possible changes over time in coding 

standards, we develop measures for all new ICD implantations during 2002-13 (thus excluding 

replacement ICDs because of failed batteries or other reasons), and not simply those designated or 

coded for preventive purposes.7 To measure utilization, we use population-based rates at the 

hospital referral region (HRR) level, of which there are 306 in the U.S.8 These utilization measures 

                                                           
5 In the context of our model below, it is possible that higher-skill physicians could still gain good outcomes even 
for out-of-guideline patients. For this reason we do not include “within guideline” as a quality measure.  During the 
period of analysis, CMS cracked down on hospitals billing for out-of-guideline patients; however, these changes had 
no impact on risk-adjusted mortality, which adjusts for all characteristics of the patient. 
 
6  Recently a new treatment was developed for mitral valve regurgitation; see Kolata (2018).  
 
7 We begin the analysis using the claims data in 2002, when the sample of Part B claims data relevant for analysis is 
20% of all fee-for-service enrollees; the sample rises to 40% in 2003-05, and becomes 100% thereafter. We use CPT 
33249 rather than in-hospital DRG codes to measure incidence.  
 
8  HRRs were first developed by the Dartmouth Atlas project in the 1990s to create regions based on the migration 
patterns of individuals to their hospitals.  Thus HRR boundaries will often follow (e.g.) interstate highways and 
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are based on the residence of the patient; if a resident of the Memphis HRR received their ICD in 

Atlanta, the ICD would be assigned to the Memphis HRR rather than to Atlanta’s.  

Regions may differ in their use of ICDs because of a greater prevalence of disease.  For 

this reason, we adjusted all HRR-level rates, in each year, using a linear-probability year-specific 

risk adjustment model.9 We include as predictors at the individual level five-year age brackets (and 

a category of 85+), sex, race (black, white, and other), at least one physician visit with a diagnosis 

of congestive heart failure, dual eligibility with Medicaid (an individual indicator of serious illness, 

poverty, or both). At the ZIP code level we included poverty rates and income (from the 2010 

Census) and at the county level smoking, obesity, and diabetes based on Behavioral Risk Factor 

Surveillance System (BRFSS) data; these latter health behavior measures are highly predictive of 

regional mortality rates (Wennberg et al., 2014).  The regression estimates, presented in Table A.4 

for three selected years (2002, 2006, and 2013), indicate that individual attributes are important 

risk adjusters – particularly the diagnosis of CHF – but that the measures of health behaviors are 

less important.10   

In Figure 1, we present risk-adjusted population-based rates of ICD use by HRR between 

2002-13 for the U.S., and for selected regions, with an emphasis on the regions adopting most 

rapidly. Note that between 2002 and 2005, average ICD use increased from 0.12 per 100 Medicare 

enrollees to 0.23, a near doubling of average rates, with a decline in rates to 0.15 per 1000 by 2013.  

Some part of this increase could have been because of a “stock-flow” issue; the stock of 

patients newly eligible for the ICD could have lead to an uptick in utilization for 2006, generating 

the increased rates. As we discuss in more detail below, the ICD registry data includes the duration 

of the CHF, so we might expect that the duration of CHF for patients getting an ICD in 2006, for 

example, would be longer than for patients in 2013.  This hypothesis would imply that a typical 

ICD patient would have experienced CHF for a longer period of time in 2006 compared to 2013. 

                                                           

cross state lines.  Each HRR includes a major tertiary hospital that performs neurosurgery and cardiac surgery. We 
use HRRs rather than the smaller hospital service areas (HSAs) for better sample precision.  
9  We use year-specific risk adjustment regressions because average rates of use vary so much by year. 
Alternatively, we could have specified a logistics or probit over all years, but the computational requirements (e.g, 
estimating 3500 individual coefficients in a sample of nearly ½ billion observations) would have been excessive.  
  
10 We are probably over-adjusting because more aggressive physicians are likely to both be more likely to diagnose 
CHF for “gray area” patients, and prescribe ICDs.   
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However, if anything the opposite is found; those with CHF duration more than 9 months actually 

rose during the period, from 72 to 82 percent.  

As suggested by Figure 1, there is widespread variability in rates of utilization.  Three of 

the most rapid adopters were Munster IN (from 0.14 in 200311 to 0.37 in 2006), Mason City IA 

(from 0.13 in 2004 to 0.49 in 2007), and Terre Haute IN (from 0.12 in 2003 to 0.55 in 2005).  By 

contrast, many larger metropolitan regions exhibited much smaller increases, with rates remaining 

low (e.g., Seattle, Manhattan, as well as other cities such as Los Angeles not reported in the Figure) 

throughout the entire period.  

Figure 2 provides a map for the entire U.S. of 2006 ICD utilization rates by HRR.  This 

figure confirms the geographic disparity in the use of ICDs across the entire U.S., with a 10-fold 

difference between Victoria, Texas (0.03 in 2006) to Terre Haute (0.50 in 2006).12  Finally, we 

explore whether the decline in ICD use is driven by those hospitals that adopted ICDs more 

intensively or those that adopted them less. Figure 3 plots the change in hospital-level ICD use 

rate between 2002 and 2005 (x-axis), and between 2006 and 2013 (y-axis). The cross-hospital 

correlation between initial and subsequent change in ICD rates is strongly negative (-.40, p < .001), 

showing that the hospitals with the most rapid initial growth also experienced the most rapid 

decline.  Despite the overall decline in the ICD use rate, however, the coefficient of variation (the 

standard deviation divided by the mean) declined only slightly, from 0.31 in 2006 to 0.28 in 2013.  

While population-based rates of ICD utilization are drawn from HRRs, we seek to estimate 

our model at the level of the hospital that performs the ICD.13 We do this by assigning to each 

patient their HRR-level utilization measure (as described above). For example, if a hospital in the 

Boston area draws from the Boston, Providence, and Portland ME HRRs for their ICD patients, 

the hospital-specific rate of ICD utilization will be a weighted average of those three HRR rates; 

this is shown in a schematic in Figure 4a.  

                                                           
11 The corresponding rate in 2002 is suppressed because the numerator comprises fewer than 11 observations, the 
CMS limit for reporting data.  
 
12 One might be concerned with small-sample bias in these relatively small HRRs, but the patterns show a strong 
temporal trend; high rates in 2006 are matched (or even exceeded) by high rates in 2005 and 2007.  
 
13 Measures of ICD intensity in utilization requires both a numerator (the number of ICDs implanted in a given year) 
and a denominator (the number of potential patients). While regions are well suited to calculate both numerator and 
denominator (e.g., as done in the HRR-level analysis above), calculating the denominator of a given hospital, 
particularly in a city with multiple hospitals, is exceedingly difficult.  
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2.2. Variation in Health Outcome Following ICD Implantation 

A rare luxury in studies of technology diffusion is to have access to information on the 

performance of adopters after adopting the technology. When CMS approved the use of ICDs for 

preventive purposes, it was done with the understanding that hospitals would send detailed clinical 

information about the patient to CMS. We use this 100% registry, linked to the Medicare 

denominator file for people age 65+, during 2006-13, which allows us to calculate mortality rates 

based on Medicare denominator files available through 2015.14 The registry includes detailed 

information on the registry that includes whether the ICD was for patients with CHF (e.g., 

preventive), their risk class (I through IV) as well as ejection fraction and many other clinically 

relevant factors such as having ventricular tachycardia, family history of cardiac arrest, the exact 

ejection fraction, and other measures, along with the identity of the hospital performing the 

procedure.15 These data are far more detailed than what could ever be recovered from Medicare 

billing claims. To estimate outcomes, we focus on a relatively homogenous group of CHF patients 

who have never had an ICD implanted; we implicitly assume that the hospital-specific mortality 

effect estimated using these patients is similar to the effect for other patients receiving an ICD.16  

Ideally, we would like to measure true treatment effects; the benefit of an ICD relative to 

the status quo of medical management for CHF.  However, because we do not observe patients 

who did not receive and ICD in our registry data, our estimates and modeling are specific to 

mortality rates only among those treated; we discuss this concern, and how we address it, in the 

modeling section in Section 4.  

Table 1 provides summary statistics of the ICD sample (N = 253,613).  The average age 

among the Medicare enrollees (all of whom are 65+) is 74.5, and just 28 percent are female. Note 

                                                           
14 Mortality data are drawn from the 2006 mortality data in www.dartmouthdiffusion.org. 
 
15 One complexity associated with identifying hospitals is that in some cases, the hospital was not identified; only 
the NPI for the provider who performed the procedure.  We are grateful to Andrea Austin for providing a cross-walk 
from ICD-capable providers to the hospital where they performed the plurality of procedures, which we used to 
create our dataset. 
 
16 We recognize that some hospitals may include more than one cardiologist or electrophysiologist who performs the 
procedures, but identifying pure physician effects from the hospital-level team that both implants and also maintains 
the ICD is problematic.   
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that the mortality rate barely budged between 2006 and 2013. We also include summary statistics 

for additional covariates from the registry, including the ejection fraction, prior cardiac arrest, 

family history, prior heart attack, and other variables.  

Hospital-level risk-adjusted mortality is modeled using the following hierarchical 

structure:  ���� = ��� + ����	 + 
���     (1)  

 where  ��� = ��
_������� + �� + ���  (2) 

  

The first equation is at the patient level, where mortality (����) for patient j treated at 

hospital i in year t is a binary variable that depends on characteristic of the patient (����), and a 

hospital effect ( itΨ ). At the hospital level, the hospital effect in turn depends on the hospital-level 

utilization rate of ICDs in that year (ICD_rateit) plus a random hospital effect (θi) and a random 

hospital-year effect (νit). We allow the hospital effect of mortality to depend on the utilization rate 

of ICDs because that is implied by our model. We are particularly interested in the variance of itΨ  

and its covariance with the hospital’s ICD utilization, which depends both on the predictable 

characteristics of the hospital, Var(��
_�������), as well as the provider-specific error term 

Var(��). Our preferred specification is a hierarchical random-effects model, which provides 

estimates of the key parameters (�, �������) and also estimates of the individual hospital effects, ���� = ��
_�������� + ��� + ����, where we use best linear unbiased predictions for the hospital and 

hospital-year random effects (e.g., “shrink” the estimate of the provider residual towards the fitted 

value ��
_�������� depending on the sample size of the provider). We focus on random-effects 

models, but in sensitivity analyses we also consider least-squares regressions and models with 

provider-level fixed effects. Because we wish to estimate the hospital-specific effect on mortality 

of ICD relative to medical management, in some specifications we add hospital-level controls (to 

X) to proxy for quality of medical management such as patient volume and the use of guideline-

consistent medical treatment for CHF patients.,  

The benefits inherent in ICD implantation arise only after several years (Bardy et al., 2005) 

so we focus on both 1-year and 2-year mortality. For the random-effects model, we estimate the 

distribution of itΨ  in Figure 4, which shows the risk-adjusted one-year variation in hospital-

specific mortality rates. As is clear from Figure 4, there is significant variation in conditional 
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mortality rates across hospitals;  the standard deviation of one-year conditional mortality rate 

across hospitals is 2.2 percentage points, with mortality rates in high-mortality hospitals that are 

twice as high as those in low-mortality ones.17  Finally, Figure 6 presents the evolution of one-year 

conditional mortality over time for the U.S. Conditional one-year mortality declined slightly from 

12.8% in 2006 to 12.0% in 2013.  

