1. Which of the following subsets S of \mathbb{R}^2 are open?

a. $S = \{(1, 1)\},$ b. S = the x-axis, c. $S = \{(x, y) \mid y - 1 < x < y + 1\},$ d. $S = \{(x, y) \mid y - 1 < x \le y + 1\},$ e. $S = \{(x, y) \mid y - 1 \le x \le y + 1\}.$

2. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Give an explicit expression for $f^{-1}(U)$, for each of the following sets $U \subset \mathbb{R}$:

3. Consider the function $f:[0,1] \to \mathbb{R}^2$ given by f(x) = (x, 2x). Sketch im(f) and give an explicit expression for $f^{-1}(U)$, for each of the following sets $U \subset \mathbb{R}$.

$$\begin{split} \text{a.} \ & U = [0,1] \times [0,2], \\ \text{b.} \ & U = \mathbb{R}^2, \\ \text{c.} \ & U = \{(2,3)\}, \\ \text{d.} \ & U = [0,1] \times [0,1]. \end{split}$$

4. Give an example of a pair of metrics on $\mathbb R$ which are not topologically equivalent.

5. For each of the following graphs G = (V, E), sketch the graph, and give an explicit expression for each connected component:

a. $V = \{a, b, c, d, e\}, E = \{[a, b], [a, c], [a, d], [a, e]\}.$ b. $V = \{a, b, c, d, e\}, E = \{[a, b], [b, c], [c, d], [d, a]\},$ c. $V = \{a, b, c, d, e, f\}, E = \{[a, b], [b, c], [c, a], [d, e], [e, f]\},$ d. $V = \{a, b, c, d, e, f\}, E = \{[a, b], [b, c], [c, a], [d, e], [e, f], [f, a]\},$ e. $V = \{a, b, c\}, E = \{\}.$ 6. For each of the following metric spaces (X, d) give an explicit expression for the neighborhood graph $N_z(X)$, for each $z \in \mathbb{N}$. Draw the single linkage dendrogram.

a. $X = \{(1,1), (0,0), (2,0), (0,2), (2,2)\} \subset \mathbb{R}^2, d = d_{\max}.$ b. $X = \{(1,1), (0,0), (2,0), (0,2), (2,2)\} \subset \mathbb{R}^2, d = d_1.$

7. Give an example of a metric space X, and a non-negative integer z such that $N_z(X) \neq N_{z+1}(X)$ but $P_z = P_{z+1}$, where P_y denotes the single-linkage clustering of X at scale y. [HINT: take X to have 3 elements.]

8. [Bonus] Let $O = \{\mathbb{R}, \emptyset\} \cup \{(-\infty, a] \mid a \in \mathbb{R}\}$. Is O a topology on \mathbb{R} ? Explain your answer.