MAT 342 Lee 9 9/24/19
Today: Path components, continued Metric spaces: Topology beyond Euclidean solaces.

Recall from last time:
A relation ~ on a set S is an equivalence relation if

1) $x \sim x \quad \forall x \in S$ [reflexivity]
2) $x \sim y$ iff $y \sim x$ [symmetry]
3) $x \sim y, y \sim z \Rightarrow x^{\sim} z$ [transitivity]
if $x \sim y$, we say x is equivalent to y.
Equivalence classes $\frac{0 d f}{}$: For n an equivalence relation on S and $x \in S$, let $[x]$ denote the set $\{y \in S \mid y \sim x\} \subset S$. We call $[x]$ an equivalence tass of \sim.

Fact: For any equivalence relation \sim on a set S, every dement of S is contained in exactly one equivalace class of \sim.

Note: $[x]=[y]$ if $x=y$.
[For the proof, see the notes from Lee. 8].
Notation: S / \sim is the set of equivalence lasses of \sim.
subset of Eudidean space.
Recall from your homework: For a space S and $x, y \in S$, a path from x to y is a continuous function $\gamma: I \rightarrow S$ such that $\gamma(0)=x, \gamma(1)=y$.

Define a relation \sim on S by $x^{2} y$ iff \exists a path from x to y.

Proposition: ~ is an equivalence relation.
(Proof was not covered in class last time.)
Pf: Reflexivity: For $x \in S$, the path $\gamma: I \rightarrow S$, given by $\gamma(t)=x \quad \forall+\in I$, is a path from x to itself.

Symmetry: If γ is a path from x to y, then $\bar{\gamma}: I \rightarrow S, \bar{\gamma}(t)=\gamma(1-t)$ is a path from y to x.

Transitivity: If α is a path from x to y, and β is a path from y to z, then a path γ from x to Z is given by x

$$
\gamma: I \rightarrow S, \quad \gamma(t)=\left\{\begin{array}{l}
\alpha(2 t) \text { for } t \in\left[0, \frac{1}{2}\right] \\
B(2 t-1) \text { for } t \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Definition: A path component of S is an equivalence class of \sim i.e. an element of S / \sim.

Illustration:
The set $S \subset \mathbb{R}^{2}$
shown has two path components.

Notation: S / \sim is written as $\pi(S)$.

The set of path components of S.

Definition: S is path connected if $\pi(S)$ contains exactly one element. Note: If S is non -empty, this is equivalent to the def. of path connected in HW \#Z.

Proposition: If S and T are homeomorphic, then there is a bijection from $\pi(S)$ to $\pi(T)$.
Thus, if S has k path components, so does T.
Proof: For any continuous function $f: S \rightarrow T$, we define a function: $f_{*}: \pi(S) \rightarrow \pi(T)$ by
$f([x])=[f(x)]$ In other words, for $($ a path componenent of $S_{\text {, define }} f_{*}(c)$ by choosing $x \in C$ and taking $f_{*}(c)$ to be the path component of T containg $f(x)$.

$$
x_{0} \int[x]=c \sum_{[f(x)]}=f_{*}(c)
$$

Note: We need to check that this definition doesut depend on the choice of $x \in C$.

That is, we need to check that if $[x]=[y]$ then $[f(x)]=[f(y)]$.

If $[x]=[y]$, then $x^{2} y$, i.e., there is a path $\gamma: I \rightarrow S$ from x to $\% \quad \quad f \circ \gamma: I \rightarrow T$ is a path f from $f(x)$ to $f(y)$, so $f(x) \sim f(y)$, which implies $[f(x)]=[f(y)] . \int$
Well show that f_{*} is invertible, hence a bijection, when f is a homeomorphism.

For this, we need two facts:

1) For any $S \leq \mathbb{R}^{n}$, and $I d^{5}: S \vec{S} S$ the identity map,

$$
\begin{aligned}
& I d_{*}^{S}=I d^{\pi(s)}: \pi(s) \rightarrow \pi(s) \text {. } \\
& \text { Pf: } I d_{*}^{s}([x])=[I d(x)]=[x] .
\end{aligned}
$$

2)
3) For any continuous maps $f: S \rightarrow T, g!T \rightarrow U$,

$$
(g \circ f)_{*}=g_{*} \cdot f_{*}: \pi(s) \rightarrow \pi(u)
$$

Pf: $(g \circ f)_{k}([x])=[g \circ f[x]]=[g(f(x))]=$

$$
g_{*}[[f(x)]]=g_{*}\left(f_{x}[x]\right)=g_{*} \cdot f_{*}([x]) \text {. }
$$

[lecture ended here]
Now assume $f: S \rightarrow T$ is a homeomorphism.
Then f, f^{-1} are both continuous, and we have $f^{-1} \circ f=I d^{s}$
$f \circ f^{-1} I d^{\top} \quad I d^{\pi(s)}$
Thus, $\left(f^{-1} \circ f\right)_{*}=I d_{*}^{s} \Rightarrow f_{*}^{-1} \circ f_{*}=I d^{\pi(s)}$

$$
\left.\left(f \circ f^{-1}\right)_{*}=I d_{*}^{\top} \Rightarrow f_{*}^{\top} \circ f_{*}^{-1}=I d^{\pi(T)}\right)
$$

Thus, $f_{x}: \pi(S) \rightarrow \pi(T)$ is invertible, with inverse F_{*}^{-1}.

