AMAT 583 Lec 16 10/24/19
Today: homotopy equivalence clustering
Homotopy equivalence (review from last time)
Motivation: Two spaces may not be homeomorphic, but may be topologically similar in a losser sense. We would like to guantify this.
but may be topologically similar in a losser
sense. We would like to evantify this.
Examples
vs.
Annolus Circle
Each pair of spaces
vs. () is not homeomorphic,
but is homotopy
> equivalent.
Loosely speaking, handopy
Circle W Circle equivalent spaces has
"rat tail" same number of

holes of different types.

Recall: For $f, g: S \rightarrow T$ continuous maps, a homotopy from f to g is a continuous map $h: S \times I \rightarrow T$ such that ho = f, $h_1 = g$, where $h_1: S \rightarrow T$ is given by $h_1(x) = h(x,t)$.

[here, 5 and T are topological spaces, but you are welcome to think of Them as metric spaces or subsets of IR", if you prefer.]

If f is homotopic to g, we write frq.

Fact: ~ is an equivalence relation on ((S,T), the set of continuous functions from S to T.

In particular, a continuous map $f:S \rightarrow T$ is always homotopic to itself: Take $h:S \times I \rightarrow T$ to be given by h(x,t)=f(x) \forall $t \in I$. This is a homotopy from f to f.

Def: A homotopy equivalence is a continuous map of topological spaces f: S - T s.t.

I continues g: T > S with Sg is called the homotopy gof~Ids fog~IdT.

Inverse of f.

Proposition: Any homeomorphism is a homotopy equivalence.

troof: If f:5-T is a homeorphism then I has a continuous inverse y: T>S, so

gof=Ids, fog=IdT

=> gof~ Ids, fog~ IdT.

Example: Consider

the disk D= {(x,y) & 1R2 | x2+y2 & 13.

P= {(0,0)}.

Let $f: D \rightarrow P$ denote the constant map, i.e. $f(x)=(0,0) \ \forall \ x \in D$.

Let g:P→D be The inclusion.

Then fog = Idp

 $g \circ f : D \to D$ is the constant map to (0,0).

We define a homotopy h from Ido to got.

h: D×I→D by

h(x,t)= (1-t)x.

Clearly ho= Idp, and h1= the constant map to (0,0).

Thus Ido ~ gof.

=> f and g are inverse homotopy equivalences.

Definition: If a topological space X is homotopy equivalent to a point, we say X is contractible.

Thus, D is contractible.

Intuitively, a space is contractible iff it has no holes.

Exercise Regarding the digits 1,2,3,4,5,6,7,8,9 unions of curves with no thickness, which are contractible?

A: 1,2,3,4,7

Proposition: If f: S -> T is a homotopy equivalence, und g: T -> U is a homotopy equivalence, then gof is a homotopy equivalence.

Pf: Exercise, or see Hatcher, Ch. O.

Deformation Retracts
So far, homotopy equivalence is a mysterious relation.

I will give a more intuitive interpretation.

First, we introduce a special kind of homotopy called a deformation retraction.

Let X be a topological space and ACX a subset.

Technical remark: A is also a topological space, if we take the open sets of A to be the intersection of open sets of X with A.

Example:

open in A but not in X.

X=1R2, A=T*I

X anto A

Def: A continuous map h: X×I -> X is a deformation retraction of)
if ho=Idx, im(h1) < A, and h(y,t)=y \(\forall (y,t) \in A \in I.

Note: h is a homotopy.

Example: We already sow a deformation retraction above:

h:
$$0 \times I \rightarrow 0$$
, $h(x,+) = (1-+)x$
Take $X = 0$
 $A = P = \{0,0\}$.

Intuitively, h shrinks D down to the point P. That is, im(ho)=D, im(ha)=P.

In general, a deformation retraction from X onto A shrinks X down onto A, without moving any point of A.
from X onto A shrinks X down onto
A, without moving any point of A.
Framole X= 5 U[1,27×50}
Example X= 5 ¹ U[1,2]×{0}
u i
$h: X \times I \rightarrow A$, $h(x,t) = \{x \text{ for } x \in S^1 \}$ $((x-1)(1-t)+1,0) \text{ otherwise}$
((x-1)(1-+)+1,0) otherwise
Then h is a deformation retract of X anto A.
Talaa of K Sulo A.
This shrinks the rat tail down onto (1,0).
This shrinks the rat tail down onto (1,0). (continuity is not hard to check).
Fact: If I a deformation retact
$h: X \times I \rightarrow A$ of X anto A, then
for $j: A \rightarrow X$ the Inclusion,
are inverse
j and h_1: X > A=im(h_1) ^ homotopy equivalences:
hy oj = IdA and h is a handopy from

Idx to h1=	johl, so	joh1~Idx.