ANAT 583 Lecture II 10/1/19
Recall: A metric space is a pair (S, d), where S is a set and $d: S \times S \rightarrow[0, \infty)$ is a function such that

1) $d(x, y)=0$ if $x=y$,
2) $d(x, y)=d(x, y)$
3) $d(x, z) \leqslant d(x, y)+d(y, z)$.

Examples from last time:

- The (usual) Euclidean metric d_{2} on \mathbb{R}^{n}

$$
d_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} d_{2} \text { is sometimes called. }
$$

- The "taxicab metric" d_{1} on \mathbb{R}^{n}

$$
\begin{aligned}
& d_{1}(x, y)=\sum_{i=1}^{m}\left|x_{i}-y_{i}\right| \quad \text { (a.k.a. the } l^{1} \text {-metric) } \\
& \cdot S=\mathbb{R}^{n}, d_{\text {max }}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty), \\
& d_{\text {max }}\left(x_{i}, y\right)=\max \left(\left|x_{1}-y\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right)
\end{aligned}
$$

Let's check that d_{1} is a metric.

1) Clearly $d_{1}(x, x)=0$ for all $x \in \mathbb{R}^{n}$.

If $x \neq y$, then $x_{k} \neq y_{k}$ for some $k \in\{1, \ldots, n\}$ so $0<\left|x_{k}-y_{k}\right| \leq d_{1}(x, y)$, so $0<d_{1}(x, y)$.
2) $d_{1}(x, y)=d_{1}(y, x)$ because $\left|x_{k}-y_{k}\right|=\left|y_{k}-x_{k}\right|$ for all $k \in\{1, \ldots, n\}$.
3) $d_{1}(x, z) \leqslant d_{1}(x, y)+d_{1}(y, z)$ because

$$
\left|x_{k}-z_{k}\right| \leqslant\left|x_{k}-y_{k}\right|+\left|y_{k}-z_{k}\right|
$$

(exphnation: $|a+b| \leqslant|a|+|b|$. Take $a=x_{k}-y_{k}, b=y_{k}-z_{k}$.
Fact: If $\left(M, d^{m}\right)$ is a metric space, $S<M$, and $d^{s}: S \times S \rightarrow[0, \infty)$ is the restriction of d^{m} to $\int \times S$ (i.e., $d^{s}(x, y)=d^{m}(x, y) \quad \forall x, y \in S$), then $\left(S, d^{S}\right)$ is a metric space.

That is, subspaces of metric spaces inherit the structure of a metric space in the obvious way.

Ex: $M=\mathbb{R}^{2}, S=S^{1}, \quad d^{M}=d_{2}$

Note: In applications, the subsets S are often finite.

In many cases, there is another construction of a metric on a subspace, the intrinsic metric.

Example: Define a metric d on S^{1} by $d(x, y)=$ minimum length of an are in S^{1} connecting x and y.

This is called the intrinsic metric on S^{1}.
e.g. $d((1,0),(0,1))=\frac{\pi}{2}$ because minimum len th of an arc from $(10$ to $(0,1$ is
$\frac{1}{4}$ (circumference of $\left.S^{1}\right)=\frac{2 \pi}{4}=\frac{\pi}{2}$.
By comparison $d_{2}((1,0),(0,1))=\sqrt{1^{2}+1^{2}}=\sqrt{2}$.

More generally, the intrinsic metric dean be defined on a very large class of subsets $S<\mathbb{R}^{n}$ as follows:
differentiable
$d(x, y)=$ minimum length of a^{\wedge} path $\gamma: I \rightarrow S$ from x to y. (since codomain of γ is S, in (γ) is required to lie in S.)
As in calculus, length $(\gamma):=\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t$.
For example, we can take S to be a sphere in \mathbb{R}^{3}

$\leftarrow d(x, y)$ is the length of the shortest curve connecting x and y.
or any other surface in \mathbb{R}^{3}.

Fact: On $S^{1} \subset \mathbb{R}^{2}$, the intrinsic metric given by the general definition is equal to the version for S^{1} defined earlier.

This fact is proven, in more generality, in a course on differential geometry

Example of a metric space from biology
Background: A DNA molecule consists of of two chains of subunits.
-the subunits are called nudeotides

- There are four nucleoticles:
- Cytosine [denoted C] - Adenine [A]
- Guanine [G]
- Thymine $T T$]

The two chains are bound together (by weak hydrogen bonds).