 

2.3 The Correlation Between ICD Diffusion and Mortality  

A natural question that should help us understand the drivers of ICD diffusion is the 

relationship between ICD use and conditional mortality. To this end, we combine the utilization 

data (Section 2.1) and the outcome estimates (Section 2.2) to compute the correlation between 

conditional mortality and ICD utilization. Rather than report mortality rates at the hospital level, 

we instead convert them back to the HRR level based  on the residence of the patient, as shown 

schematically in Figure 4b. Figure 7 shows the correlation between the average (2006-13) ICD 

utilization rate, and the fully risk-adjusted relevant hospital-level 2-year mortality. The correlation 

coefficient is 0.15 for one-year mortality, and 0.11 for two-year mortality. The graph also identifies 

several of the more interesting regions; in particular those regions exhibiting both low mortality 

rates and low use of ICDs (the Minneapolis-St. Paul HRR); while others exhibit high rates of ICD 

use, coupled with high rates of mortality, such as Miami, Terra Haute IN, and Munster, IN.  That 

Munster is an outlier may be explained in part by a specific cardiologist who was sued by for 

inappropriate cardiac surgery and ICD placement (Creswell, 2015). 

In Table 2, we report summary estimates of the OLS, random effect, and fixed-effect 

models, limited to just two-year mortality; regression results are reported in the Appendix for OLS 

in Table A.1, random effects in Table A.2, and hospital fixed-effects in Table A.3 that also include 

one-year mortality. As shown in Table 2, there is a consistent positive correlation and significant 

correlation between the rate of use of ICDs in a given year, and risk-adjusted mortality rates, in 

both the OLS and random-effects model, suggesting in the reduced form that patients of the most 

rapid diffusers experience worse outcomes. The point estimates are much smaller and not 

significant in the fixed-effect model; this is because most of the identification is from cross-

sectional variation.    

                                                           
17 Recall that these estimates are derived from the random-effects model, and are therefore already shrunken towards the mean; a 
fixed-effects model would have exhibited even more variability. 
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As sensitivity analysis, we also include the log of annual volume of all ICD performed at 

the hospital for the over-65 population (including non-CHF patients), to adjust for the conventional 

finding that higher-volume hospitals yield better outcomes. The coefficients on these variables are 

as expected; an increase in log-volume of 1 leads to a 1.4 percentage-point decline in 2-year 

mortality in the random-effects model (Column 4 of Table 2).  Another sensitivity analysis 

included quality measures for regional medical management specific to ICD patients (Roth et al., 

2016). The idea is that for hospitals with poor ICD outcomes, ICDs may provide a better option 

than the alternative – medical management – if physicians at that hospital do an even worse job of  

medical management (e.g., Chandra and Staiger, 2007).  While the coefficient estimates are in the 

expected direction (worse medical management and low volume are both associated with worse 

outcomes for ICD patients), including them as controls does not significantly attenuate the 

coefficient on utilization. 

To sum up, we find wide variation in rates of diffusion across the U.S. with regard to ICD 

use; reversion to the mean with regard to utilization, in the sense that regions with the most rapid 

growth were most likely to “exnovate” or scale back on their use (Bekelis et al., 2017); wide 

variability in ICD mortality rates across hospitals, and a positive correlation between utilization 

and mortality.  We turn next to developing a model that can potentially explain these empirical 

patterns.   

 

3. The Model  

Our goal is to develop a model of technology adoption/use that helps us understand the 

empirical patterns of ICD utilization and conditional mortality. It builds on an optimizing Bayesian 

framework where both physicians and patients are heterogeneous and health outcomes are 

uncertain. Patients differ in the potential benefits from an ICD implant while physicians and their 

teams differ in their ability in implanting ICDs. Additionally, we recognize that physicians may 

have biased perceptions about their true ability and about the intrinsic value of ICD implants.  

We use the model in three different ways. First, it helps us study how the decision to 

implant an ICD and the mortality conditional on an ICD implant depend on the health provider’s 

perceived and actual skills. Second, it helps us rationalize the risk adjustments made in the 

empirical measures of ICD use and mortality conditional on ICD implant. By formalizing this link 

we can better ascertain the required assumptions for our measures to be unbiased. Finally, we 
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extend the model by allowing physicians to learn from patient outcomes. This allows us to study 

the role of learning in the evolution of ICD use and mortality by comparing the out-of-sample 

model predictions with the actual data.    

We note that while our model is couched in terms of physician decisions, our data is at the 

level of the hospital. This is because ICD procedures are typically team efforts; nurses, 

electrophysiologists, contribute at various stages to better or worse outcomes. For many hospitals, 

there is only one primary ICD-capable physician, in which case this assumption is innocuous; for 

larger hospitals we will be blending the choices of two or more physicians.18    

3.1 Static setting  

We begin with the decision problem from the perspective of the physician. There is a 

continuum of patient types j that differ in their potential value of the ICD implant and of the 

alternative treatments. The value of the implant for patient j depends on the patient type ��� and 

on the doctor’s skill level ��; given that the only goal of the ICD is to keep the patient alive in the 

event of sudden cardiac arrest, ��� can reasonably be viewed as survival.  In particular, the value 

for a patient after an ICD implant is19  ��� + ��      (3) 

We, as econometricians, do not observe the patient type but only some patient 

characteristics ��, which we assume to be a zero-mean vector in the population; �� is also 

observable by the doctor. In addition, the patient type is also defined by a component, �� , that is 

unobservable to us.  ��� = �� ∗ � + ��     (4) 

The value of patient j if she receives an alternative treatment,  ��, also has a component 

that depends on the patient observable characteristics, �� ∗ !, and a component that is unobservable 

to us,  �:  

 �� = �� ∗ ! +  �      (5) 

                                                           
18 We also assume that the ICD-capable physician makes the final decision about which patients to choose.  The 
networks of primary care physicians and how they “feed” patients to the ICD-capable hospitals may also affect 
choices of patients; see for example Moen et al. (2018).  
 
19 Without loss of generality, we normalize the costs of implanting an ICD to 0. 
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Let μ�� denote the difference between the patient's potential value from receiving an ICD 

implant v�� and her value from alternative treatments, w��. That is  

%�� ≡ ��� −  �� = �� ∗ 	 + %�   (6) 

The distribution of patient's net value from treatment conditional on her observable 

characteristics is normal. In particular,  μ��|��~*���	 + %̅, ,-.�,    (7) 

where %̅ is the population mean of %�. The precision of the prior of μ� is denoted by /- = 0123. The 

two components of the net value from treatment, v� and w�, are normally distributed and, for the 

time being, we assume that they are independent; we relax this assumption below. Therefore, ,-. =
,5. + ,6. . 

Doctor’s information structure and priors.  We make three assumptions about how 

doctors perceive the patient’s type, μ��, and their skill level, ��. First, doctors do not directly 

observe μ��. They just observe an imperfect signal of s�� that takes the form: 

s�� = μ�� + 8      (8) 

where ε is normal with mean 0 and variance ,9.. 

Second, we allow doctors to have a biased prior on the net value of ICD implants in 

population. In particular, the prior distribution of μ�:� |�� for doctor i is 

μ�:� |��~*���	 + %̅� , ,-.�,    (9) 

where %̅� − %̅ is the bias in doctor i’s perception of the average net value of ICD implants. 

If %̅� − %̅>0, doctor i believes that ICD implants are on average better than what they actually are.   

Third, doctors do not know their true skill, ��; �;�< denotes the mean of the doctor’s prior 

distribution of ��. We refer to �;�< as perceived skill. The gap between the perceived and true skill 

is the misperception bias, =;�. If �;�< > �� the physician is overly optimistic (or overconfident) with 

regard to her skill, while if  �;�< < �� she is under-confident or pessimistic. If  �;�< = �� the doctor 

is unbiased.   

Treatment decision. Doctor i will implant an ICD to patient j if the expected value from 

implanting an ICD given the observable information �� and his private signal s�� is greater than 

the expected value from alternative treatment. That is, @�A��� −  �� + ��|s�� , ��B ≥ 0.    (10) 
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Given the information structure, the posterior distribution of the patient’s net type is  

μ�:� |s��, ��~*�%̅�,�< , 1231E3123F1E3�    (11) 

where the posterior mean is 

    %̅�,�< = ��	 + �1 − H�%̅� + HI�,    (12) 

with H = 123123F1E3, and with I� = s�� − ��	 being the signal net of the observable characteristics.  

Using the expression (11) for the posterior mean of μ�:� |s�� , ��, condition (10) becomes  

��	 + �1 − H�%̅� + HI� + �;�< ≥ 0,            (13) 

which using the definitions of %̅� and ��<, implies 

 ��	 + �1 − H�%̅ + HI� + ��JKKKKKKKLKKKKKKKMNOP�QRST OS� PSOSV�� + �1 − H��%̅� − %̅� + =;�JKKKKKLKKKKKMWXYR�Z�QO P�QR ≥ 0          (14) 

Expression (14) decomposes the net benefits from implanting an ICD perceived by the 

physician into two components. The first component -- labelled unbiased net benefit – is the net 

benefit that would perceive a physician that does not misperceive her skill or the net value of ICD 

implants. The second term captures the physician’s misperceptions about the improvement 

resulting from the ICD. Note from (14) that from the perspective of the decision to implant an 

ICD, these doctor biases are isomorphic. Therefore, we can subsume the doctor biases into a unique 

term that we denote by bi. Using this notation, we can rewrite the condition for an ICD implant as  ��	 + �1 − H�%̅ + HI� + �� + [� ≥ 0    (15) 

Expression (15) implies that doctors implant an ICD, if they receive a signal I� greater than 

a threshold I���<, ��� defined by: 

 I� ≥ I\��<, ��] ≡ − �0^_�_ %̅ − �:_̀ − Qab_      (16) 

where the variable ��< = �� + [� is the sum of the doctor’s true skill plus her biases due to her 

misperceptions in her true ability and on the net value of ICDs. For brevity, we refer to ��< as 

perceived skill but the reader should remember that this variable also includes the bias in the 

doctor’s prior about %̅. 
ICD usage. The probability of implanting an ICD for a doctor with perceived skill ��< in a 

patient with observable characteristics �� is 

  Pr\ ��
 = 1|��<, ��] = e f�I�gR\Qab,�:] hI,      (17) 
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where I\��<, ��] is defined by equation (4) and where f(.) is the pdf of the signal I�. That is, it is a 

normal distribution with mean %̅, and variance ,-. + ,i.. 

Proposition 1 (Determinants of diffusion). Ceteris paribus, the use of ICDs increases with 

perceived skilled, ��<.  

Proof: 

j kl\ mnop0|Qab]jQab = - f qI\��<, ��]r ∗ jR�.�jQab > 0, because, from expression (4),  
jR�.�jQab < 0 .□ 

 

Intuitively, the threshold signal required to implant an ICD decreases with perceived skill. 

Therefore, doctors with a high perceived skill are more likely to observe a patient’ signal above 

their threshold. Note that what matters for the incidence of ICDs is the doctors perceived signal, ��<. (Recall that ��< = �� + [�.) Therefore, for a given skill, ia , the use of ICDs increases with 

greater optimism (or overconfidence), [�. Similarly, for a given level of bi, higher (true) skill 

induces a greater use of ICDs. Note also that expression (17) shows that the only doctor-specific 

parameter that affects the ICD use rate is the perceived skilled of the doctor, ��<. Therefore, given 

the population parameters that define the distribution of signals, %̅ and H, we could (and will) use 

the observed ICD use rates to infer the doctor’s perceived skill level. 

Outcomes. In our dataset we have information on the mortality rate conditional on an ICD 

implant. To use this information, we need to translate what death means in our model. Naturally, 

the event of death (in the near term) should be associated with a low ex-post value for the patient. 

It also seems reasonable that a death that occurs further in the future is associated with a higher 

ex-post utility for the patient. By applying this logic, we can establish a mapping between mortality 

and utility. In particular, we interpret the death of the patient within x years as an ex-post utility 

below a threshold st, where st is increasing in x. 

