AMAT 583 Lecture 13 10/8/19 Today: RMSD continued Metrics spaces and topology Open sets and continuity. Question: Suppose I know the folded structure P of a protein. How do I measure the accuracy of a predicted structure P?

Standard Answer: Compute a metric called RMSD (root mean squared deviation) between P and P!

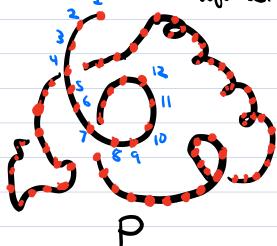
review

RMSD is a fundamental tool in the study of molecules.

How to represent the 3-11 structure of a protein I mathematically

· Fix an order on the atoms of the animo (Choice of order doesn't matter).

sequence.



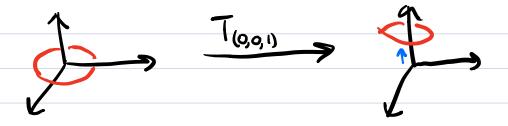
- · Let On denote the set of all ordered subsets of IR3 of Size n.
- · We represent the 3-D structure of a protein as an element of O".
- · For PEOn, denote the ith point in S by (xi, yi, zi)
- · Define a function $V: O^{N} \rightarrow \mathbb{R}^{3n}$ by V is invertible! $V(P) = (x_1, y_1, z_1, x_2, y_2, z_2, \ldots, x_n, y_n, z_n)$.

 This represents the proteins 3-D structure as a single point in a high-dimensional space.

Note: This representation throws away a lot of info about the protein (atom type, bond info), but for many applicating that is ok.

Rigid motions

• A <u>translation</u> in $|\mathbb{R}^3|$ is a function $T_{\vec{v}}: |\mathbb{R}^3| > |\mathbb{R}^3|$ given by $T_{\vec{v}}(\vec{x}) = \vec{x} + \vec{v}$ for some fixed $\vec{v} \in \mathbb{R}^3$

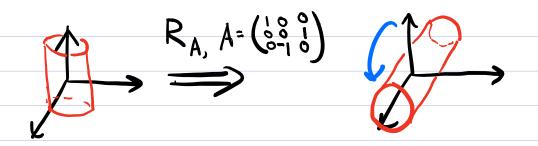


Interpretation: Tr shifts a geometric object in the direction v without rotating.

• A <u>rotation</u> in \mathbb{R}^3 is a function $\mathbb{R}^3 + \mathbb{R}^3 \to \mathbb{R}^3$ of the form

$$R_A(\bar{x}) = A\bar{x}$$
 where A is a 3×3 matrix with determinant 1

Interpretation: Reprotates a geometric object about the origin in 123.



A rigid motion in IR3 is a translation followed by a rotation, i.e., a function

Q: 1R3 -> 1R3 of the form Mote: A rigid motion pis invertible

and φ^{-1} is also

Q = RAO To.
robation translation

Let E be the set of all rigid motions in IR?

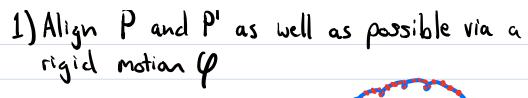
Definition: Let P, P' be 3-D structures for a given protien with n atoms, regard as subsets of 123 of size n.

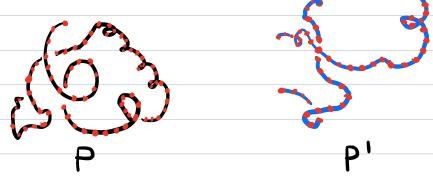
RMSD(P,P') = min $\frac{1}{\sqrt{n}} d_z(V(P), V(\varphi(P')).$

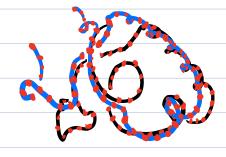
ordinary Euclidean distance

rigid motion of pi

Interpretation: To compute RMSD(P, P'),







P and $\varphi(P')$

- 2) Represent P and $\varphi(P')$ as points V_p , $V_{\varphi(P')}$ in \mathbb{R}^{3n} .
- 3) RMSD is the Euclidean distance between these points, normalized so that RMSD doesn't tend to grow as # of atoms grows.

Formally, we regard this as a function

RMSD: $O'' \times O'' \rightarrow [O,\infty)$.

This function is symmetric and satisfies the triangle inequality, but we can have

RMSD(P,P')=0 if $P \neq P'$ but so properly 1 $\varphi(P)=P'$ for some rigid motion φ . So properly 1 not satisfied.

Here's how we get a senvine metric here:

Define an equivalence relation ~ on 0" by

P~Q iff I a rigid motion $\varphi:\mathbb{R}^3 \to \mathbb{R}^3$ with $\varphi(P)=Q$.

Fact: RMSD(P,Q)=RMSD(P',Q') if P~P' and Q~Q'

(Exercise: Prove this).

As a consequence, RMSD: $0^{u_x}0^{h} \rightarrow [0,\infty)$ descends to a genuine metric on $0^{u_x}0^{h}$.

Specifically, we define
RMSD: 01/2 × 01/2 -> [0,00) by
RMSD ([P], [Q]) = RMSD(P,Q).
By the fact, this function is well defined.
Exercise: Prove that RMSD is a metric.
Metrics and topology Metric space definition of continuity: Let M and N be metric spaces with metrics dm, dn
A function $f:M \rightarrow N$ is continuous at $x \in M$ if $Y \in S$, $Y \in S$ by $Y \in S$ and $Y \in S$ and $Y \in S$.
fis said to be continuous if it is continuous at each XEM.
(This definition generalizes the definition for Euclidean subspaces considered earlier).

Example: Let M be any metric space and take N to be IR with the Euclidean metric.

For any $x \in M$, the function $d^x: M \to \mathbb{R}$ given by $d^x(y) = d_m(x,y)$ is a continuous function.

Pf: Exercise.

With this definition of continuity, the definition of homeomorphism extends immediately to metric spaces:

for metric spaces M and N,

fo

Example: Consider the metric d on $[0, 2\pi]$ given by $d(x,y) = min(|x-y|, |(x+2\pi)-y)|, |(x-2\pi)-y|)$

take S1 to have usual Euclidean metric

Then the function $f'([0, 2\pi), d) \rightarrow S^1$ given by $f(t)=(\cos t, \sin t)$ is a homeomorphism.

The definition of isotopy also extends, but we'll not get into The details of this.

An alternate discription of continuity

Open Sets
Let M be a metric space. For xEM and

r>0, the open ball in M of radius r, centered
at x, is the set

B(x,r)= {yeM | dm(x,r)<r3.

Example: For M=1R2 with the Euclidean distance. B(0,1) looks like this

disc of radius 1 centered at the origin, with the boundary not included.

A subset of M is called open if it is a union of (possibly infinitely many) open balls.
The empty set is always considered open.
M itself is open: M= U B(x,1)
Fact: A region in IR" is open if it contains none of its boundary points.
This is an informal statement because I haven't defined boundary points." It can be made formal, but I will not go into the details.
Illustration: Dashed line = boundary not included Solid line = boundary included
open subset of IR2 Subset which is not open.

Fundamental Fact: Whether a function of of metric spaces f' M > N is continuous depends only on the open sets of M, N and not on otherwise on the metric!

Def: For f:S > T any function and UCT, f'(U)= { x \in S | f(x) \in U \in S,

Proposition: A function $f: M \to N$ of metric spaces is continuous if and only if $f^{-1}(U)$ is open for every open subset of N.