
AMAT 342

Review of Metric Spaces and Topological
Spaces

(Last updated on Dec. 2, 11:30 a.m.)

1 Metric Spaces

Definition 1 (metric space). A metric on a set S is a function d : S × S →
[0,∞) satisfying the following three properties:

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x) for all x, y ∈ S,

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

A metric space is a pair (S, d), where S is a set and d is a metric on S.

Example 1.1. We define three metrics d2, d1, and dmax on Rn:

d2(x, y) =

√√√√ n∑
i=1

(xi − yi)2,

d1(x, y) =
n∑

i=1

|xi − yi|,

dmax(x, y) = max
1≤i≤n

|xi − yi|.

d2 is often called the Euclidean distance, and d1 is often called the Manhattan
distance, or the taxicab metric.

Remark 1.2. IfM = (S, d) is a metric space, we often abuse notation/language
slightly and conflate M with its underlying set S. For example,

• “an element of M” means “an element of S”,

• a “subset of M” means “a subset of S,”
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• if M = (S, d) and M ′ = (S ′, d′) are metric spaces, a function f : M →
M ′ is understood to be a function f : S → S ′.

This convention sometimes allows us to simplify notation when working with
metric spaces.

Remark 1.3 (Subspaces of metric spaces). If M = (S, d) is a metric space
and S ′ ⊂ S, then d induces a metric d′ on S ′, given by d′(x, y) = d(x, y) for
all x, y ∈ S ′. Thus, we can always regard a subset of a metric space as a
metric space. We call (S ′, d′) a subspace of M .

The definition of continuity of functions between subsets of Euclidean
spaces generalizes to functions between metric spaces, as follows:

Definition 2 (Continuity). Let M and N be metric spaces with metrics dM
and dN , respectively. A function f : M → N is said to be continuous at
x ∈ M if for every ε > 0, there exists δ > 0 such that dM(x, y) < δ implies
dN(x, y) < ε. f is said to be continuous if it is continuous at all x ∈M .

Remark 1.4. Given Definition 2, the definition of homeomorphism that we
gave in class for subsets of Euclidean spaces extends to metric spaces, as do a
number of other basic topology definitions we gave earlier in the semester, like
path components and embeddings. In fact, as a rule, all the basic concepts
in topology can formulated for metric spaces, and even more generally for
abstract topological spaces.

1.1 Open Sets

Let M be a metric space with metric dM . For r > 0 and x ∈ M , the open
ball in M of radius r centered at x is the subset of M given by

B(x, r) = {y ∈M | dM(x, y) < r}.

More succinctly, B(x, r) is called an open ball.

Definition 3 (Unions). Let A be any set, and suppose that for each x ∈ A
we have a set Sx. Then the union of the sets Sx, denoted

⋃
x∈A

Sx, is the set

containing an element y if and only if y ∈ Sx for some x ∈ A.

If S = {1, 2} this is just the usual union S1 ∪ S2. But our definition also
allows for infinite unions.
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Definition 4 (Open sets). For M a metric space, an open set in M is a
union of open balls. (More formally, a subset U ⊂M is open if there exists a

set A ⊂M and a number rx > 0 for each x ∈ A such that U =
⋃
x∈A

B(x, rx).)

Remark 1.5. Taking A = ∅, we see that ∅ is an open set of M . Moreover,
it is easily checked that M is an open set of M .

This following useful proposition was proven in class (see the notes for
Lecture 17, page 4):

Proposition 1.6. If U is an open set of M , then for each x ∈ U , there is
a ball centered at x that lies entirely in U . That is, there exists r > 0 such
that B(x, r) ⊂ U .

Remark 1.7. In view of the last proposition, in the formal definition of an
open set above (Definition 4), we can always choose A to be U .

Remark 1.8 (Open sets of metric subspaces). If N is a metric space, U ⊂
M ⊂ N , and we regard M as a metric space by restriction of the metric on
N , as in Remark 1.3, then it is possible for U to be an open set in M but
not in N . For example, if N = R with the Euclidean metric d2, M = [1, 1],
and U = [0, 1), then U is open in M but not in N . (This example appeared
in homework 6, problem 2.) On the other hand, it can be checked that if U
is open in N , then U is open in M .

