AMAT 583 Lec 24
Today! More on clustering
<u> </u>
Single Intege review
Finite Metric Space X
Neighborhood Graphs
No(x) CN (X) CN (X) C
Discrete hierarchical Partition SL(X)
Trimmed dendrogram
D 11 - 12
Recall: I assumed that the metric d on X
was integer valued

But single linkage can be defined for arbitrary finite metric spaces.

Let N(X) = {Nr(X)}re[0,00).

As in The discrete case, for each Nr(X), we obtain a partition of X:

These give us a hierachical partition

Summery of the Single Linkage Pipeline so far in the case of [0,00) - valued metrics

Finite Metric Space X

Neighborhood Graphs N(X)= {N(X)}re(0,00)

Hierarchical Partition SL(X)={SL(X),} relove)

Objection: How do we define the dendroglam of such a (non-discrete) hierarchical partition. (recall that our definition) of the dendrogram of a discrete hierarchical partition used the discreteness in an essential way. Key observation: SL(X) "dranges" only at finitely many values. 0=6<11<15<13<...<14. More precisely, SL(X) = SL(X) whenever a,b \(\left[\(\cert_i, \cert_{i+1} \right) \) for \(i \xi \xi \xi_1, \ldot_n \cdot 1 \right) \) $a,b \in [r_n,\infty)$ Example: for X=(5,de) as above n=2, r=12, r=15. (we don't indue 3 in the 1; because SL(X)3=SL(X)

Define a <u>discrete</u> hierarchical partition Q(X)
By Q(X) = SL(X) (min(z,n).
Example: for X=(S,dz) as above,
Q(X) = SL(X) = {{A}, {B}, {C}}
$Q(X)_0 = SL(X)_0 = \{\{A\}, \{B\}, \{C\}\}\}$ $Q(X)_1 = SL(X)_{VZ} = \{\{A,B\}, \{C\}\}\}$ $Q(X)_2 = SL(X)_{VS} = \{\{A,B,C\}\}$
$\mathbb{Q}(X)_3$
Q(X)4
(untrinned) Def: The dendingram of SL(X) consists of
· The graph D(Q(X))=(V,E)
The graph underlying the developram of Q(x).
• A function L on vertices $L:V \rightarrow [0,\infty)$ given by $L(S,z) = \Gamma_{\min(z,n)}$.
Example: For X=(S,d) as above, D(Q(X)) is

We trim the dendrogram of SLCX) exactly as in the discrete case, and plot vertices at the height of Their labels.

Example.

Summary: The definition of the single-linkage dendrogram in the non-discrete case is a simple extension of the definition in the discrete case.

Remark: We have defined the dendrogram of the (non-discrete) hierarchical partition coming from single linkage.

But this generalizes to define the dendrogram of any hierarchical (sub) partition $P = EPr_{I} = EQ_{00}$) with the property that P changes at finitely many values $O = r_0 < r_1 < \cdots < r_n$, in the sense above.

(i.e. where $P_a = P_b$ for $a, b \in [r_i, r_{i+1})$ or $a, b \in [r_n, \infty)$.)

I call such a subportition "Essentially discrete."

Remark: The algorithm we obtlined for computing a single-linkage dendrogram extends immediately to metric spaces with [0,00)-valued metrics.

How we actually use dendrograms in practice Suppose we have a single-linkage dendrogram like this for a data set X.

The dendrogram is a visual guide tells how to choose a specific clustering from the family of dusterings SL(X)z.

That is, the dendrogram helps us doese Z.

The choice of Z can be thought of as a cutting of the dendrogram

Choosing this z corresponds to cutting the dendrogram at height z and keeping only those edges and vertices below the cut

This gives a forest, and the vertices of each tree in the forest is a duster in SL(X).	
in the forest is a cluster in SL(X).	
Generally, we try to choose z to goo'd having many branch points of the dendrogram near level z	
many brough points of the developmen near	
laid 7	
Total Cooperation	