AMAT 342 Lecture 22

Today: Finish Quotient Spaces Homework problem review

Recall: If
$$T=(S, O^S)$$
 is any topological space and n is
an equivalence relation on S, the quotient space T/n is given by
 $T/n = (S/n, O^n)$, where

$$0^{\sim} = \{ U \leq S/\sim | \pi^{-1}(U) \text{ is open in } T \}$$

(where
$$TT: S \rightarrow S/N$$
 is defined by $TT(X) = [X]$.)

Thus, U is open in
$$T/v$$
 iff $tt^{-1}(U)$ is open in T.

Note TT is surjective. Note: We can regard TT as a function from T to T/~.

<u>Prop</u>: $\pi: T \to T/\sim$ is continuous. <u>P</u>. U open in $T/\sim \Rightarrow \pi'(U)$ open in TI SOTT is a continuous surjection

However $X = [0, 2\pi)$ is not homeomorphic to $X^{1} = S^{2}$. (Intuitively S¹ is glued together more than [0, ZTT).) To fix the bad definition "we would need to also require That the continuous surjection $f: T \rightarrow X$ "glue stuff together as little as possible," in some sense. The definition of guotient space we have given satisfies such a property, as made clear by The next definition. <u>Proposition</u>: for any topological space T, equivalence relation ~ on T, and continuous surjection f: T -> X such that f(x) = f(x) whenever x~y, there is a unique continuous surjection f: T/~→X such That f= foTT.

Thus, X is obtained from T/\sim by gluing more stuff. That is, $TT: T \rightarrow T/\sim$ clues stuff together as little as possible, among maps that glue x and y together if $\chi \sim \gamma$.

 $\frac{\text{Proof:}}{\text{then } x \sim y} \text{ so } \widetilde{f}([x]) = f(x). \text{ If } [x] = [y],$ $\widetilde{f}([x]) = f(x) = \widetilde{f}([y]), \text{ so this }$ is well defined, and it is clear that $f = \tilde{f} \circ \pi$. If $f': T/v \rightarrow X$ also satisfies $f = f' \circ TT$. Then $\tilde{f}'([x]) = \tilde{f} \circ TT(x)$ = $f(x) = \tilde{f} \circ TT(x) = \tilde{f}([x])$, so $\tilde{f}' = \tilde{f}$. This gives the claimed uniqueness property. If yeX, then since f is surjective, y=f(x) for some x, and then $y=\tilde{f}([x])$, so \tilde{f} surjective. If UCX is open, then f'(U) is open because f is continuous. $f^{-1}(U) = \pi^{-1}(f^{-1}(U))$, so by the definition of the quotient topology f'(U) is open. Hence, f is continues I

<u>Remark</u>: The proposition can be adapted into an (equivalent) definition of the quotient space, but we won't do that here.

Summary: The quotient space T/\sim is obtained from T by doing as little gluing as possible, subject to the constraint that x is glued to y in T/\sim whenever $X \sim Y$.

Exam Similar tomat to last time - one page of handwritten notes allowed, front and back - covers honeworks 4-6. - may be a question on the subspace topology. - Edit distance will be an exam - not on This exam: Gluing, quotient topology product topology, RMSD. - ut least one proof - at least one definition - at least one problem directly from the HW. Homework Problems Problem set 5, # 5. Prove that a subset S of a metric space M is open iff it contains none of its boundary points. Def: For S any subset of M, XEM is a boundary point if each open bull centered at x contains a point in S and a point not in S. A:Suppose S contains none of its boundary points. For any

 $x \in S, x$ is not a boundary point. Therefore, for some open ball B(x,r_x), B(x,r_x) < S or B(x,r_x) \cap S = ϕ . But $x \in B(x,r_x)$, So $B(x,r_x) \cap S \neq \phi \Longrightarrow B(x,r_x) \in S$. (hoosing such a ball $B(x,r_x)$)

YxeS, we have S= UB(x,rx), so S is open. Key fact: IF S is an open subset of M, then for each x ilde{S}, B(x,r) ilde{S} for some r>0. If S is open, then by the key fact, no point XES is a boundary point. <u>HWG</u>. #1.e. Let S be a finite subset of IR? What is the boundary of S? Is Sopen? For any x ES and ball B centered at x, B contains X. B clearly also contains points in X. So \times is a boundary point. If $X \notin S$, then a very small ball alound X contains no points in S. Thus x is not a boundary point, So Boundary (S) = S. => IF S is non-empty, S is not apen.

Problem 2. For M=[1,1] w/ the Euclidean metric, which of the following are open subsets of M? Or. $\{1\}$. Not open. If it is open, then it contains an open ball centered at 1, by the key fact. But any open ball centered at 1 is of the form $B(1,r) = \{1,r,1\}$ if $r \leq 2$ $\{1,r,1\}$ if $r \geq 2$. {13 contains no such set. b. $(0,1) = B(\frac{1}{2}, \frac{1}{2})$ so (0,1) is open in M open ball in M. c. (0,1) is not open because O is a boundary point. d. (0,1] is open because (0,1]=B(1,1).