Today:

- Functions (continued)
- Continuous functions
- Homeomorphisms

Definition: Given sets S and T, a function f from S to T is a rule which assigns each $s \in S$ exactly one element in T.
-This element is denoted $f(t)$.
We call
s the domain of f.
T The codomain of f.
We write the function as $f: S \rightarrow T$.

Example: Let $S=\{1,2\}, T=\{a, b\}$.
e can define a function $f: s \rightarrow T$ by $f(1)=a, f(2)=b$ $g: S \rightarrow T$ by $f(1)=a, f(2)=a$.

Example: We often specify a function by a formula eng.

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2} \\
& f: \mathbb{R} \rightarrow \mathbb{R} . \\
& f(x)=5 e^{-x^{2}} \text { OR }
\end{aligned}
$$

For $f: S \rightarrow T$ and $g: T \rightarrow U$, the composite $g \circ f: S \rightarrow U$ is the function given by $g \circ f(x)=g(f(x))$.

Image of a function (also called the range)
Definition: For a function $f: S \rightarrow T$ we define $\operatorname{im}(f)$ to be the subset of T given by

$$
\operatorname{im}(f)=\{t \in T \mid t=f(s) \text { for some } s \in S\}
$$

Intuitively, $\operatorname{im}(f)$ is the subset of T consisting of elements "hit by" f.
Example: For S, T, f, and g as in the previous example,

$$
\operatorname{im}(f)=\{a, b\}=T, \quad \operatorname{im}(g)=\{a\}
$$

Example:
for $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$, imf $f=[0, \infty)$

Exercise: For $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\cos (x)+2$, what is imf?

$$
\operatorname{im}(\cos)=[-1,1] \text {, so imp }(f)=[1,3]
$$

Exercise:
Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by

$$
f(x)=(\cos x, \sin x) \text {. }
$$

What is imf?
Solution: imf $f=S^{1}$, where S^{1} denotes the unit circle, i.e.,

$$
S^{1}=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2}=1\right\} .
$$

This follows from high school trig.

Example: Let $f:[0, \pi] \times I \rightarrow \mathbb{R}^{3}$ be given by by $f(x, y)=(\cos x, \sin x, y)$ imf is a half-cyluder.

Injective, Sorjective, and Bijective Functions
We say a function $f: S \rightarrow T$ is infective (or $1-1$) if $f(s)=f(t)$ only when $s=t$. surjective (onto) if $\operatorname{im}(f)=T_{\text {. }}$
bijective (a bijection) if f is both infective and subjective.
Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ given by
$f(x)=x^{2}$

$$
f(x)=x^{2}
$$ is neither injective nor surjective.

Example $f: \mathbb{R} \rightarrow S^{1}$ given by
$f(x)=(\cos x, \sin x)$ is surjective bot not invective.

$$
\text { e.g. } f(0)=f(2 \pi)=(1,0)^{\text {not }} \text {. }
$$

Example $f:[0,2 \pi) \rightarrow S^{1}$ given by

$$
f(x)=(\cos x, \sin x)
$$

is bijective.

Bijections and Inverses
For S any set, the identity function on $S_{\text {, }}$ is the function
$I d_{s}: S \rightarrow S$ given by $I d_{s}(x)=x \quad \forall x \in S$.

Fuctions $f: S \rightarrow T$ and $g: T \rightarrow S$ are said to be inverses if

$$
g \circ f=I d_{s} \text { and } f \circ g=I d d_{T} \text {. }
$$

function composition

Fact: A function $f: S \rightarrow T$ has an inverse $g: T \rightarrow S$ if and only if f is a bijection.

Example Let $f:[0,2 \pi) \rightarrow S^{1}$ be bijection of The previous example.
We define the inverse $g: S^{1} \rightarrow[0,2 \pi)$ to be the function which maps $y \in S^{1}$ to the angle $\theta \quad \overrightarrow{0 y}$ makes with the positive x-axis (in radians).

Continuous functions
Topology begins with the notion of continuous functions. You have already encountered these in your calculus classes.

It's possible to give a very abstract, general definition of continuous functions. We may dd this later, but for now, we will take a more concrete approach.
We consider the continuity of a functions between subsets of Euclidean spaces.

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{1}^{n}
$$

Let $d(x, y)$ denote the Eudidean distance between x and y, i.e.,

$$
\begin{gathered}
d(x, y)=\sqrt{\left(x_{1}-y\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-1 / n\right)^{2}} \\
\| x \\
\|x-y\| .
\end{gathered}
$$

Let $S \subset \mathbb{R}^{m}$ and $T \subset \mathbb{R}^{n}$ for some $n, m \geqslant 1$.
Intuitively, a function $f: S \rightarrow T$ is continuous if f maps nearby points to nearby points.

[Lecture ended somewhere around here.]

Formal Definition
We say $f: S \rightarrow T$ is continuous at $x \in S$ if for all $\epsilon>0$, there exist $\delta>0$ such that if $y \in S$ and $d(x, y)<\delta$, then $d(f(x), f(y))<\epsilon$.

We say f is continuous if it is continuous at all $x \in S$.

S

Interpretation: You give we any positive ϵ no matier how small. Continuity at x means that I can find a positive δ such that points within distance δ of x map to points within distance ϵ of x. (I'm allowed to choose δ as small as I wants, as long as it's positive.)

Example: Consider $f: \mathbb{R} \rightarrow \mathbb{R}$

f is not continuous at O. To see this, consider $\epsilon=1$. For all $\delta>0$, there is some $y \in \mathbb{R}$ with $d(x, y)<\delta$ and $f(y)<0$. For example, we can take $y=\frac{-\delta}{2}$.

In this class, we wont spend much time worrying about the rigorous definition of continuity, but I do want you to be familiar with it.

Homeomorphism
For S,T subsets of Euclidean spaces, A function $f: S \rightarrow T$ is a homeomaphism if

1) f is a continuous bijection
2) The inverse of f is also continuous.

Homeomorphism is the main notion of continuous deformation well consider in this course.

Example Let $Y \subset \mathbb{R}^{2}$ be the square of side length 2 , embedded in the plane as shown

The function $f: Y \rightarrow S^{1}$ given by $f(x)=\frac{x}{\|x\|}$ is a homeomorphism.
where $\|x\|=$ distance of x to origin

$$
=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

by standard calculus, this is continuous.
It is intuitive clear that this is a bijection with a continuous inverse. The inverse can be written down, but we wont bother.

