Currently looking for graduate students !!
Howdy! I am an Assistant Professor in the Department of Computer Science at University of Albany (SUNY). My research interest spans across Machine Learning, Robotics and Computational Biology. |
|
Recent Updates
May 2018 : ICRA 2018
June 2018 : Wastlitbre Workshop
Fall 2018 : Teaching : CSI 521 - Discrete Mathematics and its Applications
Upcoming !!!
Research
Motion planning involves the use of algorithms and methods in planning motions for objects.These algorithms help in identifying a valid path for and object so it can move from a start point to its destination without hitting obstacles and also avoid colliding with the walls of its set environment. Examples of this objects could be automobiles, assemble machines and search and rescue robots. My research is specifically geared towards using this motion planning algorithms for highly articulated linkages. The technique I would be employing in the course of my research are sampling based motion planning. This method samples valid configurations of movable objects and connects them with simple local planning methods from which trajectories can be generated. I would be working on better methods to characterize and analyze these configurations. This research finds high applicability for work currently done in molecular motions in a bid to understand the cause of diseases such as Alziemers,Mad-Cow, Cystic Fibrosis.Publications
Chinwe Ekenna, Shawna Thomas, Nancy Amato, "Adaptive Local Learning in Sampling Based Motion Planning for Protein Folding," Bio Med Central Systems Biology, 10(2):165--179, Aug 2016. Also, In The IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 61-68, Washington DC, USA, Nov 2015.
Chinwe Ekenna, Diane Uwacu, Shawna Thomas, Nancy Amato, "Studying learning techniques in different phases of PRM construction," In Machine Learning in Planning and Control of Robot Motion Workshop (IROS-MLPC), Hamburg, Germany, Oct 2015.
Chinwe Ekenna, Diane Uwacu, Shawna Thomas, Nancy Amato, "Improved Roadmap Connection via Local Learning for Sampling Based Planners," In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), pp. 3227-3234, Hamburg, Germany, Oct 2015.
Chinwe Ekenna, Shawna Thomas, Nancy Amato, "Adaptive Neighbor Connection Aids Protein Motion Modeling," In Proc. RSS Workshop on Robotics Methods for Structural and Dynamic Modeling of Molecular Systems, Jul 2014.Chinwe Ekenna, Shawna Thomas, Nancy Amato, "Adaptive Neighbor Connection using Node Characterization," Technical Report, TR14-005, Apr 2014. Also, Technical Report, TR14-005, Apr 2014.
Chinwe Ekenna, Sam Ade Jacobs, Shawna Thomas, Nancy M. Amato, "Adaptive Neighbor Connection for PRMs: A Natural Fit for Heterogeneous Environments and Parallelism," In Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), Tokyo, Japan, Nov 2013.
Shawna Thomas, Lydia Tapia, Chinwe Ekenna, Hsin-Yi (Cindy) Yeh, Nancy M. Amato, "Rigidity Analysis for Protein Motion and Folding Core Identification," In Proc. of 2013 AAAI Wkshp. on Art. Int. and Robot. Meth. in Comp. Bio., Bellevue, WA, Jul 2013.
Shuvra Nath, Shawna Thomas, Chinwe Ekenna, Nancy M. Amato, "A Multi-Directional Rapidly Exploring Random Graph (mRRG) for Protein Folding," In ACM Conference on Bioinformatics, Computational Biology and Biomedicine, pp. 44-51, Orlando, FL, USA, Oct 2012. > ?>