1. Give an example of a set $S \subset \mathbb{R}$ which is homotopy equivalent but not homeomorphic to the 2 -element set $\{0,1\}$.
2. Give an example of a set $S \subset \mathbb{R}^{3}$ which is homotopy equivalent but not homeomorphic to the sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} .
$$

3. Write down a deformation retraction from $I \times I$ to $I \times\{0\}$. (This is a map
$h: I \times I \times I \rightarrow I \times I$ satisfying three properties. See the notes for Lecture 16-17.)
4. For each graph $G=(V, E)$, say whether G is a tree, a forest, or neither. (Recall: Working in the setting of undirected graphs, a forest is a graph with no cycles, and a tree is a forest with a single connected component.)
a. $V=\{a, b, c, d, e\}, E=\{[a, b],[a, c],[a, d],[a, e]\}$.
b. $V=\{a, b, c, d, e\}, E=\{[a, b],[b, c],[c, d]\}$,
c. $V=\{a, b, c, d, e, f\}, E=\{[a, b],[b, c],[c, a],[d, e],[e, f]\}$,
d. $V=\{a, b, c\}, E=\{ \}$.
e. $G=$ the complete graph on 4 vertices.
5. Let

$$
X=\{0,1.5,3,12,13,14.5\} \subset \mathbb{R}
$$

and let $Y=X \cup\{8\}$. Regard X and Y as metric spaces with the usual Euclidean metric d, i.e., $d(x, y)=|x-y|$. Plot Y, and compute and plot the (trimmed) single linkage dendrograms for X and Y. [Hint 1: One needs only to consider distances between consecutively ordered points. Hint 2: It may be helpful to use the algorithm outlined in class for computing single linkage dendrograms. While that algorithm was stated for the special case of \mathbb{N}-valued metrics, it in fact also works without modification for arbitrary metrics.]

Motivation/context for this exercise: In class, I have emphasized that the single-linkage dendrogram is not robust with respect to outliers. This exercise illustrates this idea in a very simple setting; here X has two clusters, each consisting of three points, sand Y contains these two clusters plus one outlier.
6. [Optional Bonus Exercise] Prove that the (untrimmed) dendrogram of a discrete hierarchical partition is a forest.

