Today: Sets + Functions, continued
Cartesian Products: \leftarrow we just started this last time.
Definition: For sets S and T, the Cartesian product of S and T, denoted $S \times T$, is the set of all ordered pairs (s, t) with $s \in S$ and $t \in T$.

In symbols, we write this as:

$$
S \times T=\{(x, y) \mid x \in S, y \in T\}
$$

Note: Here we are using parentheses to denote an ordered pair (s, t). But just before, we used parentheses to denote an open interval.

These are the notational conventions that are typically used. It is a bit unfortunate that the same notation is used for two different thingS. In practice, though, this rarely causes confusion, as it'susually clear from context what is meant.
Example: For $S=\{1,2\}$ and $T=\{a, b\}$,

$$
S \times T=\{(1, a),(1, b),(2, a),(2, b)\} .
$$

Example: By definition, $\mathbb{R} \times \mathbb{R}$ is the set of ordered pairs of real numbers.

We denote $\mathbb{R} \times \mathbb{R}$ as \mathbb{R}^{2}.
Mare generally, given sets $S_{1}, S_{2}, \ldots, S_{n 1}$
The Cartesian product
$S_{1} \times S_{2} \times \cdots \times S_{n}$ is the set of
ordered lists $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{i} \in S_{i}$ for each $i_{\text {. }}$.

In symbols,

$$
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid x_{i} \in S_{i} \not+i\right\} .
$$

Example: For T any set, we denote

$$
\underbrace{T \times T \times \cdots \times T}_{n \text { copies of } T} \text { by } T^{n} \text {. }
$$

In particular, this gives a definition of \mathbb{R}^{h} as a set:

$$
\mathbb{R}^{n}=\underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{n \text { copies of } \mathbb{R}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R} \not \forall i\right\} .
$$

Example
I^{n} is called the n-dimensional unit woe.

Illustration for $n=2$

Exercise: What are the clements of $\{0,1\}^{2} \subset \mathbb{R}^{2}$.
What is the geometric relationship between $\{0, \mid\}^{2} \subset \mathbb{R}^{2}$ and I^{2} ?
Union of Sets
The union of two sets S and T, denoted SUT, is the set consisting of all elements in either S or T.

Example: If $S=\{a, b\}$ and $T=\{b, c\}$, then $S \cup T=\{a, b, c\}$.
Exercise: If $S=\{a, b\}$, what is SUS? what is SUX?
Intersection of Sets
The intersection of sets S and T, denoted $S \cap T$, is the set consisting of all elements in both S and T.
Example: For S and T as in the example above, $S \cap T=\{b\}$.

Exercise: If $\delta=\{a, b\}$, what is $S \cap \phi$?

Complements: Given sets $S \subset T$, the complement of S in T, denoted $S^{C} \subset T$ is the set of all elements in T not contained in S.

That is $S^{c}=\{x \in T \mid x \notin S\}$.
Example: If $S=\{1,3,5\}$ and $T=\{1,2,3,4,5\}$ $S^{c}<T$ is $\{2,4\}$.

Example: $[0,1]^{c} \subset \mathbb{R}$ is

$$
(-\infty, 0) \cup(1, \infty)=\{x \in \mathbb{R} \mid x<0 \text { or } x>1\} .
$$

Exercise: What is $(2, \infty)^{c} \subset \mathbb{R}$?

Next topics:

- Functions
- Continuous functions
- Homeomorphisms

Definition: Given sets S and T, a function f from S to T is a rule which assigns each $s \in S$ exactly one element in T.
-This element is denoted $f(t)$.
We call
s the domain of f.
T The codomain of f.
We write the function as $f: S \rightarrow T$.

Example: Let $S=\{1,2\}, T=\{a, b\}$.
e can define a function $f: S \rightarrow T$ by $f(1)=a, f(2)=b$

$$
g: S \rightarrow T \text { by } f(1)=a, f(2)=a \text {. }
$$

Example: We often specify a function by a formula cig.

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2} \\
& f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=5 e^{-x^{2}}
\end{aligned}
$$

For $f: S \rightarrow T$ and $g: T \rightarrow U$, the composite $g \circ f: S \rightarrow U$ is the function given by $g \circ f(x)=g(f(x))$.
Ex: S, T, f as above, $U=\{x, 0, z\}, h!T \rightarrow U, h(a)=x$,

$$
h(b)=2 \quad h \circ f(1)=X, \quad h \circ f(2)=Z
$$

Image of a function (also called the range)
Definition: For a function $f: S \rightarrow T$ we define $i m(f)$ to be the subset of T given by

$$
\operatorname{im}(f)=\{t \in T \mid t=f(s) \text { for some } s \in S\} \text {. }
$$

Inturively, $\operatorname{im}(f)$ is the subset of T consisting of elements "hit by" f.
Example: For S, T, f, and g as in the previous example,

$$
\operatorname{im}(f)=\{a, b\}=T, \quad \operatorname{im}(g)=\{a\}_{0}
$$

Example:
for $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$, imf $f=[0, \infty)$

Exercise: For $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\cos (x)+2$, what is imf f ?

$$
\operatorname{im}(\cos)=[-1,1] \text {, so imp }(f)=[1,3]
$$

Exercise:
Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by

$$
f(x)=(\cos x, \sin x) .
$$

point yon the unit circle such that
What is imf? $\overrightarrow{O y}$ makes angle x (in radians with the
positive $x-a x i s$)
Solution: imf $f=S^{1}$, where S^{1} denotes the unit circle, i.e.,

$$
S^{1}=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2}=1\right\} .
$$

This follows from high school trig.

Example: Let $f:[0, \pi] \times I \rightarrow \mathbb{R}^{3}$ be given by by $f(x, y)=(\cos x, \sin x, y)$
imf (f) is a half-cylinder.
first consider lecture ended here. $]$ $g:[0, \pi] \rightarrow \mathbb{R}^{2}$, given by $q(x, y)=(\cos x, \cos y)$.

Useful: For $f: S \rightarrow T$ a function and Nation $U \subset S, f(U)=\{y \in T \mid y=f(x)$ for some $x \in U\}$.

Note: $f(S)=\operatorname{im}(S)$. In general, $f(u)<i m(S)<T_{0}$.
Injective, Sorjective, and Bijective Functions
We say a function $f: S \rightarrow T$ is infective (or $1-1$) if $f(s)=f(t)$ only when $s=t$. surjective (onto) if $\mathrm{im}(f)=T$.
bijective (a bijection) if f is both injective and sorjective.
Example: $: f: \mathbb{R} \rightarrow \mathbb{R}$ given by
$f(x)=x^{2}$

$$
f(x)=x^{2}
$$

is neither injective nor surjective.

Example $f: \mathbb{R} \rightarrow S^{1}$ given by $f(x)=(\cos x, \sin x)$ is surjective bot not invective. e.g. $f(0)=f(2 \pi)=(1,0)$.

Example $f:[0,2 \pi) \rightarrow S^{1}$ given boy

$$
f(x)=(\cos x, \sin x)
$$

is bijective.

Bijections and Inverses
For S any set, the identity function on S, is the function
$I d_{s}: S \rightarrow S$ given by $I d_{s}(x)=x \forall x \in S$