The x-years mortality rate conditional on an ICD implant for a doctor with perceived skill, ��<, and actual skill, ��, is:  

u�\�� + �� ≤ stw��
 = 1, ��<, ��, ��� = Pr\�� ≤ st − �� ∩  ��
 = 1]Pr\ ��
 = 1|��<, ��] = 

e e VE�iy�z{z V|�}y�z{z ~e V��5y�T��{�a�q�ab,�:r�|�{E� 5y�T}yTiy
e V��Ry�z�q�ab,�:r TRy         (13)   
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where fi�. � is the pdf for ε,  f5�. � and f}�. � are the pdf for patient’s type vj and ��, and fR�. � is 

the pdf for the signal s. While utilization is affected only by perceived skill, conditional mortality 

is affected by both the doctor’ true skill and perceived skill. This observation is the basis to 

identifying the true skill levels.  

Proposition 2 (Determinants of mortality conditional on ICD implant).  (i) The 

probability of death conditional on implanting an ICD increases with the doctor’s misperception, 

bi, and (ii) Skill has an ambiguous effect on the conditional mortality rate.  

Note that in both of these results we do not condition on patient’s characteristics, other than 

for the fact that they have received an ICD. 

Proof: The proofs are as follows: 

(i)  �Pr ��� + �� ≤ st| ��
 = 1, ��<, ����[� = 

A1 − u���� ≤ st| ��
 = 1, ��<, ���B q− jR̅j�ar � e e VE�iy�z{z V|�}y�V��R\Qab,�:]^iy�T}yTiyz{z
e VE�iy�z{z e V|�}y�z{z ~e V��5y�Tz�q�ab,�:r�|�{E� 5y�T}yTiy� > 0      

(14) 

Both the first and third terms are positive, but the key is the middle expression; that when 

overconfidence rises, the “hurdle” point at which the physician does the procedure declines, thus 

expanding the number of patients for which the net benefit is negative.     

(ii)  

�Pr ��� + �� ≤ st| ��
 = 1, ��<, ������ = − � e e fi�8′�f}��′�f5�st − ���h�′h8′ĝgĝge e fi�8′�f}��′�ĝg qe f5��′�hgR\Qab,�:]^i �′rĝg h�′h8′� 

+ A0^W��5:���| mnop0,Qab,Qa�B_ � e VE�iy�V|�}y�V��R\Qab,�:]^iy�Tiyz{z
e e VE�iy�V|�}y�z{z ~e V��5y�Tz�q�ab,�:r{E 5y�z{z T}yTiy�      (15) 

 

Expression (8) shows that skill affects mortality by improving the outcomes for patients 

who would have been treated anyway (first term), but also by bringing in more patients with net 
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benefit, but whose underlying mortality probability could be higher as well (second term).20  As a 

result, the net effect of skill on conditional mortality is ambiguous. Of course, if we controlled for 

patient characteristics, expression (8) collapses to its first term and skill exerts an unambiguously 

positive effect on health outcomes.  

 

3.2 Dynamics through learning 

We explore the dynamic properties of the model by allowing doctors to learn about their 

true skill. The learning problem we pose is one where doctors are uncertain both about the level of 

their skill but are certain about the precision of the signals they receive. Additionally, doctors may 

differ in the precision of their priors about their skill.  

We start by describing the nature of the signals and the priors. After implanting n ICDs 

for patients newly covered by the CMS rules, doctors receive n imperfect signal, �I��Q ��p0O . Signals 

are random draws from a normal distribution with unknown value of the mean �� and known value 

of the precision /RQ. In particular, the signal I��Q = �� + ξ��, where the noise term ξ��  is distributed 

according to a normal   with zero mean and precision /�. The doctor’s prior of the distribution of 

�� is normal with mean ��< and precision τi such that τi>0 and −∞ < ��< < ∞.  

Note that, in addition to the bias in the gap between true and perceived skill 

(overconfidence), doctors may have a different bias now in the precision of the conditional prior 

distribution of skill. For any given level of perceived skill, some doctors may be very confident 

about the accuracy of their estimate (stubborn) while others may be too unsure (insecure). One 

way to measure this bias in confidence is by the difference between the precision in the prior 

distribution of skill, τi, and the precision of skill implied by the signal I��Q  (that is, the signal net of 

noise), /Q = �������^���. Therefore, if τi>/Q a physician is stubborn and if τi</Q she is insecure. 

The following Lemma, helps us characterize the evolution of perceived skill over time.  

Lemma 1 (Posterior distribution of skill) The posterior distribution of �� is normal with 

mean ��<′ and precision τi+n/RQ, where  

��<y = �aQabFO���R������
�aFO���        (16) 

                                                           
20 This is one reason why some highly-skilled physicians may appear to be lower quality; because they end up with 
the most difficult patients.   
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Proof: See De Groot (1971), page 167. □ 

 

Lemma 1 describes the evolution in perceived skill. Subtracting �� in both sides of 

expression (9) and substituting the tildes by time subscripts we obtain  

                                    ��,�F0< − ��,�< = −H��Q ∗ \��,�< − ��] + H��Q ∗ ∑ ���O�p0    (17) 
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is the learning coefficient.  

Replacing in ���,�< − �� by =�,�, we obtain21 

��,�F0< − ��,�< = −H��Q ∗ [�,� + H��Q ∗ ∑ ���O�p0      (18) 

Because HQ� is, in principle, independent of the bias, equation (12) shows that the larger 

the bias in perceived skill, the larger the expected correction in the perceived skilled, and 

conversely.  

Adding and subtracting �� to the left-hand-side of (12), we can express the law of motion 

for misperception as [�,�F0 − [�,� = −H��Q ∗ [�,� + H��Q ∗ ∑ ���O�p0      (19) 

Equation (19) shows that learning induces mean-reversion in the level of doctor 

misperception, whether overconfidence or under-confidence.  

The speed of learning in our model is captured by the coefficient H��Q . Expression (17) 

shows that H��Q  varies across doctors. H��Q  decreases in the precision of the prior precision of skill 

(��), and increases in the precision of the signal (/RQ) and in the number of signals/ICD implants 

                                                           
21 Subtracting and adding �� to the right-hand side of (14) we obtain the following expression for the evolution of 

overconfidence:  ∆[�,�F0 = −HQ� ∗ [�,� + HQ� ∗ ��  where ∆[ = [�,�F0 − [�,�. 
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(¡).22 Other things equal, a more stubborn doctor will learn more slowly (i.e. will have a lower H��Q ). 

 

4. Analysis and Model Estimation 

We next use the model to study the determinants of empirical patterns of ICD use and 

conditional mortality documented in Section 2. Our strategy has 3 steps. First, we use the values 

of aggregate moments to calibrate parameters of the distributions of patient type, and doctor true 

and perceived skill. These parameters are common across hospitals and impact the decision rules 

of doctors and the outcomes from implanting ICDs. Second, using the common parameters and 

the hospital-level data on usage rate of ICDs and mortality conditional on ICD, we identify the 

hospital-level true and perceived skill, ��� and ���< . Third, we use the identified parameters to: (i) 

explore determinants of ICD use and conditional mortality in the cross-section and time series; (ii) 

conduct counterfactual exercises of “turning off” misperception, and (iii) using out-of-sample 

approaches, study the ability of the learning model to predict the evolution of misperception, ICD 

use and mortality over time.  

 

4.1 Identification 

Unit of observation. As noted earlier, while our model captures decision-making process 

of individual physicians, our unit of observation is the hospital, where treatment decisions and 

quality are typically determined by small teams, often lead by a cardiologist or electrophysiologist.   

Aggregate parameters. We start by calibrating the parameters that are common across 

hospitals. Without loss of generality can normalize the average skill in population, ¢£¤, and the 

average utility of a patient with heart failure in the absence of ICD treatments, ¥£ , to 0. These 

                                                           
22 Furthermore, H��Q  evolves over time. In the special case where ¡/RQ is constant in any given hospital, we can use Lemma 

1 to derive the following difference equation for HQ�: 
  HQ�F0 = _�¦0F_�¦         

The solution to this difference equation is 

HQ� = _§a0F�∗_§a          

where H¨� = 1�§b3
1�§b3 F1a©3  is the learning coefficient in the initial period.  
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parameters are isomorphic to ª£ in the ICD use equation (5), and to st in the mortality rate equation 

(6). 

 An important aspect of the calibration is to bridge the conceptual gap between the units in 

the model (i.e., utility) and in the outcomes we observe (i.e., mortality after the ICD implant). We 

do this by calibrating the thresholds st to match the unconditional mortality rates for patients with 

congestive heart failure (CHF).23 Specifically, we set st so that the cdf of  � is equal to the x-years 

mortality of patients with CHF.  

These leaves 7 parameters to calibrate, the average level in population of misperception 

and the value of ICDs ([� and �̅�, and the variance in population of three patient-level parameters, �� ,  �, 8� , and two hospital/doctor level parameters �� and [� (,5., ,6. , ,i., ,Q., ,P.�. To calibrate these 

parameters, we use 8 moments: the mean and variance ICD use rate across hospitals, the mean and 

variance conditional 1- and 2-year mortality across hospitals, and the cross-hospital correlations 

between the ICD use rate and the 1- and 2-year conditional mortality rates.24 Note that our system 

is over-identified.  

A narrative for the model identification is as follows.25 For the time being, let’s take as 

given the values of the variance of the three patient level variables M ≡ (,5., ,6. , ,i.). Given these, 

the average level of over- or under-optimism, =̅, and ICDs value, �̅, determine the average ICD 

use rate, while the variance of perceived skill (,Q. + ,P.) determines the variance of ICD use across 

hospitals. Conditional mortality across hospitals is determined by M, =̅, and the average value of 

the ICD, �̅,, while the variance of one- and two-year conditional mortality helps us pin down the 

variance of true skill across hospitals/doctors and the relative variance of v and w.  

The variance of μ, (,5. + ,6.), and the noise of the signals (,i.) is identified from the 

correlation between ICD use rates and conditional mortalities. Intuitively, αi is identified by the 

                                                           
23 The rate of ICD use among potentially appropriate patients, 18.5 percent, is derived from Al Khatab et al. (2012) 
based on their study of ICD use in a cohort of CHF patients; we assume that variation in this parameter is 
proportional to observed variation in population-based utilization, which is of course much lower.  We know the 
mortality rate among those treated with an ICD, but we impute the mortality for those without an ICD (and the 

average treatment effect jµ ) used estimates from the largest randomized trial, which showed no impact after one 

year, and an approximately 2.5 percentage point reduction in mortality after 2 years (Bardy et al., 2005). 
 
24 All of these moments are computed over the period 2006-2013. 
 
25 In reality, some of the parameters affect more than one moment for example, the variances of all hospital level 
variables affect the variance of ICD use rates as well as the one- and two-year conditional mortalities.  
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correlation between ICD use and one-year mortality conditional on ICD implant; a high α reduces 

the sensitivity of the decision of implanting an ICD to the level of perceived skill, ��<. Therefore, 

those doctors with higher perceived skill (relative to actual skill) will not go as deep into the 

distribution of patients when αi is low. For this reason, their marginal patient has a higher μ, leading 

to lower mortality rates. As a result, a higher α is associated with a lower correlation between ICD 

use and mortality conditional on having an ICD. 

Table 3 reports the data and model-implied moments. The model does a good job of 

matching aggregate moments. The only target that the model misses is the average 2-year 

mortality. Table 4 reports the calibrated values for the aggregate parameters.  Considering first the 

baseline estimates, on average for ICD use, hospitals are overly optimistic with regard to their 

skill, with the mean of bi equal to 0.098.  Variation in misperception is also substantial, with a 

standard deviation of 0.02, roughly 2.5 times the standard deviation of variation in skill (0.008).  