Exercise 1. Prove the claim in the last sentence of the remark above.

1.2 Boundaries

Definition 5 (Boundary points). Let U be a subset of a metric space M .
x ∈M is a boundary point if every open ball centered at x contains at least
one point in U and one point not in U .

Proposition 1.9. For any metric space M , U ⊂M is open if and only if U
contains none of its boundary points.

Proposition 1.9 is an easy consequence of Proposition 1.6. For the proof,
see the solutions to homework 5, where this was given as an exercise. Propo-
sition 1.9 can be useful for determining whether a subset of a metric space is
open, as in homeworks 5 and 6.
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1.3 Characterization of Continuity in terms of Open
Sets

Definition 6 (Inverse images). For any function f : S → T and U ⊂ T , the
inverse image of U under f (also called the preimage), denoted f−1(U), is
the subset of S given by

f−1(U) = {x ∈ S | f(x) ∈ U}.

Proposition 1.10. A function of metric spaces f : M → N is continuous
iff f−1(U) is open whenever U ⊂ N is open.

The proof of Proposition 1.10 was not given in class, but is in the notes
for Lecture 17 (see page 6).

Remark 1.11. Proposition 1.10 tells us that from the standpoint of conti-
nuity, the metric on a metric space matters only via open sets it generates.
Thus, since topology is at its heart a study of continuous functions, the choice
of metric also matters from the vantage point of topology only via the open
sets it generates.

1.4 Topological equivalence of metrics

For M a metric space, let U(M) denote the set of all open sets of M . With
Remark 1.11 in mind, we make the following definition:

Definition 7 (Topological Equivalence). Let d and d′ be metrics on the same
set S. d and d′ are said to be topologically equivalent if the set of open sets
of U((S, d)) = U((S, d′)).

The following gives a sufficient condition for two metrics to be topologi-
cally equivalent.

Proposition 1.12. If there exist positive constants α, β such that

αd(x, y) ≤ d′(x, y) ≤ βd(x, y)

for all x, y ∈ S, then d and d′ are topologically equivalent.

The proof of Proposition 1.12 was assigned as problem 3 in homework 6;
see the solutions.

One encounters topologically equivalent metrics quite often in practice.
The following gives one important example:
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Proposition 1.13. The metrics d1, d2, and dmax on Rn are all topologically
equivalent.

The proof of this is an application of Proposition 1.12. For the (easy)
proof of equivalence of d1 and dmax see the solution to problem 4 from home-
work 6. For the proof of equivalence of d1 and d2, see the notes for lecture
18. (This uses the Cauchy-Schwarz inequality from linear algebra).

Remark 1.14. It is easy to check that if d and d′ are topologically equivalent
metrics on a set S, then the metric spaces (S, d) and (S, d′) are homeomor-
phic. In fact, the identity map on S is a homeomorphism between the two
metric spaces.

2 Topological Spaces

As Remark 1.11 indicates, the open sets of a metric space are what matter
in topology. In fact, it turns out to sometimes be a hindrance in topology to
worry about the extra data of the metric, when all that really is needed is
the open sets. This suggests that we should try to develop the basic theory
in an abstract, metric-free way that explicitly puts open sets at the center of
the formalism. In fact, such an abstract approach to topology is standard;
the key definitions are Definitions 8 and 9 below:

Definition 8 (Topological Space). A topological space is a pair T = (S,OS),
where S is any set and OS is any set of subsets of S satisfying the following
four properties:

1. Unions of (possibly infinitely many) elements of OS are in OS. (More
precisely, for A any set, if we are given given a set Ux ∈ OS for each

x ∈ A, then
⋃
x∈A

Ux ∈ OS.)

2. Intersections of finitely many elements of OS are in OS. (That is, if
U1, U2, . . . , Un ∈ Os, then U1 ∩ U2,∩ . . . ∩ Un ∈ OS.)

3. S ∈ OS.

4. ∅ ∈ OS.