Application: Consider the symbols,$+=$, and \div as subsets of \mathbb{R}^{2}.
$|\pi(t)|=1,|\pi(=)|=2,|\pi(\div)|=3$. Thus none is hemeomosphic to any other.

Application: We prove that as unions of curves w/ no Thickness, X and Y are not homeomapphic.

Fact: If $f: S \rightarrow T$ is a homeomorphism and $A \subset S$, then A and $f(A)$ are homeomorphic, where $f(A)=\{y \in T \mid y=f(x)$ for some $x \in A\}$.

proof of fact: (to be skipped in cns) Let $j: A \rightarrow S$ be the inclusion. $\operatorname{im}(f \circ j)=f(A)$. Since f is a bijection, so $\tilde{f}_{0 j}: A \rightarrow f(A)$. It follows from the facts about continuity stated in an earlier lecture that $\widetilde{f \circ j}$ is continuous. Moreover, if $j^{\prime}: f(A) \rightarrow T$ is the inclusion, $\left(\hat{f}_{\circ j}\right)^{-1}=\vec{f}^{-1} \circ j$, and this is continuous by the same reasoning,

Proof that X and Y are not homeomorphic: Let $X^{\prime} \subset X$ be obtained bi removing the center saint D. $\left|\pi\left(X^{\prime}\right)\right|=4$. Note that there
no way to remove a single point fran Y to get $Y^{\prime} \subset Y$ with $|\pi(Y)|=4$

If we have a homeomorphism $f: X \rightarrow Y$, then $f\left(x^{\prime}\right)$ is obtained from Y by removing $f(p)$, and $\left|\pi\left(f\left(x^{\prime}\right)\right)\right|=\left|\pi\left(x^{\prime}\right)\right|=4$ by the pap.., which is impossible. Thus, no homeomorphism $f: X \rightarrow Y$ can exist.

Topology Beyond Subsets of Euclidean Space
So far in this course, we've only considered continuity of functions $F: S \rightarrow T$ where S and T subsets of Eudidean spaces.
we sometimes use the ward "subspace"
Hence, all the topological concepts we've introduced so far, eg.,

- homeomorphism
- isotopy
- path components
have been defined in class only for Eudidean subspaces.

However, these ideas make sense in much more generality, and that extra generality can be edremely useful.
In fact, there are two levels to this extra generality. We discuss first level now.

Recall our definition of a continuous function between Euclidean subspaces:
Formal Definition of Continuity
We say $f: S \rightarrow T$ is continvass at $x \in S$ if for all $\epsilon>0$, there exists $\delta>0$ such that if $y \in S$ and $d(x, y)<\delta$, then $d(f(x), f(y))<\epsilon$.

We say f is continuous if it is continuous at all $x \in S$.

Important observation: The only way we are using the fact that S and T are Euclidean subspaces is through their distance functions.
\Rightarrow Continuity should make sense for any functions between sets endowed with "distance founders.

There are many extremely important examples, beyond the Eudidean subspaces we've already seen.

To explain this formally, we introduce metric spaces.

A metric space is a set S, together with a function $d: S \times S \rightarrow[0, \infty)$ Satisfying:

1) $\begin{aligned} & d(x, y)=0 \text { if and only if } x=y \text {. } \\ & d(x, y)=d(y, x) \quad[\text { symmetry] }\end{aligned}$
2) $d(x, z) \leqslant d(x, y)+d(y, z) \quad \forall x, y, z \in S$
[triangle inequality].
We call da metric.
Examples:

- The familar example: $S=\mathbb{R}^{n}, d_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty)$,

$$
\begin{gathered}
d_{2}(x y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}} \\
\cdot S=\mathbb{R}^{n}, d_{1}: \mid \mathbb{R}^{n} \times \mathbb{R}^{h} \rightarrow[0, \infty) \\
d_{1}\left(x_{1}, y\right)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\cdots+\left|x_{n}-y_{n}\right|
\end{gathered}
$$

$$
\begin{aligned}
& \cdot S=\mathbb{R}^{n}, d_{\text {mix }}: \mathbb{R}^{n}+\mathbb{R}^{n} \rightarrow[0, \infty), \\
& d_{\max }\left(x_{y}, y\right)=\max \left(\left|x_{1}-y\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right)
\end{aligned}
$$