Pessimistic or under-confident hospitals are therefore rare in our sample. Perhaps not surprising, 

patient-level variation in individual outcomes are also estimated to be large, suggesting the 

presence of unmeasured health-related factors; this is necessary to match the relatively low cross-

sectional dispersion of conditional mortality rates. 

Hospital level parameters. Once we have calibrated the common parameters, we identify 

for each hospital and year the true skill and degree of misperception that produce the observed 

ICD use rate and conditional mortality. Given the aggregate parameters, equation (5) shows that 

the ICD use rate is fully determined by the perceived skill of the hospital. Therefore, we can 

identify perceived skill by inverting the expression for ICD use rate (5). Proposition 2 shows that, 

for a given perceived skill, the conditional mortality is decreasing in true skill. Therefore, we can 

invert equation (6) to identify the hospital/year true skill level. 

We start by analyzing the identified levels of �� and =�; reassuringly, the distributions of 

hospital-level skill and overconfidence look approximately Normal, and the variance of �� and [� 
are close to the estimates of ,Q. and ,P. identified in the calibration of the aggregate parameters.26  

We note in passing geographic differences in misperception; the regions with greater optimism or 

overconfidence are in the South (e.g. Texas), South-East, and the Great Lakes (Michigan, Indiana, 

Ohio).   

                                                           
26 The variance of overconfidence is equal to 0.028 in the hospital-level identification vs. 0.025 in the aggregate calibration while 
the variance of skill is 0.0076 in the hospital-level identification vs.  0.0057 in the aggregate calibration. 
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To further understand the nature of variation in the hospital level estimates of skill and 

misperception we conduct a variance covariance decomposition. Specifically, let  «�� be the 

estimate of x in hospital i and year t, for «�� = ����< , ���, [���. Then we can decompose the variance 

of  «�� into the “within hospital” over time component, and the “between hospital” component (See 

Table 5).27 For all three parameters, the variance of the within component is smaller than the 

variance of the between component. However, there is significant variation in the relative 

contribution of the within and between components across the three variables. For perceived skill, 

the variance of the within component is approximately half the variance of the between component. 

By contrast, for skill, the variance of the within component is less than one fourth the variance of 

the between component. That is, providers are more effective in learning about the bias in 

perceived skill, than they are with learning-by-doing, which would induce time-variation in true 

skill.  

 

4.2 Analysis  

Now that we have identified the key parameters of the model at both the aggregate and 

hospital level, we can return to our primary goal, which is to assess the relative contribution of 

skill and overconfidence for the evolution of ICD utilization and health outcomes.  

4.2.1 Determinants of ICD use and conditional mortality. We start by exploring the 

empirical consequences of skill and misperception for ICD use and mortality.  First, we decompose 

the fraction of observed variation attributed to differences across providers in skill, and differences 

in misperception.  These simulations allow us to calculate the fraction of the variance in ICD use, 

or the variance of conditional mortality, attributable to variations in misperceptions across 

                                                           
27 Specifically, let ¬� denote the number of observations corresponding o hospital i,  «̅� the average of x in hospital i, and «̿ be the 
average of x across all hospitals. Then the within hospital i variance of x is 

���� = ∑ �ta¦^t̅a�3¦ ®a         

The between hospital variance is defined as  

���PS = ∑ �t̅a^t̿�3a ¯a         

Then variance of «�� can be expressed as: 

����«��� = ∑ °Q�aa ¯a + ���PS      

 



24 

 

hospitals. Table 6 reports these calculations. The decomposition indicates that 72 percent of the 

hospital variation in ICD utilization is due to variation in misperception, with the remaining 28 

percent because of variation in skill. Similarly, 55% of the hospital variation in (one-year) 

conditional mortality is due to variation in misperception, with the remainder owing to differences 

in skill. Therefore, we conclude that misperception is a major contributor to the observed variation 

in the adoption and diffusion of ICDs, and of equal importance in explaining variations in health 

outcomes.  

Table 7 provides results from the structural model in which the mean level of misperception 

is set equal to zero (but with an unchanged variance), where the variance is set equal to zero, and 

in the final column, both the mean and variance are set equal to zero, essentially “turning off” 

misperception.  Turning off misperception is predicted to reduce average ICD utilization rates from 

17.5 percent to 13.9 percent, or a 21 percent reduction.  Similarly, the extent of variation in ICD 

use is predicted to be cut to just 36 percent of the original standard deviation (from 4.46 percent to 

1.64 percent), while mortality is predicted to decline by 7 percent (with a corresponding decline in 

the standard deviation of mortality of 22 percent). These counterfactual exercises provide more 

support for the importance of misperception in explaining variation in technology adoption and 

use.  

 

4.2.2 Correlated skill and misperception 

We generalize the baseline model by assuming that [� = � ∗ �� + 8��. This assumption 

implies that the variance of overconfidence is ,P. = �.,Q. + ,ia±
. , where ,ia±

.  is the variance of 8�P, 

the variance of perceived skill is ,Qb. = �1 + ��.,Q. + ,ia±
. , and the correlation between true skill 

and misperception is ²=�����, [�� = ³
�0F ´Ea±3

µ3´�3 �
¶/3.  

The calibration of the aggregate parameters in this setting differs from the baseline in two respects. 

First, we need to calibrate �. Second, instead of calibrating the variance of the extent of 

misperception, we need to calibrate the variance of 8�P. In terms of identification, the correlation 

between true skill and overconfidence affects the correlation between ICD use and conditional 

mortality across hospitals. For a given variance of perceived skill, a higher value of � implies that 

those doctors that conduct more ICDs are also more skilled. Therefore, increasing � while keeping 
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constant ,Qb.  should lead to a lower correlation between ICD use and conditional mortality across 

hospitals.  

Table 4 provides evidence from a regression analysis that favors a positive correlation 

between skill (ai) and misperception (bi); the estimate of γ  is 0.47.  Given that risk-adjusted 

mortality is also higher in high-utilization regions, these estimates imply that in high-utilization 

hospitals, the adverse effects on clinical quality of overconfidence more than compensates for the 

somewhat higher skill levels.  (In Column 3 of Table 4, we also find a positive covariance between 

skill (ai) and the value to patients of being treated (vi)). Note that these estimates imply that 

hospitals with greater skill are also overly optimistic, since the correlation between �� and [ is 

Still, our key structural estimates are largely unchanged regardless of the assumption about the 

covariance structure, so we continue to use our baseline estimates in the subsequent simulations.  

 

4.2.3 Learning and the evolution of perceived skill. Next, we turn our attention to the time 

variation in overconfidence, and in perceived skill. In particular, we explore the ability of the 

learning model posed in section 2 to explain the evolution of perceived skill and conditional 

mortality. To this end, we first estimate the following econometric counterpart to the model 

dynamics characterized by equation (12): ��,�F0< − ��,�< = H¨� − H�Q ∗ [�,� + ¸�,�.     (14) 

Comparing specification (14) with equation (12), we can interpret the coefficients H¨� and H�Q. The intercept H¨� captures the average realization of H��Q ∗ ��� for hospital i. Unlike the learning 

coefficient in equation (12), we force the coefficient H�Q to be constant over time though it can vary 

across hospitals. Therefore, H�Q captures the average learning rate in hospital i.  

Column I of Table 8 reports the median value of H¨� and H�Q across hospitals. For 

comparison purposes, column II reports the estimates when the two parameters are restricted to be 

the same across hospitals.28 The key finding is that, despite its simplicity, the learning model 

captures a significant portion of the annual variation in perceived skill. In the baseline specification 

(with hospital-specific coefficients), the learning model accounts for 50% of the variation in the 

                                                           
28 The difference in the number of observations between both specifications is due to the fact that we require 
hospitals to have at least four observations to estimate the hospital-specific parameters. 
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change of perceived skill, while in the version where both the intercept and learning coefficients 

are restricted to be the same across hospitals, the R2 still is 23%.  

As predicted by our model, the median learning coefficient H�Q is significantly positive and 

between zero and one. The median point estimate is 0.47 which implies that the variance of the 

noise in the signal about the doctor’s skill is approximately the same as the variance of the prior 

of perceived skill. Interestingly, there is significant variation in the estimated learning coefficients. 

The standard deviation of H�Q across hospitals is 0.6.29 For comparison, the standard deviation of 

the intercept in (14) across hospitals is 0.13.   

To gain further insights about the learning process, we estimate the cross-hospital 

association between the learning coefficient H�Q and the overconfidence ([�¨¹) and skill (��¨¹) in 

2006, the initial year. That is, we run  H�Q = � + ��[�¨¹ + �Q��¨¹ + º�    (15) 

The fit of this specification is quite good with a R2 of 0.57, which implies that initial 

overconfidence and skill account for much of the cross-hospital variation in how quickly they learn 

about their overconfidence. Both coefficients, �P and �Q, are negative and significant.30 The fact  

that hospitals with lower learning coefficient HQ� are both overly optimistic, and have better-than-

average skill suggest that such hospitals have tighter priors about their skill. As a result, they 

perform more ICD procedures and, despite the greater number of signals, they learn more slowly 

about their true skill, cutting too gradually the rate of ICD use relative to other, more nimble 

hospitals.  

We conclude our analysis of the drivers of the growth in perceived skill by studying the 

relationship between the hospital level intercept in (14), H¨�,  and initial overconfidence and skill. 

To this end, we run a version of equation (15) but using H¨� as the dependent variable.31 The 

coefficient on skill is negative (-0.1) and marginally significant, but the coefficient on 

overconfidence is positive. This suggests that the mean reversion in perceived skill is not a 

mechanical artifact that more overconfident hospitals have lower intercepts in (14). It really 

                                                           
29 In 8% of the hospitals the estimate of the learning coefficient is negative, while in 21% it is greater than one. 
 
30 Their point estimates are -1.01, and -0.96 respectively with standard errors equal to 0.1 and 0.245. 
 
31 The R2 is lower (0.38). 
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follows from the fact that hospitals learn about their overconfidence and update their perceived 

skill.  

The role of initial skill in the evolution of perceived skill is also of interest. Other things 

equal, hospitals with higher initial skill experience larger declines in perceived skill. This 

observation seems to downplay the role of learning by doing -- true skill improves as hospitals 

implant more ICDs -- in the evolution of perceived/true skill. To assess more directly the relevance 

of improvements in skill from implanting ICDs (learning-by-doing) is by estimating the following 

specification ���F0 − ��� = H + !0��
�� + !.��� + º��   (16) 

where ICDit is the ICD use rate in hospital I in year t. The point estimates from this regression are 

!»0 = −0.127, and !». = −0.04, both statistically significant. Therefore, other things equal, we 

find no association between the secular trend in skill, and the lagged ICD use rate. 

 

4.2.4 Out-of-sample implications of learning for ICD use and conditional mortality. Now 

that we have shown that our stylized learning model is able to capture quite accurately the 

evolution of perceived skill, we directly explore whether the decline in ICD use and conditional 

mortality between 2006 and 2013 can be a consequence of learning about misperception.  

To investigate this hypothesis, we use the estimates of the learning model (column I of 

Table 8) to build a counterfactual measure of perceived skill due to learning. Then, we use our 

model to simulate the ICD use and conditional mortality levels in 2006 and 2013 for the 

counterfactual measures of perceived skill. Then we compare the evolution of the relevant 

moments under the counterfactual with those observed in the data. Table 9 presents the results 

from this exercise. 

