AMAT 583, Lec 20, 11/7/19

Today: Single linkage dustering -graphs

- dendrograms

Keview (generalities about dustering)

The input X to a distering method is a finite subset of IR", or more generally, a finite metric space.

The artest is one of the following:

1) A (sub) partition of X

2) A hierarchical (sub) partion of X.

Methods that output a hierarchical (sub) partition are called hierarchical dustering methods.

Recall: A partition of X is a set P of non-empty subsets X such that each element of X is contained in exactly one element of P.

A subpartition Pot X is a partition of a subset of X => each element of X is contained in at most one element of P.

A hierarchical (Sub) partition of X is a collection & Pusue cope of (Sub) partions of X such that if $\alpha \leq \beta$ and $A \in P_{\alpha}$, Then $A \subset B$ for some $B \in P_{\alpha}$. (I phrased this
of (sub)partions of X such that it & \beta \beta and
AEP, Then ACIS for some BEPB. (I phrased this
but equivalently,
Note: Sometimes for simplicity, we'll consider hierarchical
Note: Sometimes for simplicity, we'll consider hierarchical subpartitions indexed by $N = \{0, 1, 2,\}$ rather than $[0,\infty)$.
Today, we'll focus on a simple and very natural dustering technique called single linkage.
Single linkage is closely connected to topology and has
good mathematic properties. But it has some bad
Single linkage is closely connected to topology and has good mathematic properties. But it has some bad properties that make it useful only in special settings.
<u>Input</u> : Any finite metric space (X, d)
Output: A hierarchical partition of X.
To explain single linkage, we will need to define graphs.

Graphs

- " very important constructions in computer science, mathematics, and statistics
 - · Note: These graphs are not the same as the graphs of of functions you've seen since high school.

We distinguish between directed and undirected graphs.

Intuitively, an undirected graph is a collection of points (vertices) with edges connecting them.

We can draw this in the plane like so

However, formally, we don't usually assume that the vertices live in IR2.

A directed graph is a similar kind of object, but the

edges are each assumed to have a <u>direction</u> from one vertex to another.

For now, we will be concerned only with undirected graphs, so we define any these formally.

Definition: An <u>undirected</u> graph is a pair (V, E) where

- · V is any set (called the vertex set)
- edge set). We will above notation slightly and write the two element set {A,B} as [A,B].

Example: V= {A,B,C,D}, E= {[A,B],[B,C],[G,D], [D,A]}.

We can draw this as follows:

Example: A graph can have multiple components.

Connected components of (undirected) graphs

For G=(V, E) an undirected graph and v, w ∈ V, a path from v to w is a sequence of n>1 vertices v=v1, v2..., vn=w such that for 1=i=n-1, [vi, vi+1] ∈ E.

Note: If n=1, then $v=v_1=v_n=v_w$ and the 1-element sequence v is a path from v to itself.

Define a relation ~ on V by taking V~w iff I a path from v to w.

Proposition: ~ is an equivalence relation.

Proof is an easy exercise

A subgraph of a graph G=(V,E) is a graph G'=(V,E') with V'cV, E'cE.

Def: A connected component of G is a subgraph G=(V', E') such that

1)V' is an equivalence class of ~

2) E'= \{(V, \omega) \in E| V, \omega \in V') \in That is, every edge between

Vertices in V' is included in E.

The connected components of G are

Let (X, d) be a finite metric space.

For simplicity, assume the metric is integer - valued.

For ZEIN={0,1,2,3,...}, let Nz(X) be the graph with:
- Vertex set X

- An edge [x,y] included iff d(x,y) < Z.

Example: X = {a,b,c,d}, with the metric given as follows

$$N_1(x)$$
=

$$N_2(x)=$$

Note That	H	y	$N_{\lambda}(X)$	$N_z(X)$.

We define the <u>single linkage</u> clustering of X &Pz}zeINI
by taking

 $P_z = \{ x' \in X \mid x' \text{ is the vertex set of a connected component of } N_z(x) \}$