1. For each of the following relations \sim on \mathbb{Z} , state whether \sim is an equivalence relation. Explain your answer.

a. $x \sim y$ iff x - y is divisible by 3. (Note: 0 is considered to be divisible by 3.)

$$b. \ x \sim y \text{ iff } \frac{x}{y} = 1,$$

$$c. \ x \sim y \text{ iff } xy \geq 0.$$

c.
$$x \sim y$$
 iff $xy \geq 0$.

d.
$$x \sim y$$
 iff $x = y$ or $x = -y$.

2. Prove that if X is path connected and $f: X \to Y$ is continuous, then $\operatorname{im}(f)$ is path connected. [Hint: You need to show that for any $a, b \in \text{im}(f)$, there exists a path $\gamma: I \to \operatorname{im}(f)$ from a to b.]

3. Give an example where X is not path connected, $f: X \to Y$ is continuous, and im(f) is path connected. [Don't just draw a picture, specify the function explicitly.]

4. Give an example where X is path connected, $f: X \to Y$ is not continuous, and im(f) is not path connected. [Again, don't just draw a picture, specify the function explicitly.]

5. For each of the following functions $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$, say whether d is a metric. Briefly explain your reasoning.

a.
$$d(x,y) = \begin{cases} 0 & \text{if x=y,} \\ 1 & \text{otherwise.} \end{cases}$$

b. $d(x,y) = 2|x-y|$
c. $d(x,y) = (x-y)^2$
d. $d(x,y) = |x| + |y|$
e. $d(x,y) = \frac{|x|}{1+|y|}$

b.
$$d(x,y) = 2|x - y|$$

c.
$$d(x,y) = (x-y)^2$$

d.
$$d(x,y) = |x| + |y|$$
.

e.
$$d(x,y) = \frac{|x|}{1+|y|}$$
.

- 6. Compute the edit distance between the following pairs of sequences:
 - 1. x = AAAA, y = AA
 - 2. x = AAAA, y = AAAT
 - 3. x = GTAA, y = TAAG.
 - 4. x = GGGG, y = TT.
- 7. Consider $P, Q \in O^2$. (That is, P and Q are each ordered pairs of points in \mathbb{R}^3). Find a simple formula for RMSD(P,Q).
- 8. [Bonus] Show that for \sim the equivalence relation on O^2 described in lecture, the metric space $(O^2/\sim, \overline{RMSD})$ is homeomorphic to a subset of $\mathbb R$ with its the usual Euclidean metric.
- 9. [Bonus] Show that if

$$P, P, Q, Q' \subset O^n$$

and $P = \phi(P'), \ Q = \psi(Q')$ for some rigid motions $\phi, \psi : \mathbb{R}^3 \to \mathbb{R}^3$, then

$$RMSD(P,Q) = RMSD(P',Q').$$

[Hint: It suffices to show both that

$$RMSD(P,Q) \le RMSD(P',Q'),$$

and that

$$RMSD(P', Q') \le RMSD(P, Q).$$

You may use without proof the fact that the composition two rigid motions is a rigid motion.]

10. [Optional exercise, not for credit, may not be graded] Check that \overline{RMSD} is indeed a metric on O^n/\sim .