The first three columns of Table 9 report the moments for the ICD use rate, with the first 

two rows corresponding to 2006 and the second two rows corresponding to 2013. The similarity 

in the moments for 2006 between model and data is by construction since we take the initial 

estimated misperception (or overconfidence) and skill parameters for each hospital and those 

produce the same ICD use rates and conditional mortalities we observed in the data. However, the 

predictions of the model for 2013 are out of sample since the values of skill and misperception we 

use to generate them are produced by the learning model instead. Therefore, only if the learning 

dynamics capture the evolution of true and perceived skill that we see in the data, we can expect 
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the distributions of ICD use and conditional mortality across hospitals in 2013 to be similar to the 

data. The key finding from Table 9 is that the model’s out-of-sample predictions for 2013 also 

provide a close match to the actual 2013 values. The learning model fully accounts for the observed 

6.8 percentage point decline in the ICD use rate.  The learning model also predicts the reduction 

in the dispersion in ICD usage rates across hospitals and the reduction in the correlation between 

skill and ICD use that we have observed in the data (decline from 0.94 to 0.895 in our out-of-

sample prediction vs. from 0.94 to 0.905 in the data).  

The second three columns present the moments for the conditional mortality rate. In the 

data, we observed a mild decline in the one-year conditional mortality rate from 12.8% to 12.0%. 

Our learning model fully accounts for this reduction in the conditional mortality.  Furthermore, the 

cross-sectional dispersion of conditional mortality in 2013 and its correlation with true skill across 

hospitals is very similar in the model and in the counterfactual. Thus the evolution of physician 

beliefs about the efficacy of ICDs for this new population of CHF patients can explain both the 

sharp decline (or exnovation) in the use of ICDs during this period, as well as a more modest 

decline in conditional mortality rates.  

 

5. Discussion  

What drives the diffusion of new technologies?  Research in economics has focused on 

factors primarily related to rates of return, whether because of input prices, differential factor 

productivity, or higher rates of return; the puzzle has often been why so many economic agents 

diffuse so slowly. In this paper, we allow for a different determinant of technological adoption 

and use -- misperception – where an individual’s perception of their own skill and ability causes 

them to step up or scale back the use of a new technology, even when true skills do not 

correspond to their beliefs. In the case of a specific medical technology, implantable 

defibrillators (ICDs), these behavioral biases appear to be important quantitatively and explain 

otherwise puzzling empirical regularities. 

How should the misperception parameter be interpreted?  As noted above in Section 3, we 

cannot distinguish between a misperception about the population-based mean of the treatment 

from a misperception about the physician’s own skills relative to others. Another explanation not 

previously considered is simply supplier-induced demand; the physician knows that the procedure 

is suboptimal for her patients, but she does the procedure anyway to make more money Chandra, 
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et al., 2011).  However, the supplier-induced demand story is at odds with results from the 

calibrated learning model; why should the most “entrepreneurial” physicians who are cognizant of 

their bias towards net income over patient health be the ones most likely to scale back over time.32 

While we cannot rule out “outlier” physicians with a strong weight on revenue over patient welfare 

(as in the case of the Munster Indiana physician documented by Creswell, 2015), we view these 

as exceptions rather than the rule. More generally, even if we accept that “misperception” is a 

portmanteau that includes a number of alternative explanations, the major point of our estimation 

approach is that this is quantitatively important in explaining why there is so much variation in 

adoption and utilization of technological innovations.33   

We acknowledge several limitations to the study, most of which are related to the 

specificity of the ICD technology. Many studies of learning-by-doing find improvements in 

mortality over time (Gong, 2017; Jovanovik and Nyarko, 1995; although see Huesch, 2009).  

The lack of strong progress in mortality that we observe may be explained by the long years of 

experience many physicians already have with implanting ICDs in other types of patients.  The 

change in coverage for an entirely new population of patients (e.g., CHF patients) means it is less 

surprising that the learning that we observe in the data was with regard to appropriateness for 

patients, rather than technical skill per se.     

Still, one might expect to see a sharp decline in ICD implantation rates for hospitals with 

the poorest mortality outcomes (as in Chandra et al., 2016). Yet there was little or no way for 

most physicians (or referral physicians) to observe their own skill, and to know whether their 

own risk-adjusted rates were above or below average.  The SCD-HeFT trial could have provided 

a rough guideline for mortality (roughly 8 percent mortality in the first year), but the patient mix 

in the community was substantially older than in randomized trials, so community-level 

physicians had no benchmark against which they could compare outcomes in their patients 

compared to the trial physicians.   

                                                           
32 One could argue that the entrepreneurial physicians were pressured to scale back because of pressure from CMS 
because CMS began to question out-of-guideline ICDs and threaten not to pay for them.  However, we found (in 
unreported analysis) there was essentially no correlation between rates of ICD use and the fraction out-of-guideline, 
nor was there a strong correlation between conditional mortality and the fraction out-of-guideline.  
  
33 Another alternative explanation is potential demand-side factors – e.g., patient pressures to seek the procedure – 
that could also lead to systematically overusing or underusing the procedure. While patient preferences are likely to 
be important at the individual level, there is little evidence that such preferences can explain regional differences 
(Cutler et al., 2019).  
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More problematic is that ICDs appear to have been less successful than expected (e.g., 

MacMurray, 2016) in part because of their side-effects; thus physicians may have viewed the 

initial trials as a particularly favorable signal, but they updated views over time. This pattern of 

enthusiasm followed by disappointment is not uncommon for medical procedures; as Jupiter and 

Burke (2013) have written:  

Artelon® arthroplasty, thermal shrinkage, Vioxx®, metal-on-metal hip 
arthroplasty, and Infuse® bone grafting in the spine—all had come onto the 
“market” with enthusiastic reports only to fall from grace to unhappy outcomes, 
permanent disabilities, and malpractice litigation. (p. 249).  
 
By contrast, other innovations have begun with much lower expectations, but ended up 

delivering large patient benefits.  For example, Currie, MacLeod, and Van Parys (2015) found 

that cardiologists who were more aggressive than then-current guidelines for percutaneous 

coronary interventions (PCI, or stenting) gained better results; in this case physicians gradually 

updated their priors that stents were more productive than expected.  We need not take a stand on 

the average level of misperception, whether positive or negative (or zero); the key finding is that 

at least for ICDs, the variance of misperception is large and persistent, thus explaining why we 

observe such a large variance in both adoption and the use of this technology.  

Still, how generalizable is the case of ICDs to technology outside of health care? The 

result that physicians overestimate their own skill level is certainly consistent with other data 

from laboratory experiments in which hypothetical entrepreneurs are overconfident about their 

own ability and enter into markets or games where failure is likely (Camerer and Lovallo, 1999). 

And a pattern of overconfidence is common across non-physicians, as for example with regard to 

individual assessment of one’s own driving skills (Svenson, 1981). Further data and case studies 

are clearly required, but despite these caveats, it appears there is a first-order role for 

misperception in both explaining the wide variations in the adoption and diffusion of new 

technologies, and in attenuating the aggregate productivity of new technologies.  
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Figure 1: Risk-Adjusted Rates of ICD use per 100 Medicare Enrollees for Selected Hospital 
Referral Regions, 2002-13.  
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Figure 2. Implantable Cardioverter Defibrillator (ICD) rates per 100 Medicare enrollees, 
2006. Risk adjusted for poverty, income, Medicaid dual-eligible, age, sex, race, county-level 
smoking, diabetes, obesity, and individual CHF diagnosis in the over-65 Medicare Fee-for-service 
population. 
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Figure 3: Correlation between 2002-05 and 2006-13 increases in Risk-Adjusted ICD 
Utilization Rates, at the HRR level (Rates per 100 Medicare enrollees for all types of ICDs).  
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Figure 4: Schematic to show how ICD utilization rates are assigned to hospitals, and how 
hospital mortality rates are assigned to hospital referral regions (HRRs).  
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Figure 5: Distribution of Risk-adjusted Random-Effects 2-Year Mortality by Hospital: 2006-
13 
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Figure 7:  Correlation Between Average ICD Utilization (2006-13) and 2-Year Risk-adjusted 
Mortality 
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Table 1: Summary Statistics for ICD Registry Data  
 

Variable        Mean 
       Standard     
      Deviation 

2-Year Mortality: 2006-13  0.218 0.413 
  2-Year Mortality: 2006 0.219 0.414 
  2-Year Mortality: 2013 0.216 0.411 
1-Year Mortality: 2006-13 0.123 0.328 
  1-Year Mortality: 2006 0.122 0.328 
  1-Year Mortality: 2012 0.118 0.323 
Fraction Inappropriate 0.098 0.297 
Ejection Fraction (Percentage) 25.766 7.319 
Fraction with EF > 35% 0.034 0.182 
Fraction Class I 0.029 0.169 
Fraction Class IV 0.043 0.202 
Age  74.897 6.248 
Previous cardiac arrest 0.020 0.142 
Family history: Sudden death 0.030 0.171 
Ventricular tacchycardia  0.225 0.418 
Non-ischemic dilated cardiomyopathy 0.320 0.467 
Ischemic heart disease 0.696 0.460 
Previous myocardial infarction 0.548 0.498 
Previous CABG 0.395 0.489 
Previous PCI 0.345 0.475 
Electrophysiology study 0.083 0.276 
VT indication (ES study) 0.021 0.143 
Female 0.282 0.450 
Black 0.101 0.301 
Hispanic (Medicare) 0.052 0.222 
Other race 0.025 0.157 
Hispanic ethnicity (Registry) 0.051 0.219 
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Table 2: Regression Coefficients for OLS, Random, and Fixed Effects Models: Two-Year Mortality  
  (1) (2) (3) (4) (5) (6) 

VARIABLES OLS OLS 
Random 
Effect 

Random 
Effect 

Fixed 
Effect 

Fixed 
Effect 

          
HRR-level ICD Rate 0.0765*** 0.103*** 0.128*** 0.0952*** 0.0445 0.0531 

 (0.0291) (0.0290) (0.0263) (0.0276) (0.0470) (0.0445) 

Ln(volume)  
-0.0133*** 

 -0.0130***  
-
0.00925*** 

  (0.00139)  (0.00130)  (0.00277) 
HRR-level Rx Rate  -0.122***  -0.126***  -0.0986 

  (0.0186)  (0.0183)  (0.0987) 

       
Observations 254,237 253,247 254,237 254,237 254,237 253,596 
R-squared 0.051 0.051     0.057 0.057 
Number of Groups     1,548 1,542     
Note: Covariates included in all regressions – see Appendix Tables A.1 (OLS), A.2 (Random Effects), and 
A.3 (Fixed Effects) for full sets of estimates.  Robust standard errors in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1       
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Table 3: Estimated Moments and Model Fit  
 
  

Data Baseline 

Average use of ICDs among candidates for an ICD 0.185 0.186 
Standard deviation (risk-adjusted) of the use of ICDs across 
hospitals 0.047 0.042 
 
One-year mortality rate conditional on an ICD 0.122 0.112 

Two-year mortality rate conditional on an ICD 
0.218 0.307 

Standard deviation of one-year mortality rate conditional on ICD 
across hospitals 0.023 0.020 
Standard deviation of two-year mortality rate conditional on ICD 
across hospitals 0.031 0.036 
Correlation between ICD use and one-year mortality rate 
conditional on ICD use, across hospitals 0.148 0.144 
Correlation between ICD use and two-year mortality rate 
conditional on ICD use, across hospitals 0.111 0.132 
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Table 4: Parameter Estimates with Sensitivity Tests when a, o, and v are correlated 
 
 

  
Baseline   

ai and oi 
Correlated  

  
ai and vi 

Correlated  
      

 

  

1.090  1.075  1.283 
      

 

  

0.020  0.022  0.022 
      

 

  
0.008  0.008  0.009 

      

 

  
1.163  1.062  1.126 

      

 

  
0.764  0.879  1.071 

      

 

  
0.098  0.105  0.116 

      

 

  

-1.066  -1.126  -1.043 
      

        γ   0.473   
      

        λ     0.251       

Gap in 
Moments 

0.072   0.051   0.055 

  

,6:.  

,�a.  

,Qa.  

,i:.  

,5:.  