OS is called a topology on S. Elements of OS are called open sets of T .
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Remark 2.1. We now make a remark in very much the same spirit as Re-
mark 1.2: If T = (S,OS) is a metric space, we often abuse notation/language
slightly and conflate T with its underlying set S. For example,

• “an element of T” means “an element of S”,

• a “subset of T” means “a subset of S,”

• if T = (S,OS) and T ′ = (S ′, OS′
) are metric spaces, a function f : T →

T ′ is understood to be a function f : S → S ′.

We have now defined open sets in two settings, first, for metric spaces
(Definition 4), and then again in the abstract setting of topological spaces
(Definition 8). As one would hope, the latter case generalizes the former;
this is made precise by the following result:

Proposition 2.2. Let M = (S, d) be any metric space. U(M), the set of
open sets of M , is a topology on S, which we call the metric topology. Thus
(S,U(M)) is a topological space.

Proof. To prove the proposition, one has to check that properties 1-4 of a
topological space are satisfied. The only property that is not immediate is
property 2. This follows from Proposition 1.6 via a short argument that was
given in class. (See the notes for Lecture 18, page 6.)

Most of the interesting examples of topological spaces arise from metric
spaces, as in Proposition 2.2.

In view of Proposition 1.10, the following definition is natural:

Definition 9 (continuous maps between topological spaces). A function f :
T → T ′ of topological spaces is said to be continuous if f−1(U) is open
whenever U is open.

Example 2.3. For any set S, let P(S) denote the set of all subsets of S.
Then (S,P(S)) is a topological space. P(S) is called the discrete topology
on S, and we say that the topological space (S,P(S)) is discrete.

Proposition 2.4. A topological space T is discrete if and only if {x} is open
for all x ∈ T .

Proposition 2.5. For any finite metric space M , the metric topology is
discrete.
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Proof. Let r > 0 be the minimum distance between any two elements of M .
Then for any x ∈M , B(x, r/2) = {x}, so {x} is open. The result now follows
from Proposition 2.4.

Remark 2.6. The discrete topology always arises as the metric topology of

some metric d on S. For example, we may take d(x, y) =

{
0 if x=y,

1 if x 6= y.
.

For any x ∈ S, B(x, 1/2) = {x}, so {x} is open, and it follows from Propo-
sition 2.4 that the metric topology is discrete.

Example 2.7. For any set S, {S, ∅} is a topology on S, called the trivial
topology. We showed in class that if S has at least two elements, then the
trivial topology is not the metric topology of any metric on S.

Definition 10 (subspace topology). For T = (S,OS) a topological space
and X ⊂ S any subset, we define a topology OX on X by

OX = {U ∩X | U ∈ OS}.

We call OX the subspace topology. As a rule, we regard any subset of a
topological space as a topological space with the subspace topology.

The following shows that in the case of a subspace of a metric space, the
subspace topology coincides with the metric topology, as one would hope:

Proposition 2.8. For N a metric space and M ⊂ N a subspace, as defined
in Remark 1.3, the metric topology on M is the same as the subspace topology
for the metric topology on N .

The proof of this was omitted both in class and in the notes.

3 Quotient Spaces

Recall that for any equivalence relation ∼ on a set S, we let S/∼ denote the
set of equivalence classes of ∼. We have a surjection π : S → S/∼, given by
π(x) = [x].

Given a topological space T = (S,OS) and an equivalence relation ∼ on
S, we define the quotient space T/∼ to be the topological space

T/∼ = (S/∼, O∼),
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where O∼ is defined as follows:

O∼ = {U ⊂ S/∼ | π−1(U) ∈ OS}.

Thus, a set U is open in T/∼ if and only if π−1(U) is open in T .
Intuitively, the T/ ∼ is the topological space obtained by gluing together

points x, y ∈ T if and only x ∼ y. As we discussed in class, this definition of
quotient space in fact gives a topological space that glues stuff together as
little as possible, subject to the constraint that if x ∼ y, then x gets glued
to y. This is made precise by the following proposition, which is proved in
the lecture notes (and was stated but not proved in class):

Proposition 3.1. For any topological space T = (S,OS) and equivalence
relation ∼ on S,

(i) The surjection π : T → T/∼ is continuous.

(ii) For any other continuous surjection f : T → X such that f(x) = f(y)
whenever x ∼ y, there exists a unique continuous function f̄ : T/∼→
X such that f = f̄ ◦ π.
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