AMAT 342 Leaver 4, Sept 5, 2019
Continuous Functions
As noted last time, we will consider the continuity of functions between subsets of Euclidean spaces.

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{4}$

$$
y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{1}^{n}
$$

let $d(x, y)$ denote the Eudidean distance between x and y, i.e.,

$$
\begin{gathered}
d(x, y)=\sqrt{\left(x_{1}-y\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-1 / n\right)^{2}} \\
\| \prime \\
\|x-y\| .
\end{gathered}
$$

Let $s \subset \mathbb{R}^{m}$ and $T \subset \mathbb{R}^{n}$ for some $n, m \geqslant 1$.
Intuitively, a function $f: S \rightarrow T$ is continuous if f maps nearby points to nearby points.

Illustration

Formal Definition
We say $f: S \rightarrow T$ is continuous at $x \in S$ if for all $\epsilon>0$, there exists $\delta>0$ such that if $y \in S$ and $d(x, y)<\delta$, then $d(f(x), f(y))<\epsilon$.

We say f is continuous if it is continuous

Interpretation: Y_{00} give we any positive ϵ no matier how small. Continuity at x means that I can choose a positive δ such that points within distance δ of x map under to points within distance \in of $f(x)$. (I'm allowed to choose δ as small as I wants as long as it's positive.)

Example: Consider $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $f(x)= \begin{cases}(x, x+1) & \text { if } x<0 \\ (x, x) & \text { if } x \geqslant 0\end{cases}$

Since f "splits the line" at 0 , we expect That f is not continuous. Lets check this using the formal definition of continuity.

Proof that f is not continuous
Let $\epsilon=1 / 2$.

No matter how small we take δ if $y<0$ and $d(0, y)<\delta$, then $d(f(0), f(y))>\frac{1}{2}$.
Hence f is not continuous at O.
Examples of continuous functions.
Elementary functions $\underset{\substack{\hat{R}}}{ } \rightarrow \mathbb{R}$ from calculus are continuous at each point where they are defined, e.g.:

- $\sin x, \cos x, \log x, c^{x}$, polynomials
- Sums, products, and quotients of these.

4 facts (moral: functions that you think would be cantimous usually wee),

1) If $f: S \rightarrow T$ and $g: T \rightarrow U$ are both continuous, then $g \circ f: S \rightarrow U$ is continuous.
2) If $S<T \subset \mathbb{R}^{4}$, then the inclusion map $j: S \rightarrow T$ given by $j(x)=x$ is continuous.
3) If $U \subset \mathbb{R}^{m}$ and $f_{1}, f_{2}, \ldots, f_{n}: U \rightarrow \mathbb{R}$ are continuous, then $\left(f_{1}, f_{2}, \ldots, f_{n}\right): U \rightarrow \mathbb{R}^{n}$, given by $\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$ is continuous.
4) If $f: S \rightarrow T$ is continuous then the
the map $\tilde{f}: S \rightarrow \operatorname{im}(f)$ defined by $\tilde{f}(x)=f(x)$ is continuous. In this class, we wont spence too much time worrying about the rigorous definition of continuity, but I do want you to be familiar with it.

Homeomorphism
For S,T subsets of Euclidean spaces, A function $f: S \rightarrow T$ is a homeomorphism if

1) f is a continuous bijection
2) The inverse of f is also continuous.

Homeomorphism is the main notion of catinuos deformation well consider in this course.

If \exists a homeomorphism $f: S \rightarrow T$, we say S and T are homeomorphic.
In this class, "topologically equivalent"" homeomarphic.

Example Let $Y<\mathbb{R}^{2}$ be the square of side length 2 , embedded in the plane as shown

The function $f: Y \rightarrow S^{1}$ given by $f(x)=\frac{x}{\|x\|}$ is a homeomaphism.
where $\|x\|=$ distance of x to origin

$$
=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

By facts above, this is continuous.
It is inturtivelyclear that this is a bijection with a continuous inverse. The inverse can be written down, but we wont bother.
Example: Consider the function given by $f(x)=(\cos x, \sin x)$.

f is continuous, and we saw last lecture that it is a bijection. However, $f^{-1}: S^{1} \rightarrow[0,2 \pi)$ is not continuous at $(1,0)$. (And therefore, f is not continuous.)

Note: The fact that f is not a homeomorphism does nit imply that $[0,2 \pi)$ and S^{\prime} are not homeomorphic. In fact they are not, and we will explain why
Basic Facts About Homeomorphisms. soon.

- Clearly, if $f: S \rightarrow T$ a homeomorphism, then f^{-1} is a homeomorphism.
- If $f: S \rightarrow T$ and $g: T \rightarrow U$ are homeomorphisms, then $g \circ f: S \rightarrow T$ is a homeomorphism $(w /$ inverse $\left.f^{-1} \circ g^{-1}\right)$

Example: Returning to examples from the 15I day of class, consicler the capital letters as unions of curves (no thickness)
D and O are home morphic
T, Y, and J, E, and F are G homeomorphic C, S, and Z homemorphic.
X and K are homeomorphic (at least, the way I wite K.)
Example: The donut and coffee mug are haneomarphic

Isotopy
All of the pair of homeormorphic spaces we've seen so far are topologically equivalent in a sense that's stronger than homeomorphism, called isotopy.

The definition of isotopy is closer to the "rubber-sheet geometry" idea of continuous deformation that we introduced on the first day.
Motivating example
Let $S, T \subset \mathbb{R}^{2}$ be as illustrated:

S is a unit circle with a line segment attached to one point. The line segment points inward.
S

T is also a unit arcle with a line segment attached to the same point, but now line segment points outward.

It is clear that There is a homeomorphism $f: S \rightarrow T$.
However, it's also clear that it S and T were made out of stretchy rubber, there is no way we could deform S into T withat tearing. The line segment would have to pass through the sphere.

Formally, we express this idea using isotopy.
To clefine isotopy, we need to first define homotopy. Homotopy is a notion of of continuous deformation for functions (rather Than spaces).
For S a set and $h: S \times I \rightarrow T$ a function, and $t \in I$, let $h_{t}: S \rightarrow T$ be given by

$$
h_{+}(x)=h(x, t)^{\top} .
$$

Definition: For continuous maps $f, g: S \rightarrow T$ a homotopy between f and g is a continuous map

$$
h: S \times I \rightarrow T
$$

such that $h_{0}=f, h_{1}=g$.