=̅ 

�̅ − �£ − �� 
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Table 5: Variance Covariance Decomposition of Hospital-Level Parameters 
 

    ap   a   o 
          

Within 
Component 

 0.0168 
 

0.0015 
  

0.0086 

          

Between 
Component 

 0.0215 
 

0.0049 
  

0.0139 

          

Total Variance  0.0383 
 

0.0064 
  

0.0225 

              
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6: Contribution of Skill and Overconfidence to ICD use and Conditional Mortality 
     

    
ICD 
Use 

  Conditional Mortality 

       
Skill  27.6%  44.5% 
       
       
Overconfidence 72.4%   55.5% 
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Table 7: Counterfactual Policy Experiments 

    
 

    

Data 

  

Mean oi =0   STD(oi)=0   
Mean oi =0 & 

STD(oi)=0 

          
Average ICD rate  0.1753  0.1422  0.1562  0.01387 

          
Std(ICD rate)  0.0446  0.0417  0.0178  0.0164 

          
Average Conditional 
Mortality 0.1244  0.116  0.1242  0.116 

          
Std(Conditional Mortality) 0.0149  0.0144  0.0124  0.0116 

          

Correlation (ICD rate, 
Conditional Mortality)   0.219   0.324   -0.9943   -0.9893 

 
 
Table 8: Regression Results from the Learning Model  
 
 

 
 
  

Learning Model 

 I  II 
    

 

α0 -0.023*  0.0281 

 (0.0013)  (0.0113) 
    

 

αa 0.471*  0.1953 

 (0.007)  (0.0067) 
    

N 7776  8359 

R2 0.49   0.23 
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Table 9: Time-Variation Induced by Learning 
 

 
  

                    

   ICD use  Conditional Mortality 
          

   Mean Std 

Corr with 

ai  Mean Std 

Corr with 

ai 

          
2006 Data  0.21 0.053 0.94  0.128 0.016 0.65 

          

 Model  0.21 0.053 0.94  0.129 0.018 0.695 

          
2013 Data  0.142 0.033 0.905  0.1205 0.0152 0.644 

          
  Model   0.142 0.032 0.895   0.1198 0.0174 0.708 
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Appendix  

Expression (4) defines the diffusion of ICD for a doctor/hospital with a given perceived skill. To 
compute the aggregate diffusion of ICDs we just need to compute the expectation of (4) over the 
initial distribution of perceived skills across hospitals. Formally, the diffusion of ICD in population 
is given by  

Pr���
� = e fQb�¿� Pr� ��
 = 1|¿�h¿ĝg = e fQb�¿� qe f�I�gR̅�À� hIr h¿ĝg   (A.1) 

where fQb�. � is the distribution of perceived skill in population. 

Similarly, we can compute the standard deviation of the use of ICD’s across hospitals as  

Á�h���
�� = ÁÂÃ¬Ae fQb�¿��Pr� ��
 = 1|¿� − Pr���
��.h¿ĝg B   (A.2) 

The mortality rate conditional on ICD implant is    

u�\�� + �� ≤ sw��
 = 1� = Pr\�� ≤ s − �� ∩  ��
 = 1]Pr� ��
�  

= e V�,�b�À,Àb�qe e VE\i�]z{z VÄ\6�]z{z qe V2\-�]T�{Å���Åb�{E�{Ä� -�rTiyT6yrTÀTÀbz{z kl� mno�   (A.3) 

where fQ,Qb�. , . � is the joint distribution of the duple skill, and perceived skill in population. 

The standard deviation of mortality rates across hospitals is computed as  

Á�h��=���� = ÁÂÃ¬ Æe fQ,Qb�¿, ¿<�\u�\�� + �� ≤ sw��
 = 1, ¿<, ¿� −u�\�� + �� ≤ĝgsw��
 = 1�].h¿ h¿<Ç          (A.4) 

           

Finally, the correlation between mortality and ICD use across hospitals is computed as 

/È���a,mnoa = n�5Q��mnoa,È���a�É�T�mnoa�É�T�È���a�       (A.5) 
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Table A.1:  Mortality (One & Two Years) OLS Regression     
  (1) (2) (3) (4) (5) (6) 

VARIABLES death1yr death1yr death1yr death2yr death2yr death2yr 

              

HRR-level ICD Rate 0.0711*** 0.105*** 0.0849*** 0.0765*** 0.130*** 0.103*** 

 (0.0225) (0.0229) (0.0226) (0.0291) (0.0297) (0.0290) 

Ln(volume)  

-

0.00829*** 
-

0.00826***  -0.0133*** -0.0133*** 

  (0.00108) (0.00108)  (0.00140) (0.00139) 

HRR-level Rx Rate   -0.0921***   -0.122*** 

   (0.0140)   (0.0186) 

Ejection Fraction (EF) <20% 
-

0.00345*** 
-

0.00346*** 
-

0.00348*** -0.00442*** -0.00444*** -0.00448*** 

 (0.000382) (0.000381) (0.000381) (0.000473) (0.000472) (0.000471) 

EF 20-25% 
-

0.00459*** 
-

0.00459*** 
-

0.00457*** -0.00548*** -0.00548*** -0.00546*** 

 (0.000407) (0.000407) (0.000407) (0.000502) (0.000501) (0.000502) 

EF 25-30% 
-

0.00224*** 
-

0.00227*** 
-

0.00227*** -0.00388*** -0.00393*** -0.00393*** 

 (0.000355) (0.000355) (0.000356) (0.000449) (0.000449) (0.000451) 

EF 30-35% -0.000740* -0.000734* -0.000732* -0.00109** -0.00108** -0.00106* 

 (0.000415) (0.000414) (0.000414) (0.000555) (0.000552) (0.000552) 

EF > 35% 0.00151*** 0.00150*** 0.00149*** 0.00197*** 0.00195*** 0.00191*** 

 (0.000324) (0.000323) (0.000323) (0.000398) (0.000398) (0.000399) 

EF Missing 0.0226*** 0.0213*** 0.0211*** 0.0319*** 0.0297*** 0.0278*** 

 (0.00719) (0.00720) (0.00725) (0.00967) (0.00966) (0.00959) 

NY Heart Assoc. Class II 0.00293 0.00245 0.00160 0.00583 0.00506 0.00399 

 (0.00342) (0.00339) (0.00338) (0.00489) (0.00482) (0.00481) 

NY Heart Assoc. Class III 0.0480*** 0.0476*** 0.0465*** 0.0707*** 0.0701*** 0.0687*** 

 (0.00346) (0.00341) (0.00340) (0.00490) (0.00480) (0.00480) 

NY Heart Assoc. Class IV 0.154*** 0.153*** 0.151*** 0.191*** 0.188*** 0.187*** 

 (0.00583) (0.00583) (0.00584) (0.00728) (0.00722) (0.00724) 

NY Heart Assoc. Class missing 0.0549*** 0.0520*** 0.0516*** 0.0928*** 0.0883*** 0.0880*** 

 (0.0106) (0.0105) (0.0106) (0.0131) (0.0129) (0.0131) 

Age 70-74 0.0150*** 0.0151*** 0.0153*** 0.0275*** 0.0277*** 0.0276*** 

 (0.00165) (0.00165) (0.00165) (0.00206) (0.00205) (0.00205) 

Age 75-79 0.0367*** 0.0368*** 0.0368*** 0.0648*** 0.0651*** 0.0651*** 

 (0.00181) (0.00181) (0.00182) (0.00228) (0.00227) (0.00227) 

Age 80-84 0.0633*** 0.0635*** 0.0636*** 0.110*** 0.110*** 0.110*** 

 (0.00213) (0.00213) (0.00213) (0.00258) (0.00258) (0.00258) 

Age 85-89 0.103*** 0.103*** 0.102*** 0.176*** 0.176*** 0.175*** 

 (0.00333) (0.00334) (0.00334) (0.00410) (0.00413) (0.00410) 

Age 90+ 0.184*** 0.184*** 0.183*** 0.276*** 0.276*** 0.276*** 

 (0.0107) (0.0107) (0.0107) (0.0124) (0.0124) (0.0123) 

Previous cardiac arrest 0.0578*** 0.0569*** 0.0569*** 0.0578*** 0.0564*** 0.0567*** 

 (0.00549) (0.00549) (0.00550) (0.00631) (0.00632) (0.00633) 

Family history sudden arrest -0.0116*** -0.0119*** -0.0116*** -0.0190*** -0.0195*** -0.0192*** 

 (0.00401) (0.00394) (0.00392) (0.00492) (0.00483) (0.00481) 

Ventricular tacchycardia 0.0447*** 0.0449*** 0.0447*** 0.0570*** 0.0573*** 0.0570*** 

 (0.00193) (0.00193) (0.00193) (0.00230) (0.00230) (0.00230) 
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Non-ischemic dilated cardiomyopathy -0.0218*** -0.0211*** -0.0209*** -0.0320*** -0.0310*** -0.0306*** 

 (0.00247) (0.00248) (0.00247) (0.00316) (0.00317) (0.00316) 

Ischemic heart disease 0.0167*** 0.0172*** 0.0171*** 0.0262*** 0.0269*** 0.0269*** 

 (0.00271) (0.00271) (0.00271) (0.00332) (0.00333) (0.00333) 

Previous myocardial infarction 0.00764*** 0.00796*** 0.00805*** 0.0122*** 0.0127*** 0.0129*** 

 (0.00171) (0.00171) (0.00171) (0.00223) (0.00222) (0.00222) 

Previous CABG 0.00882*** 0.00891*** 0.00867*** 0.0204*** 0.0206*** 0.0203*** 

 (0.00165) (0.00165) (0.00165) (0.00201) (0.00200) (0.00200) 

Previous PCI 
-

0.00985*** 
-

0.00984*** 
-

0.00985*** -0.0124*** -0.0123*** -0.0124*** 

 (0.00162) (0.00163) (0.00162) (0.00197) (0.00198) (0.00198) 

Electrophysiology study -0.0185*** -0.0170*** -0.0176*** -0.0267*** -0.0244*** -0.0249*** 

 (0.00297) (0.00286) (0.00289) (0.00411) (0.00392) (0.00399) 

VT indication (ES study) -0.00531 -0.00446 -0.00481 -0.00742 -0.00606 -0.00654 

 (0.00512) (0.00514) (0.00510) (0.00655) (0.00656) (0.00665) 

Female -0.0070*** -0.0070*** -0.0071*** -0.0165*** -0.0164*** -0.0164*** 

 (0.00148) (0.00148) (0.00148) (0.00186) (0.00186) (0.00186) 

Black 0.0350*** 0.0348*** 0.0342*** 0.0557*** 0.0554*** 0.0546*** 

 (0.00242) (0.00242) (0.00238) (0.00300) (0.00296) (0.00294) 

Hsipanic (Medicare) 0.0124** 0.0115** 0.0121** 0.0183*** 0.0169*** 0.0169*** 

 (0.00506) (0.00505) (0.00505) (0.00646) (0.00646) (0.00646) 

Other race 0.0153*** 0.0143*** 0.0138*** 0.0222*** 0.0206*** 0.0196*** 

 (0.00419) (0.00418) (0.00417) (0.00533) (0.00534) (0.00533) 

Hispanic ethnicity (Registry)  0.00873* 0.00751 0.00621 0.00506 0.00311 0.00216 

 (0.00496) (0.00496) (0.00499) (0.00631) (0.00634) (0.00639) 

2007.year 0.00390 0.00556** 0.00515** 0.00490 0.00755** 0.00687** 

 (0.00239) (0.00240) (0.00239) (0.00299) (0.00302) (0.00300) 

2008.year 0.00906*** 0.0111*** 0.0105*** 0.00809** 0.0114*** 0.0104*** 

 (0.00260) (0.00261) (0.00260) (0.00338) (0.00340) (0.00337) 

