Do the following problems:

The power set $\mathcal{P}(S)$ of a set S is the set consisting of all subsets of S.

- 1a. What is $\mathcal{P}(\{1,2\})$?
- 1b. How many elements are in $\mathcal{P}(\mathcal{P}(\{1,2\}))$? Justify your answer.
- 1c. Prove that if S has infinitely elements, then so does $\mathcal{P}(S)$. (A one-line proof is sufficent.)
- 2a. Draw a diagram illustrating the set $\{1, 2, 3, 4\}^2 \subset \mathbb{R}^2$.
- 2b. Draw a diagram illustrating the set $\{1, 2, 3, 4\} \times I \subset \mathbb{R}^2$.
- 2c. Draw a diagram illustrating the set $I \times \{1, 2, 3, 4\} \subset \mathbb{R}^2$.
- 2d. Let $S^1 \subset \mathbb{R}^2$ be the unit circle, i.e., the set of all points of distance 1 from the origin in \mathbb{R}^2 . Draw a diagram illustrating the set $S^1 \times I \subset \mathbb{R}^3$. What shape is $S^1 \times I$?

If S is a finite set with n elements,

- 3a. how many elements does $\mathcal{P}(S^2)$ have?
- 3b. how many elements does $(\mathcal{P}(S))^2$ have?

For each function, give its image, and say whether the function is an injection, surjection, or bijection. If the function is a bijection, also give its inverse.

- 4a. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$
- 4b. $f : \mathbb{R} \to \mathbb{R}^2$, $f(x) = (x, x^3)$
- 4c. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^4$
- 4d. $f: \mathbb{R} \to [0, \infty), f(x) = x^4$
- 4e. $f: \mathbb{R} \to [-1, 1], f(x) = \cos x$
- 5. Give a bijection $f:(0,1]\to[1,\infty)$. What is the inverse of f?
- 5b. [For fun, will not be graded] Give a bijection $g:(0,1)\to[0,1]$.