The power set $\mathcal{P}(S)$ of a set S is the set consisting of all subsets of S.
1a. What is $\mathcal{P}(\{1,2\})$?
1b. How many elements are in $\mathcal{P}(\mathcal{P}(\{1,2\}))$? Justify your answer.

2a. Draw a diagram illustrating the set $\{1,2,3,4\}^{2} \subset \mathbb{R}^{2}$.
2b. Draw a diagram illustrating the set $\{1,2,3,4\} \times I \subset \mathbb{R}^{2}$.
2c. Draw a diagram illustrating the set $I \times\{1,2,3,4\} \subset \mathbb{R}^{2}$.
2 d. Let $S^{1} \subset \mathbb{R}^{2}$ be the unit circle, i.e., the set of all points of distance 1 from the origin in \mathbb{R}^{2}. Draw a diagram illustrating the set $S^{1} \times I \subset \mathbb{R}^{3}$. What shape is $S^{1} \times I ?$

If S is a finite set with n elements,
3a. how many elements does $\mathcal{P}\left(S^{2}\right)$ have?
3b. how many elements does $(\mathcal{P}(S))^{2}$ have?

For each function, give its image, and say whether the function is an injection, surjection, or bijection. If the function is a bijection, also give its inverse.
4a. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$
4b. $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, f(x)=\left(x, x^{3}\right)$ [NOTE: For this subproblem, there's not a slick way to write the image; just give $\operatorname{im}(f)$ in the obvious way using the curly bracket notation.
4c. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}$
4 d. $f: \mathbb{R} \rightarrow[0, \infty), f(x)=x^{4}$
4e. $f: \mathbb{R} \rightarrow[-1,1], f(x)=\cos x$
5. Let $f: R^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x+y$. For S the square

$$
S=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq x, y \leq 1,\right\}
$$

describe $f(S)$ as an interval.

6a. Give a bijection $f:(0,1] \rightarrow[1, \infty)$. What is the inverse of f ?
6 b. Give a bijection $\mathbb{N} \cup\{a, b\} \rightarrow \mathbb{N}$.
6 c . [Bonus, won't be graded] Building on your solution to 5 b., describe a bijection $g:(0,1) \rightarrow[0,1]$.
(Hint: there is a bijection from the set $\left\{\left.\frac{1}{2^{n}} \right\rvert\, n \in \mathbb{N}, n \geq 1\right\}$ to \mathbb{N}.)