- The itu nucleotides in the two chains are bonded
- G binds to C, A bonds to T. Thus one chain determines the other!
$\begin{array}{lc}\text { Illustration: } & C-G-A-A-T-A-C \\ \text { (schematic) } & \\ & G-C-T-T-A-T-G\end{array}$

Solid lines = covalent bonds (strong) can represent wis
Dashed lines = hydrogen bonds (weak) CGAATAQ called a
(bottom chain is determined by the to).
The two chains wind around each other, forming a "cable helix"

Fundamental question: How do we quantify the similarity between two DNA sequences?

- This is relevant to the study of evolution:
- close relatives should have similar DNA
- distant relatives should have dissimilar DNA

Classical solution: Use the edit metric.
Before giving the definition, let's motivate it with examples.

Ex: Consider the two DNA sequences (GATTGC) These differ in two spots, so wed like to rave
(AATTGT) their distance is ${ }^{-1} Z$.
Ex: $\left.\begin{array}{rl} & \text { GATTGC } \\ & \text { (GCATT GL }\end{array}\right\} \begin{aligned} & \text { These differ by the insertion } \\ & \text { of one element } \\ & \text { to soy }\end{aligned}$
Let S denote the set consisting of sequences of the letters A, C, G, T (of any length $\geqslant 0$).

For $x \in S$, an elementary operation on x is any one of the following operations:

- replace one letter in the sequence by a different one,
- remove one letter from any one position in the sequence,
- add one letter at any one position in the sequence.

Definition of the edit distance:
define $d_{\text {edit }}: S \times S \rightarrow[0, \infty)$ by
$d_{\text {edit }}(x, y)=$ minimum number of elementary operations need to transform x into y.

Let's verify that this is a metric:

- Property 1) is dearly satisfied
- An elementary operation can always be undone by an elementary operation, so $d_{\text {edit }}(x, y)=d_{\text {exit }}(y, x)$.
- If α is a sequence of m elf. ops, transforming x into y, and
β is a sequence of n eft. ops. transforming y into z, then α followed by β is a sequence of $m+n$ et. ops. Transforming x into z. We can choose α, β sit.
let's $m=d(x, y)$ and $n=d(y, z)$. Then α followed by denote β is a sequence of $d(x, y)+d(y, z)$ celt. ops
dedit as d. transforming x into z. It now follows that $d(x, z) \leqslant d(x, y)+d(x, z)$.

Examples:

$$
\begin{array}{ll}
x=A A A A & \operatorname{dedit}(x, y)=4 \\
y=T T T T & \text { (at most one T can be created per el op.) } \\
x=A C T G & \operatorname{dedit}(x, y)=2 \\
y=G A C T & A C T G \rightarrow A C T \rightarrow G A C T
\end{array}
$$

Remark: The definition of edit distance generalizes to any set of symbols. For example, the set of symbols could be the entire alphabet. Then, the problem of spell-checkina a sting of letters x can be formalized
(very naively) as the problem of fining a word in the dictionary closest in edit distance to x.

Remark: Note that dedit is integer-valued.
Another example of a metric space from biology
Background: The primary function of DNA is to serve as a blue-print from which proteins are constructed.

Simplified definition of a protein:
A protein is a string of subunits called amino acids connected by covalent bonds.

There are 20 different amino acids, with names like "arginine", "lysine," and "tryptophan."

Protein foll into complex 3-D structures wish with essential biological function (eg. enzymes, neurotransmitters)

DNA sequences called Genes specify the amino acid sequence of protein.

Rough explanation: Three nucleotides specify one amino acid.

Ex: CGA TTTACC
\Downarrow
Alanine Lysine Tryptophan
Determining the amino acid sequence from the DNA sequence is very easy.
acusutely
But determining the 3-D structure of the srotein from the amino acid sequence is challenging
This is called the "protein struduve prediction problem."

- one of the fundamental problems of computational biobgy
- applications to drug discovery
- anvil competions on this problem.
- lots of software available.

Note: In faverable cases, the structure can be determined by experiment, eeg., by a technique called x-ray cystalography. But this is expensive, time consuming, and reavires a lot of skill.

Question: Suppose I know the folded structure of a protein P. How do I measure a predicted structure PI?

To assess the performance of a structure prediction method, we need an cunswer.

Standard Answer: Compute the RMSD (root mean squared deviation) between P and $P!$.

