ANAT 583 Lecture 12, 10/3/19
Today: Edit distance examples Another example of a metric from biology/chem

Review: Let S be the set of DNA sequences,(i.e., strings of letters A, T, C, G of any length).
Def: The edit distance $d_{\text {edit }}: S \times S \rightarrow[0, \infty)$, is given by
$\operatorname{dedit}(x, y)=$ minimum \# el. ops. required to transform x into y.

Elementary Operations: - change one letter

- Insert one letter
- remove one letter

$$
\begin{aligned}
\text { Example }: & x=\text { ATA } \\
y & =\text { TAT } \\
x=A T A \rightarrow A T & \rightarrow \text { TAT }=y .
\end{aligned}
$$

There's no single elementary operation transforming x into y, so $\mathrm{dem}_{\text {dit }}(x, y)=2$.

Exercise:

$$
\begin{aligned}
& y=G G T C G \quad \text { Ans: }: 2 . \\
& \text { ATCG } \rightarrow G T C G \rightarrow G G T C G
\end{aligned}
$$

Let's verify that dedit is a metric:

- Property 1) is dearly satisfied
- An elementary operation can always be undone by an elementary operation, so $d_{\text {edit }}(x, y)=d_{\text {ext }}(y, x)$.
- To establish triangle ineq. need to show that

$$
\forall x, y, z \in S, \quad d(x, z) \leqslant d(x, y)+d(y, z)
$$

Let $d(x, y)=m, \quad d(y, z)=n$.
Then theres a sequence α of elementary ops. transforming x to y, and a sequence β of elf. ops. transforming y to 2 . Then α followed by β is a sequence it mon celt. ops. Transforming x to 2 . Thus $d(x, z) \leq m+n$.

Another example of a metric space from biology
Background: : The primary function of DNA is to serve as a blue-print from which proteins are constructed.

Simplified definition of a protein:
A protein is a string of subunits called amino acids connected by covalent bonds.

There are 20 different aunino acids, with names like "arginine", "lysine," and "tryptophan."

Proteins folk into complex 3-D structures, with essential biological function (eg. enzymes, neovotiansmitters)

Folded protein
DNA sequences called Genes specify the amino acid sequence of protein.

Rough explanation: Three nucleotides specify one amino acid.

Ex: $\operatorname{CGATTACC}$
\Downarrow
Alanine Lysine Tryptophan
Determining the amino acid sequence from the 〕NA sequence is very easy.

But auvatrly determining the 3-D structure of the protein from the amino acid sequence is challenging
This is called the "preen studuve prediction problem."

- one of The fundamental problems of computational biology
- applications to drug discovery
- biannual competitions on this problem called CASP
- lots of software a va ilable.

Note: In favorable cases, the structure can be determined by experiment, eeg., by a technique called x-ray cystaloaranhv. But this is expensive time consuming.
and requires a lot of skill.
Computers are used to get fast solutions.

Question: Suppose I know the folded structure P of a protein. How do I measure The accuracy of a predicted structure P '?

To assess the performance of a structure prediction method, egg. in a competion like CASP, we need an answer.

Standard Answer: Compute a metric called RMSD (root mean squared deviation) between P and $P!$

RMSD is a fundamental tool in the study of molecules.

How to represent the 3-1 structure of a protein P mathematically

- Order the atoms of the protein ((choice of order doesnit matter).

- Let 0^{n} denote the set of all ordered subsets of \mathbb{R}^{3} of size n. We think of P as an element of O^{n}.
- For $P \in O^{n}$, denote the ith point in P by $\left(x_{i}, y_{i}, z_{i}\right)$
- Define a function $V: O^{n} \rightarrow \mathbb{R}^{3 n}$ by Wis invertible l.

$$
V(P)=\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{n}, y_{n}, z_{n}\right)
$$

This represents the proteins' $3-D$ structure as a single point in a high-dimensional space!

Note: This representation throws away a lot of info about the protein (atom type, bond info), but for many applications, that is ok.

Rigid motions

- A translation in \mathbb{R}^{3} is a function $T_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T_{\vec{v}}(\vec{x})=\vec{x}+\vec{v}$ for some fixed $\vec{v} \in \mathbb{R}^{3}$

Interpretation: $T_{\vec{v}}$ shifts a geometric object in the direction \vec{v} withat rotating.

- A rotation in \mathbb{R}^{3} is a function $\mathbb{R}_{\dot{A}} \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form
$R_{A}(\vec{x})=A \vec{x}$ where A is a 3×3 matrix with determinant 1

Interpretation: R_{A} rotates a geometric object abas the origin in \mathbb{R}^{3}.

A rigid motion in \mathbb{R}^{3} is a translation followed by a rotation, ie., a function
$\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form

$$
\varphi=R_{A} \circ T_{\hat{V}} .
$$

Let E be the set of all rigid motions in \mathbb{R}^{3}.
Definition: Let P, P^{\prime} be 3-D structures for a given protien with n atoms, reared as sheets of \mathbb{R}^{3} of
size

$$
R M S D\left(P, P^{\prime}\right)=\min _{\varphi \in E} \frac{\frac{1}{\sqrt{n}}}{\substack{\text { ordidocy } \\ \text { Euldelonn } \\ \text { distance }}} \sum_{\substack{\text { rigid notion of } P^{\prime}}}\left(V(P), V\left(\varphi\left(P^{\prime}\right)\right) .\right.
$$

Interperetion: To compute RMSD $\left(P, P^{\prime}\right)$,

1) Align P and P^{\prime} as well as possible via a rigid motion φ

p^{\prime}

P and $\varphi\left(P^{\prime}\right)$
2) Represent P and $\varphi\left(P^{\prime}\right)$ as points $V(P), V\left(\varphi\left(P^{\prime}\right)\right)$ in $\mathbb{R}^{3 n}$.
3) RMSD is the Euclidean distance between these points, normalized so that RMSD doesn't and to grow as \# of atoms grows.

Formally, we regard this as a function

$$
\text { RMSD: } 0^{n} \times 0^{n} \rightarrow[0, \infty)
$$

This function is symmetric and satisfies the triangle inequality, but we can have

$$
\text { RMSD }\left(P, P^{\prime}\right)=0 \text { if } P \neq P^{\prime} \text { bot }
$$

$$
\varphi(P)=p^{\prime} \text { for some rigid motion } \varphi_{0}
$$

Here's how we get a genuine metric here:
Define an equivalence relation \sim on O^{n} by $P \sim Q$ iff \exists a rigid motion $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\varphi(P)=Q$.
Fact: $R M S D(P, Q)=R M S D\left(P^{\prime}, Q^{\prime}\right)$ if $P \sim P^{\prime}$ and $Q \sim Q^{\prime}$
(Exercise: Prove this).
As a consequence, RMSD: $0^{n} \times 0^{n} \rightarrow[0, \infty)$ descends to a genuine metric on $0^{n} / \sim$.