2009.year 0.00845*** 0.0107*** 0.00980*** 0.0105*** 0.0141*** 0.0128*** 

 (0.00274) (0.00275) (0.00276) (0.00345) (0.00344) (0.00345) 

2010.year 0.0123*** 0.0143*** 0.0132*** 0.00713** 0.0103*** 0.00873** 

 (0.00290) (0.00290) (0.00291) (0.00353) (0.00357) (0.00355) 

2011.year 0.00755** 0.00922*** 0.00783** 0.0108*** 0.0134*** 0.0114*** 

 (0.00307) (0.00311) (0.00314) (0.00382) (0.00386) (0.00386) 

2012.year 0.0130*** 0.0141*** 0.0125*** 0.0138*** 0.0155*** 0.0131*** 

 (0.00325) (0.00327) (0.00328) (0.00398) (0.00403) (0.00399) 

2013.year 0.0129*** 0.0142*** 0.0123*** 0.0193*** 0.0214*** 0.0189*** 

 (0.00324) (0.00325) (0.00327) (0.00395) (0.00400) (0.00397) 

Constant 0.0965*** 0.125*** 0.187*** 0.164*** 0.209*** 0.293*** 

 (0.00957) (0.0100) (0.0135) (0.0123) (0.0126) (0.0177) 

       
Observations 254,237 254,237 253,596 254,237 254,237 253,596 

R-squared 0.034 0.035 0.035 0.057 0.057 0.057 

Robust standard errors in parentheses       
*** p<0.01, ** p<0.05, * p<0.1       
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Table A2: Mortality (One & Two Years) Random Effects Regression  
  (1) (2) (3) (4) (5) (6) 

VARIABLES death1yr death1yr death1yr death2yr death2yr death2yr 

              

HRR-level ICD Rate 0.0717*** 0.100*** 0.0848*** 0.0734*** 0.116*** 0.0952*** 

 (0.0220) (0.0219) (0.0218) (0.0280) (0.0277) (0.0276) 

Ln(volume)  -0.00852*** -0.00846***  -0.0129*** -0.0130*** 

  (0.00103) (0.00102)  (0.00131) (0.00130) 

HRR-level Rx Rate   -0.0930***   -0.126*** 

   (0.0142)   (0.0183) 

Ejection Fraction (EF) <20% -0.00358*** -0.00358*** -0.00359*** -0.00464*** -0.00465*** -0.00467*** 

 (0.000341) (0.000341) (0.000341) (0.000427) (0.000427) (0.000428) 

EF 20-25% -0.00459*** -0.00459*** -0.00457*** -0.00550*** -0.00549*** -0.00547*** 

 (0.000394) (0.000393) (0.000394) (0.000493) (0.000493) (0.000493) 

EF 25-30% -0.00225*** -0.00226*** -0.00225*** -0.00388*** -0.00390*** -0.00390*** 

 (0.000383) (0.000383) (0.000383) (0.000480) (0.000480) (0.000480) 

EF 30-35% -0.000778* -0.000769* -0.000773* -0.00109* -0.00108* -0.00107* 

 (0.000465) (0.000465) (0.000465) (0.000582) (0.000582) (0.000583) 

EF > 35% 0.00150*** 0.00150*** 0.00149*** 0.00198*** 0.00198*** 0.00195*** 

 (0.000294) (0.000294) (0.000294) (0.000368) (0.000368) (0.000368) 

EF Missing 0.0188*** 0.0182*** 0.0186*** 0.0270*** 0.0262*** 0.0251*** 

 (0.00690) (0.00690) (0.00693) (0.00864) (0.00864) (0.00867) 

NY Heart Assoc. Class II 0.00249 0.00246 0.00194 0.00509 0.00505 0.00445 

 (0.00394) (0.00393) (0.00394) (0.00493) (0.00493) (0.00493) 

NY Heart Assoc. Class III 0.0478*** 0.0479*** 0.0474*** 0.0705*** 0.0706*** 0.0700*** 

 (0.00387) (0.00387) (0.00387) (0.00484) (0.00484) (0.00485) 

NY Heart Assoc. Class IV 0.154*** 0.153*** 0.153*** 0.189*** 0.189*** 0.188*** 

 (0.00491) (0.00491) (0.00492) (0.00615) (0.00615) (0.00615) 

NY Heart Assoc. Class missing 0.0507*** 0.0492*** 0.0492*** 0.0870*** 0.0849*** 0.0852*** 

 (0.0117) (0.0117) (0.0117) (0.0147) (0.0147) (0.0147) 

Age 70-74 0.0150*** 0.0151*** 0.0152*** 0.0276*** 0.0277*** 0.0277*** 

 (0.00182) (0.00182) (0.00182) (0.00228) (0.00228) (0.00228) 

Age 75-79 0.0366*** 0.0367*** 0.0367*** 0.0647*** 0.0648*** 0.0649*** 

 (0.00183) (0.00183) (0.00183) (0.00229) (0.00229) (0.00230) 

Age 80-84 0.0625*** 0.0626*** 0.0628*** 0.108*** 0.109*** 0.109*** 

 (0.00201) (0.00200) (0.00201) (0.00251) (0.00251) (0.00251) 

Age 85-89 0.100*** 0.100*** 0.100*** 0.173*** 0.173*** 0.173*** 

 (0.00288) (0.00287) (0.00288) (0.00360) (0.00360) (0.00360) 

Age 90+ 0.179*** 0.179*** 0.179*** 0.270*** 0.270*** 0.271*** 

 (0.00781) (0.00781) (0.00782) (0.00978) (0.00978) (0.00979) 

Previous cardiac arrest 0.0563*** 0.0559*** 0.0558*** 0.0557*** 0.0550*** 0.0552*** 

 (0.00454) (0.00454) (0.00455) (0.00569) (0.00569) (0.00569) 

Family history sudden arrest -0.0115*** -0.0116*** -0.0115*** -0.0183*** -0.0184*** -0.0183*** 

 (0.00378) (0.00378) (0.00378) (0.00473) (0.00473) (0.00473) 

Ventricular tacchycardia 0.0446*** 0.0446*** 0.0444*** 0.0569*** 0.0569*** 0.0567*** 

 (0.00160) (0.00160) (0.00160) (0.00201) (0.00201) (0.00201) 
Non-ischemic dilated 
cardiomyopathy -0.0202*** -0.0199*** -0.0198*** -0.0299*** -0.0295*** -0.0293*** 
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 (0.00231) (0.00231) (0.00231) (0.00289) (0.00289) (0.00290) 

Ischemic heart disease 0.0173*** 0.0176*** 0.0176*** 0.0270*** 0.0275*** 0.0275*** 

 (0.00246) (0.00246) (0.00247) (0.00308) (0.00308) (0.00309) 

Previous myocardial infarction 0.00855*** 0.00862*** 0.00866*** 0.0130*** 0.0131*** 0.0133*** 

 (0.00165) (0.00165) (0.00165) (0.00207) (0.00206) (0.00207) 

Previous CABG 0.00883*** 0.00885*** 0.00868*** 0.0204*** 0.0205*** 0.0203*** 

 (0.00156) (0.00156) (0.00156) (0.00195) (0.00195) (0.00195) 

Previous PCI -0.0100*** -0.00999*** -0.0100*** -0.0123*** -0.0123*** -0.0124*** 

 (0.00153) (0.00153) (0.00153) (0.00191) (0.00191) (0.00191) 

Electrophysiology study -0.0189*** -0.0180*** -0.0183*** -0.0262*** -0.0250*** -0.0251*** 

 (0.00277) (0.00277) (0.00277) (0.00347) (0.00346) (0.00347) 

VT indication (ES study) -0.00436 -0.00401 -0.00400 -0.00620 -0.00563 -0.00563 

 (0.00522) (0.00522) (0.00522) (0.00654) (0.00653) (0.00654) 

Female -0.00718*** -0.00716*** -0.00716*** -0.0166*** -0.0166*** -0.0165*** 

 (0.00147) (0.00147) (0.00147) (0.00184) (0.00184) (0.00184) 

Black 0.0301*** 0.0300*** 0.0299*** 0.0494*** 0.0493*** 0.0493*** 

 (0.00225) (0.00225) (0.00225) (0.00283) (0.00282) (0.00282) 

Hsipanic (Medicare) 0.00903* 0.00867* 0.00957* 0.0138** 0.0133** 0.0136** 

 (0.00505) (0.00505) (0.00506) (0.00633) (0.00632) (0.00634) 

Other race 0.0118*** 0.0113*** 0.0112*** 0.0175*** 0.0168*** 0.0163*** 

 (0.00417) (0.00417) (0.00417) (0.00523) (0.00522) (0.00522) 

Hispanic ethnicity (Registry)  0.00483 0.00443 0.00346 0.000432 -0.000123 -0.000673 

 (0.00514) (0.00514) (0.00515) (0.00644) (0.00644) (0.00645) 

2007.year 0.00387 0.00558** 0.00530** 0.00473 0.00733** 0.00681** 

 (0.00256) (0.00256) (0.00256) (0.00316) (0.00317) (0.00317) 

2008.year 0.00885*** 0.0109*** 0.0105*** 0.00760** 0.0107*** 0.0101*** 

 (0.00265) (0.00266) (0.00266) (0.00328) (0.00329) (0.00329) 

2009.year 0.00816*** 0.0105*** 0.00984*** 0.00997*** 0.0135*** 0.0126*** 

 (0.00266) (0.00267) (0.00267) (0.00330) (0.00331) (0.00331) 

2010.year 0.0115*** 0.0136*** 0.0129*** 0.00563 0.00874** 0.00768** 

 (0.00279) (0.00279) (0.00279) (0.00346) (0.00346) (0.00347) 

2011.year 0.00677** 0.00829*** 0.00746** 0.00915** 0.0115*** 0.0102*** 

 (0.00306) (0.00305) (0.00306) (0.00382) (0.00380) (0.00381) 

2012.year 0.0122*** 0.0132*** 0.0122*** 0.0121*** 0.0137*** 0.0120*** 

 (0.00316) (0.00315) (0.00315) (0.00395) (0.00392) (0.00393) 

2013.year 0.0122*** 0.0134*** 0.0122*** 0.0176*** 0.0195*** 0.0178*** 

 (0.00320) (0.00319) (0.00319) (0.00400) (0.00397) (0.00398) 

Constant 0.102*** 0.130*** 0.191*** 0.175*** 0.216*** 0.300*** 

 (0.00923) (0.00977) (0.0135) (0.0116) (0.0123) (0.0171) 

Observations 254,237 254,237 253,596 254,237 254,237 253,596 

Groups 1,549 1,549 1,543 1,549 1,549 1,543 
Robust standard errors in 
parentheses       
*** p<0.01, ** p<0.05, * p<0.1       
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Table A.3: Mortality (One & Two Year) OLS Fixed Effects Regression 
  (1) (2) (3) (4) (5) (6) 

VARIABLES death1yr death1yr death1yr death2yr death2yr death2yr 

              

HRR-level ICD Rate 0.0582* 0.0723** 0.0698** 0.0332 0.0554 0.0531 

 (0.0348) (0.0352) (0.0353) (0.0440) (0.0442) (0.0445) 

Ln(volume)  -0.00567*** -0.00586***  -0.00888*** -0.00925*** 

  (0.00220) (0.00222)  (0.00274) (0.00277) 

HRR-level Rx Rate   -0.0713   -0.0986 

   (0.0781)   (0.0987) 

Ejection Fraction (EF) <20% -0.00367*** -0.00367*** -0.00369*** -0.00480*** -0.00480*** -0.00483*** 

 (0.000380) (0.000381) (0.000381) (0.000471) (0.000471) (0.000472) 

