MAT 342 Lecture 11. 10/1/19
Today: Metric Spaces, Continued - more examples.

Open sets and continuity.
Recall: A metric space is a pair (S, d), where
S is a set and $d: S \times S \rightarrow[0, \infty)$ is a function such that

1) $d(x, y)=0$ if $x=y$,
2) $d(x, y)=d(x, y)$
3) $d(x, z) \leqslant d(x, y)+d(y, z)$.

Examples from last time:

- The (usual Euclidean metric d_{2} on \mathbb{R}^{n}

$$
d_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \begin{aligned}
& d_{2} \text { is sis sometimes called } \\
& \text { the } l^{2} \text {-metric }
\end{aligned}
$$

- The "taxicab metric" d_{1} on \mathbb{R}^{n}

$$
\left.d_{1}(x, y)=\sum_{i=1}^{m}\left|x_{i}-y_{i}\right| \quad \text { (a.k.a. the } l^{1}-m e t r i c\right)
$$

Example: $S=\mathbb{R}^{n}, d_{\text {max }}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty)$,

$$
d_{\max }(x, y)=\max \left(\left|x_{1}-y\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right)
$$

This is also a metric.

Fact: If $\left(M, d^{M}\right)$ is a metric space, $S<M$, and $d^{s}: S \times S \rightarrow[0, \infty)$ is the restriction of d^{m} to $S \times S$ (i.e., $d^{s}(x, y)=d^{M}(x, y) \quad \forall x, y \in S$), then $\left(S, d^{s}\right)$ is a metric space.
That is, subspaces of metric spaces inherit the structure of a metric space in the obvious way.
Note: In applications, the subsets are often finite
But in many cases, there is another construction of a metric on a subspace, the intrinsic metric.

Example: Define a metric d on S^{1} by $d(x, y)=$ minimum length of an are in S^{1} connecting x and y.

This is called the intrinsic metric on S^{1}.
e.g. $d((1,0),(0,1))=\frac{\pi}{2}$ because
minimum length of an arc from $(1,0)$ to $(0,1)$ is $\frac{1}{4}$ (circumference of $\left.S^{1}\right)=\frac{2 \pi}{4}=\frac{\pi}{2}$.

By comparison $d_{2}((1,0),(0,1))=\sqrt{1^{2}+1^{2}}=\sqrt{2}$.

More generally, the intrinsic metric dean be defined on a very large class of subsets $S<\mathbb{R}^{n}$ as follows:
differentiable
$d(x, y)=$ minimum length of a^{\wedge} path $\gamma: I \rightarrow S$ from x to y. (since codomain of Y is S, imp (δ) is required to lie in S. .)
As in calculus, length $(\gamma):=\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t$.
For example, we can take S to be a sphere in \mathbb{R}^{3}

$\leftarrow d(x, y)$ is the length of the shortest curve connecting x and y.
or any other surface in \mathbb{R}^{3}.

Fact: On $S^{1} \subset \mathbb{R}^{2}$, the intrinsic metric given by the general definition is equal to the version for S^{1} defined earlier.

This fact is proven, in more generality, in a course on differential geometry

Example of a metric space from biology
Background: A DNA molecule consists of of two chains of subunits.
-the subunits are called nudeotides

- there are four nucleoticles:
- Cytosine [denoted C] - Adenine [A]
- Guanine $[G]$ - Thymine [T]

The two chains are bound together (by weak hydrogen bonds).

- The $i+2$ nucleotides in the two chains are bonded
- G binds to C, A bonds to T. Thus one chain determines the other!

Illustration: $\quad C-G-A-A-T-A-C$
(schematic)

Solid lines = covalent bonds (strong)
Can represent this more compactly as:
Dashed lines = hydrogen bonds (weak) (GAATAQ _c._clled a (bottom chain is determined by the to).
The two chains wind around each other, forming a "double helix"

Fundamental question: How do we quantify the similarity between two DNA sequences?

- This is relevant to the study of evolution:
- close relatives should have similar DNA
- distant relatives should have dissimilar DNA

Classical solution: Use the edit metric.
Before giving the definition, let's motivate it with examples.

Ex: Consider the two DNA sequences
(GATTGC) These differ in two spots, CAATTGT $\left\{\begin{array}{l}\text { so we'd like to say } \\ \text { their distance is } 2 .\end{array}\right.$

Ex: (GATTGC $\{$ These differ by the insertion CGCATTGC $\left\{\begin{array}{l}\text { of one element, so wed like } \\ \text { to say that the distance is } 1 .\end{array}\right.$

Let S denote the set consisting of sequences of the letters A, C, G, T (of any length $\geqslant 0$).

For $x \in S$, an elementary operation on x is any one of the following operations:

- replace one letter in The sequence by a different one,
- remove one letter from any one position in the sequence,
- add one letter at any one position in the sequence.

Definition of the edit distance:

$$
\text { define } d_{a+11}: S \times S \rightarrow[0, \infty) \text { br }
$$

$d_{\text {edit }}(x, y)=$ minimum number of elementary operations need to transform x into y.
[Lecture ended here.]
Let's verify that this is a metric:

- Property 1) is dearly satisfied
- An elementary operation can always be undone by an elementary operation, so $d_{\text {edit }}(x, y)=d_{\text {exit }}(y, x)$.
- If α is a sequence of m eft. ops, transforming x into y, and
β is a sequence of n elf. ops. transforming y into z, then α followed by β is a sequence of $m+n$ elf. ops. Transforming x into z. We can choose α, β sit.
let's $m=d(x, y)$ and $n=d(y, z)$. Then α followed by denote β is a sequence of $d(x, y)+d(y, z)$ elf. ops d. Credit as $^{\text {a }}$ transforming x into z. It now follows that

$$
d(x, z) \leqslant d(x, y)+d(x, z)
$$

Examples: $x=A A A A \quad \operatorname{dedit}(x, y)=4$
$y=T T T$ (at most one T can be created per el. op.)

$$
\begin{array}{ll}
x=A C T G & \operatorname{dedit}(x, y)=2 \\
y=G A C T & A C T G \rightarrow A C T \rightarrow G A C T
\end{array}
$$

Remark: The definition of edit distance generalizes to any set of symbols. For example, the set of symbols could be the entire alphabet. Then, the problem of spell-checking a sting of letters x can be formalized (very naively) as the problem of fining a word in the dictionary closest in edit distance to x.

Remark: Note that dedit is integer-valued.
Another example of a metric space from biology
Background: : The primary function of DNA is to serve as a blue-print from which proteins are constructed.

Simplified definition of a protein:
A protein is a string of subunits called amino acids connected by covalent bonds.

There are 20 different amino acids, with names like "arginine", "lysine," and "tryptophan."

Protein foll into complex 3-D structures with essential biological function (eg. enzymes, nevootiansmitters)

DNA sequences called Genes specify the amino acid sequence of protein.

Rough explanation: Three nucleotides specify one amino acid.

Ex: CGA TTTACC
\downarrow
Alanine Lysine Tryptophan
Determining the amino acid sequence from the JNA sequence is very easy.
accurately
But 'determining the 3-D structure of the srotein from the amino acid sequence is challenging
This is called the "protein structure prediction problem."

- one of The fundamental problems of computational biobgyy
- applications to drug discovery
- anval competions on this problem.
- lots of software available.

Note: In favorable cases, the structure can be determined by experiment, eeg., by a technique called x-ray cystalography. But this is expensive, time consuming, and requires a lot of skill.
$\frac{\text { Question: Suppose }}{\text { of }}$ I know the folded structure

