1. Consider the equivalence relation \sim on S^1 given as follows: $x \sim y$ iff x = y OR $x, y \in \{(-1,0), (0,1)\}$. Intuitively, the quotient space S^1/\sim is the topological space obtained by gluing (-1,0) to (1,0).

- a. Sketch the quotient space S^1/\sim . (That is, sketch an embedding of S^1/\sim into \mathbb{R}^2 .)
- b. Is S^1/\sim a manifold? Explain your answer informally.

2. Let $T \subset \mathbb{R}^2$ be given by $T = (I \times \{1/2\}) \cup (\{1/2\} \times I)$. Let $S = \{(1/2, 0), (1/2, 1), (0, 1/2), (1, 1/2)\} \subset T$. Define an equivalence relation \sim on T by $x \sim y$ iff x = y or $x, y \in S$.

- a. Sketch T, S, and the quotient space T/\sim .
- b. Describe informally, in words, how T/\sim is obtained from T via gluing. (A single sentence is sufficient.)
- c. Is T a manifold? Is the quotient space T/\sim a manifold? Explain your answer informally.

3. Consider the triangle T in \mathbb{R}^2 given by

 $T = \{(x, y) \mid y > 0, \ y < x + 1, \ y < -x + 1\}.$

- a. Sketch T.
- b. What is the boundary of T? Is T an open subset of \mathbb{R}^2 ?
- c. Is T a 2-D manifold? Briefly explain your answer.

4. Prove that if T is a discrete topological space (i.e., every subset of T is open) and \sim is any equivalence relation on T, then the quotient space T/\sim is also discrete topological space. [Hint: It is a very short and straightforward proof.]