1. Prove that if X is path connected and $f: X \rightarrow Y$ is continuous, then $\operatorname{im}(f)$ is path connected.
2. Give an example where X is not path connected, $f: X \rightarrow Y$ is continuous, and $\operatorname{im}(f)$ is path connected. [Don't just draw a picture, specify the function explicitly.]
3. Give an example where X is path connected, $f: X \rightarrow Y$ is not continuous, and $\operatorname{im}(f)$ is not path connected. [Again, don't just draw a picture, specify the function explicitly.]
4. Prove that if X has k path components and $f: X \rightarrow Y$ is a continuous surjectiction, then Y has at most k path components. [HINT: It is sufficient to show that there exists a surjection from $\pi_{0}(X)$ to $\pi_{0}(Y)$.]
5. For each of the following functions $d: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$, say whether d is a metric. Briefly explain your reasoning.
a. $d(x, y)= \begin{cases}0 & \text { if } \mathrm{x}=\mathrm{y}, \\ 1 & \text { otherwise. }\end{cases}$
b. $d(x, y)=2|x-y|$
c. $d(x, y)=(x-y)^{2}$.
d. $d(x, y)=|x|+|y|$.
e. $d(x, y)=\frac{|x|}{1+|y|}$.