EF 20-25% -0.00454*** -0.00454*** -0.00452*** -0.00544*** -0.00544*** -0.00541*** 

 (0.000408) (0.000408) (0.000409) (0.000501) (0.000501) (0.000502) 

EF 25-30% -0.00225*** -0.00225*** -0.00225*** -0.00387*** -0.00386*** -0.00387*** 

 (0.000356) (0.000356) (0.000357) (0.000451) (0.000451) (0.000452) 

EF 30-35% -0.000749* -0.000750* -0.000757* -0.00104* -0.00104* -0.00102* 

 (0.000413) (0.000412) (0.000413) (0.000549) (0.000549) (0.000550) 

EF > 35% 0.00151*** 0.00152*** 0.00150*** 0.00198*** 0.00199*** 0.00195*** 

 (0.000316) (0.000316) (0.000316) (0.000390) (0.000390) (0.000390) 

EF Missing 0.0158** 0.0158** 0.0165** 0.0243** 0.0242** 0.0238** 

 (0.00768) (0.00768) (0.00774) (0.0101) (0.0101) (0.0101) 

NY Heart Assoc. Class II 0.00226 0.00230 0.00185 0.00497 0.00504 0.00452 

 (0.00348) (0.00348) (0.00348) (0.00495) (0.00495) (0.00496) 

NY Heart Assoc. Class III 0.0478*** 0.0479*** 0.0476*** 0.0708*** 0.0709*** 0.0706*** 

 (0.00350) (0.00350) (0.00351) (0.00494) (0.00494) (0.00495) 

NY Heart Assoc. Class IV 0.154*** 0.154*** 0.153*** 0.189*** 0.189*** 0.189*** 

 (0.00585) (0.00585) (0.00586) (0.00731) (0.00731) (0.00733) 

NY Heart Assoc. Class missing 0.0448*** 0.0447*** 0.0449*** 0.0825*** 0.0823*** 0.0828*** 

 (0.0111) (0.0111) (0.0111) (0.0144) (0.0144) (0.0144) 

Age 70-74 0.0151*** 0.0151*** 0.0152*** 0.0277*** 0.0277*** 0.0276*** 

 (0.00166) (0.00166) (0.00166) (0.00206) (0.00206) (0.00206) 

Age 75-79 0.0365*** 0.0365*** 0.0366*** 0.0647*** 0.0647*** 0.0647*** 

 (0.00182) (0.00182) (0.00183) (0.00228) (0.00228) (0.00229) 

Age 80-84 0.0617*** 0.0618*** 0.0620*** 0.108*** 0.108*** 0.108*** 

 (0.00214) (0.00214) (0.00214) (0.00257) (0.00257) (0.00258) 

Age 85-89 0.0978*** 0.0978*** 0.0979*** 0.170*** 0.170*** 0.170*** 

 (0.00330) (0.00330) (0.00330) (0.00411) (0.00411) (0.00412) 

Age 90+ 0.173*** 0.173*** 0.174*** 0.265*** 0.265*** 0.266*** 

 (0.0107) (0.0107) (0.0107) (0.0125) (0.0125) (0.0125) 

Previous cardiac arrest 0.0544*** 0.0543*** 0.0541*** 0.0532*** 0.0531*** 0.0531*** 

 (0.00549) (0.00549) (0.00549) (0.00631) (0.00631) (0.00632) 

Family history sudden arrest -0.0114*** -0.0115*** -0.0115*** -0.0176*** -0.0177*** -0.0177*** 

 (0.00362) (0.00362) (0.00362) (0.00467) (0.00467) (0.00467) 

Ventricular tacchycardia 0.0442*** 0.0442*** 0.0441*** 0.0565*** 0.0565*** 0.0563*** 

 (0.00191) (0.00191) (0.00191) (0.00228) (0.00228) (0.00228) 
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Non-ischemic dilated 
cardiomyopathy -0.0186*** -0.0186*** -0.0186*** -0.0281*** -0.0280*** -0.0279*** 

 (0.00243) (0.00243) (0.00243) (0.00315) (0.00315) (0.00315) 

Ischemic heart disease 0.0185*** 0.0185*** 0.0185*** 0.0285*** 0.0285*** 0.0286*** 

 (0.00264) (0.00264) (0.00264) (0.00330) (0.00330) (0.00330) 

Previous myocardial infarction 0.00906*** 0.00908*** 0.00916*** 0.0132*** 0.0132*** 0.0134*** 

 (0.00172) (0.00172) (0.00172) (0.00220) (0.00220) (0.00220) 

Previous CABG 0.00886*** 0.00884*** 0.00874*** 0.0202*** 0.0202*** 0.0202*** 

 (0.00165) (0.00165) (0.00165) (0.00201) (0.00201) (0.00201) 

Previous PCI -0.00996*** -0.00997*** -0.0101*** -0.0122*** -0.0122*** -0.0123*** 

 (0.00163) (0.00163) (0.00163) (0.00200) (0.00200) (0.00200) 

Electrophysiology study -0.0193*** -0.0193*** -0.0193*** -0.0259*** -0.0259*** -0.0257*** 

 (0.00282) (0.00282) (0.00282) (0.00381) (0.00381) (0.00382) 

VT indication (ES study) -0.00444 -0.00427 -0.00400 -0.00726 -0.00699 -0.00676 

 (0.00514) (0.00514) (0.00514) (0.00659) (0.00661) (0.00662) 

Female -0.00726*** -0.00724*** -0.00722*** -0.0169*** -0.0168*** -0.0168*** 

 (0.00147) (0.00147) (0.00147) (0.00186) (0.00186) (0.00186) 

Black 0.0257*** 0.0256*** 0.0258*** 0.0444*** 0.0444*** 0.0448*** 

 (0.00231) (0.00231) (0.00232) (0.00292) (0.00293) (0.00293) 

Hsipanic (Medicare) 0.00468 0.00470 0.00573 0.00944 0.00946 0.00986 

 (0.00509) (0.00509) (0.00510) (0.00646) (0.00646) (0.00648) 

Other race 0.00767* 0.00763* 0.00771* 0.0132** 0.0132** 0.0130** 

 (0.00424) (0.00424) (0.00425) (0.00551) (0.00551) (0.00551) 

Hispanic ethnicity (Registry)  0.000784 0.000786 -0.000117 -0.00384 -0.00384 -0.00418 

 (0.00498) (0.00498) (0.00499) (0.00632) (0.00631) (0.00632) 

2007.year 0.00375 0.00480* 0.00485* 0.00439 0.00603* 0.00602* 

 (0.00247) (0.00250) (0.00250) (0.00305) (0.00311) (0.00310) 

2008.year 0.00852*** 0.00974*** 0.00975*** 0.00666* 0.00858** 0.00859** 

 (0.00265) (0.00270) (0.00271) (0.00345) (0.00352) (0.00353) 

2009.year 0.00710** 0.00852*** 0.00836*** 0.00838** 0.0106*** 0.0104*** 

 (0.00277) (0.00283) (0.00284) (0.00351) (0.00358) (0.00359) 

2010.year 0.0100*** 0.0113*** 0.0112*** 0.00284 0.00478 0.00463 

 (0.00304) (0.00309) (0.00309) (0.00375) (0.00378) (0.00378) 

2011.year 0.00493 0.00575* 0.00587* 0.00519 0.00647 0.00666 

 (0.00344) (0.00346) (0.00346) (0.00444) (0.00445) (0.00446) 

2012.year 0.0104*** 0.0110*** 0.0107*** 0.00787* 0.00871* 0.00834* 

 (0.00375) (0.00376) (0.00376) (0.00473) (0.00472) (0.00473) 

2013.year 0.0104*** 0.0110*** 0.0108*** 0.0132*** 0.0142*** 0.0141*** 

 (0.00378) (0.00378) (0.00378) (0.00473) (0.00473) (0.00474) 

Constant 0.105*** 0.126*** 0.172*** 0.182*** 0.215*** 0.279*** 

 (0.0111) (0.0136) (0.0509) (0.0142) (0.0175) (0.0646) 

       
Observations 254,237 254,237 253,596 254,237 254,237 253,596 

R-squared 0.045 0.045 0.045 0.045 0.045 0.045 
Robust standard errors in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table A.4: Risk Adjustment Regressions for ICD Rates 
 
A.4.1: Year = 2002  
N = 4,964,561 (20% sample). 
R-squared = 0.01x  
  
                      Parameter       Standard 
Variable        DF    Estimate          Error    t-Value  
    
Age 65-69              0.00190     0.00005412      35.08       
Age 70-74              0.00196     0.00005403      36.24       
Age 75-79              0.00183     0.00005491      33.32       
Age 80-84       0.00124     0.00005852      21.17      
Female                -0.00175     0.00004916      35.55       
Black                  0.00010194  0.00011105       0.40 
White                  0.00028484  0.00008870       3.21       
ZIP Income         1   0.00000161  0.00009434       0.02  
ZIP Poverty rate      -0.00072561  0.00042969      -1.69       
Dual Eligible (yes=1) -0.00074099  0.00005040     -14.70     
County Smoking Rate   -0.00002326  0.00000668      -3.48 
County Diabetic Rate  -0.00003132  0.00002310      -1.36   
County Obesity Rate    0.00000141  0.00000765       0.18  
County Drinking Rate   0.00000285  0.00001061       0.27   
Diagnosed CHF (yes=1)  0.00684     0.00004263     160.52  
 
Reference groups: Male, Age 85+, Other race. HRR fixed effects included.  
 

A.4.2: Year = 2006 

N = 24,606,213 

R-squared = 0.014   
                             Parameter       Standard 
Variable                      Estimate        Error        t-Value 
     
Age 65-69                    0.00336       0.00003208        104.79       
Age 70-74                    0.00352       0.00003263        107.77       
Age 75-79                    0.00342       0.00003307        103.44      
Age 80-84                    0.00239       0.00003468         68.94     
Female                      -0.00264       0.00002731        -96.80 
Black                       -0.00004876    0.00006464         -0.75   
White                        0.00010578    0.00005058          2.09  
ZIP Income                  -0.00007070    0.00005687         -1.24  
ZIP Poverty                 -0.00058706    0.00026231         -2.24       
Dual-Eligible (yes=1)       -0.00114       0.00003058        -37.22  
County Smoking              -0.00001244    0.00000384         -3.24  
County Diabetes             -0.00005567    0.00001212         -4.59 
County Obesity               0.00001787    0.00000427          4.19   
County Drinking              0.00002902    0.00000707          4.11  
Diagnosed CHF (yes=1)        0.01329       0.00002588        513.57  
 
Reference groups: Male, Age 85+, Other race. HRR fixed effects included.  
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A.4.3. Year = 2013 
 
N = 24,236,818 
R-squares = 0.011 
                          Parameter       Standard 
Variable                  Estimate          Error       t-Value   
   
Age 65-69                 0.00231        0.00002522      91.75       
Age 70-74                 0.00243        0.00002620      92.73       
Age 75-79                 0.00236        0.00002755      85.66 
Age 80-84                 0.00180        0.00002903      62.13  
Female                   -0.00147        0.00002258     -64.96       
Black                     0.00000132     0.00004891       0.03 
White                    -0.00000656     0.00003605      -0.18 
ZIP Income                0.00004656     0.00004611       1.01 
ZIP Poverty rate          0.00017423     0.00021617       0.81       
Dual-eligible (Yes=1)    -0.00065135     0.00002520     -25.85 
County Smoking            0.00000428     0.00000341       1.25  
County Diabetes          -0.00003945     0.00000854      -4.62 
County Obesity            0.00001063     0.00000326       3.26       
County Drinking           0.00000949     0.00000529       1.79       
CHF Diagnosis (yes=1)     0.01024        0.00002266     451.75 
 
 
 
  
  
 

 




