AMAT 583 Lec 21 11/12/19

Today: Single linkage clustering, continued Dendrograms

Review of Single Linkage

Input: A finite metric space (X, d) (we'll assume dis N-valued)

Output: A hierarchical partition (assumed discrete for simplicity).

Det: A hierarchical partition of X is a collection $\{R_k\}_{k \in [Ope)}$ of partions of X such that if $x \le \beta$ and $A \in P_{\kappa}$, then $A \subset B$ for some $B \in P_{\beta}$.

the following varient will be convenient for expository purposes.

Det: A discrete hierarchical partition of X is a collection P= {Pu}_{exilor} of partions of X such that if $\alpha \leq \beta$ and $A \in P_{\alpha}$, then $A \subset B$ for some $B \in P_{\alpha}$.

Recall: An indirected graph G is a pair G=(V, E)

- · V is a set
- · E is a set of two-element subsets of V.

For G=(V,E) an undirected graph and v,weV, a path 8 from v to w is a sequence of n>1 vertices v=v1, v2..., vn=w such that for 1=i=n-l, [vi, vi+1] EE.

If v=w and all edges are distinct (i.e. [Vi, Vi+1] + [Vj, Vj+1] for i + j), we call & a cycle.

Example 8 = {A,B,C,D,A} is a cycle.

Det: If 6 has no cycles, it is called a forest.

Define a relation ~ on V by taking V~w iff I a path from v to w.

Prop: ~ is an equivalence relation.

A subgraph of a graph G=(V,E) is a graph G'=(V',E') with V'cV, E'cE.

Def: A connected component of G is a subgraph G=(V, E') such that

1)V' is an equivalence class of ~

2) E'= \{(\nu, \omega) \in E| \nu, \omega \in V') \in That is, every edge in G between

Vertices in V' is included in G.

Det: If G is called connected if it has one path component. Det: A connected graph with no cycles is alled a tree For X a finite metric space and zell, let Nz(X) be the graph with: } this - Vertex set X -An edge [x,y] included iff d(x,y) < Z. <u>Definition</u>: The single linkage clustering of X is the discrete hierarchical partition SL(x)={SL(x)z}zeIN $SL(X)_z = \int X' - X | X'$ is the vertex set of a connected component of $N_z(X)$ }. Example: X = \(\(\)(0,0), (0,2), (,0)\\\ \), d=dy, the manhattan distance. (00) $N_{o}(x) =$ (O,I) (ලනු SL(X) = { { (0,0) } { (1,0) } { (0,2) } }. cluster cluster

$$N_1(X) =$$

$$N_2(X) = C_{1,0}$$

$$SL(X)_3 = SL_2(X) = \{\{(0,0), (1,0)\}, (0,2)\}\}$$
.
In fact $SL(X)_z = SL_2(X) + z \ge 2$.

Summarizing,

$$SL(x)_{z} = \begin{cases} \{\{(0,0)\}, \{(1,0)\}, \{(0,2)\}\} \text{ if } z=0 \\ \{\{(0,0), (1,0)\}, \{(0,2)\}\} \text{ if } z=1 \\ \{\{(0,0), (1,0)\}, (0,2)\} \} \text{ if } z>2.$$

<u>Dendrograms</u>

· A standard way of visualizing a hierarchical clustering.

Let P= {Pz}zein be a discrete hierarchical partition.

The (unlabeled) dendrogram of P consists of:

· An (infinite) graph D(P)=(V,E)
· A function L: V→ IN

Specifically, V= &(S, z) | z \in N, S \in P_z \in SeP_z \in SeP_z

E= {[(S,z), (T,z+1)] | z & N, S < T }.

L is defined by L(S, Z) = Z.

Proposition: (1) In general, D(P) is a forest. (2) If X is a finite metric space, D(SL(X)) is a tree.
I'll skip the proof, but some examples should give a fell for this.

Trimming the dendlogram

tor any finite m	retric space X	ther will	be	some	smallest	ZhoEN
tor any finite n such the	of SLO	z =1	61	all z	2 Z _{kp} •	

- · We osually only plot the subgraph of D(P)
 consisting of vertices (S, Z) with Z = Ztop, and
 all edges between such vertices.
 - · We also usually remove vertices of degree 2.