The power set $\mathcal{P}(S)$ of a set S is the set consisting of all subsets of S. 1a. What is $\mathcal{P}(\{1,2\})$?

1b. How many elements are in $\mathcal{P}(\mathcal{P}(\{1,2\}))$? Justify your answer.

2a. Draw a diagram illustrating the set $\{1, 2, 3, 4\}^2 \subset \mathbb{R}^2$.

2b. Draw a diagram illustrating the set $\{1, 2, 3, 4\} \times I \subset \mathbb{R}^2$.

2c. Draw a diagram illustrating the set $I \times \{1, 2, 3, 4\} \subset \mathbb{R}^2$.

2d. Let $S^1 \subset \mathbb{R}^2$ be the unit circle, i.e., the set of all points of distance 1 from the origin in \mathbb{R}^2 . Draw a diagram illustrating the set $S^1 \times I \subset \mathbb{R}^3$. What shape is $S^1 \times I$?

If S is a finite set with n elements, 3a. how many elements does $\mathcal{P}(S^2)$ have? 3b. how many elements does $(\mathcal{P}(S))^2$ have?

For each function, give its image, and say whether the function is an injection, surjection, or bijection. If the function is a bijection, also give its inverse. 4a. $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$

4b. $f : \mathbb{R} \to \mathbb{R}^2$, $f(x) = (x, x^3)$ [NOTE: For this subproblem, there's not a slick way to write the image; just give im(f) in the obvious way using the curly bracket notation.

4c. $f : \mathbb{R} \to \mathbb{R}, f(x) = x^4$ 4d. $f : \mathbb{R} \to [0, \infty), f(x) = x^4$ 4e. $f : \mathbb{R} \to [-1, 1], f(x) = \cos x$

5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by f(x, y) = x + y. For S the square $S = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x, y \le 1, \}$

describe f(S) as an interval.

6a. Give a bijection $f: (0,1] \to [1,\infty)$. What is the inverse of f? 6b. Give a bijection $\mathbb{N} \cup \{a, b\} \to \mathbb{N}$.

6c. [Bonus, won't be graded] Building on your solution to 5b., describe a bijection $g: (0,1) \rightarrow [0,1]$.

(Hint: there is a bijection from the set $\{\frac{1}{2^n} \mid n \in \mathbb{N}, n \ge 1\}$ to \mathbb{N} .)