ANAT 583 Lecture 4
Functions, Continuous functions
Recall: for $f: S \rightarrow T, i m(f)=\{y \in T \mid y=f(x)$ for some $x \in S\}$.
We can also talk about the image of sbosets of a function:

For $U \subset S$ and $f: S \rightarrow T$,

$$
f(U)=\{y \in T \mid y=f(x) \text { for some } x \in U\} \text {. }
$$

Note: $f(s)=m(f)$.
Example: Let $f:[0, \pi] \times I \rightarrow \mathbb{R}^{3}$ be given by by $f(x, y)=(\cos x, \sin x, y)$
Question: What is $\operatorname{im}(f)$?
First question: Consider
Ax: $\mathrm{im}(f)$ is a half-cylinder. $g(0, \pi) \rightarrow \mathbb{R}^{2}$, given by $g(x, y)=(\cos x, \cos y)$.

Injective, Surjective, and Bijective Functions
We say a function $f: S \rightarrow T$ is infective (or $1-1$) if $f(s)=f(t)$ only when $s=t$. surjective (onto) if $\mathrm{im}(f)=T_{\text {. }}$
bijective (a bijection) if f is both infective and surjective
Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ given by
$f(x)=x^{2}$

$$
f(x)=x^{2}
$$ is neither injective nor surjective.

Example $f: \mathbb{R} \rightarrow S^{1}$ given by $f(x)=(\cos x, \sin x)$ is surjective but not invective. e.g. $f(0)=f(2 \pi)=(1,0)$.

Example $f:[0,2 \pi) \rightarrow S^{1}$ given by

$$
f(x)=(\cos x, \sin x)
$$

is bijective.

Bijections and Inverses
For S any set, the identity function on S is the function
$I d_{S}: S \rightarrow S$ given by $I d_{s}(x)=x \quad \forall x \in S$.
Functions $f: S \rightarrow T$ and $g: T \rightarrow S$ are said to be inverses if

$$
g \circ f=I d_{s} \text { and } f \circ g=I d_{T} \text {. }
$$

function composition We call g the inverse of f, and write g as f^{-1}.

Fact: A function $f: S \rightarrow T$ has an inverse $g: T \rightarrow S$ if and only if $f 13$ a bijection.
$\left(g(y)\right.$ is the un que element $x \in S$ with $\left.f(x)=y_{0}\right)$
Example Let $f:[0,2 \pi) \rightarrow S^{1}$ be bijection of the previous example.
We define the inverse $g: s^{1} \rightarrow[0,2 \pi)$ to be the function which maps
$y \in S^{1}$ to the angle $\theta \overrightarrow{O y}$ makes with the positive x-axis (in radians).

Continuous functions (An essential notion in topology.)
Geometrically, we can think of a function $f: S \rightarrow T$ as "putting S inside T." For example, S could be a piece of paper, and T could be my book-bag. Then f specifies how I put the paper in my bag.

Of corse, unless f is injective, f is allowed to have two different points of the paper go to the same point in the bag, ortomake the paper pass through itself.

In general f can put the paper in the bag in a way that shreds the paper to bits.

Informally, a function $f: S \rightarrow T$ That "puts S into T without rearing S " is a continuous function.

To talk about the continuity of a function $f: S \rightarrow T$, we need some way of

- measuring distances between pouts in S some
- measuring distances between pouts in T. structure beyond just
(Actually, we need a bit less than this to talk being sets. about canturity, but that is a point thant we will return to later.)

To start, let's consider the continuity of functions $f: S \rightarrow T$ where $S \subset \mathbb{R}^{m}$ and $T \subset \mathbb{R}^{n}$.

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{4}$

$$
y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{1}^{n}
$$

let $d(x, y)$ denote the Euclidean distance between x and y, i.e.,

$$
\begin{gathered}
d(x, y)=\sqrt{\left(x_{1}-y\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-1 / n\right)^{2}} \\
\| 1 \\
\|x-y\|
\end{gathered}
$$

Note: This defines a function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty)$
Let $S \subset \mathbb{R}^{m}$ and $T \subset \mathbb{R}^{n}$ for some $n, m \geqslant 1$.
Intuitively, a function $f: S \rightarrow T$ is continuous if f maps nearby points to nearby points.
d gives us our notion of "nearby."

Illustration

Formal Definition
We say $f: S \rightarrow T$ is continuous at $x \in S$ if for all $\epsilon>0$, there exists $\delta>0$ such that $f y \in S$ and $d(x, y)<\delta$, then $d(f(x), f(y))<\epsilon$.

We say f is continuous if it is continuous at all $x \in S$. Sometimes we call a

Interpretation: $Y_{\text {ow }}$ give we any positive ϵ mo mather how small. Continuity at x means that I can choose a positive δ such that points within distance δ of x map under f to points within distance ϵ of x. (In allowed to dhoose δ as small as I wants as lane as it's positive.)

Example: Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}(x, x+1) & \text { if } x<0 \\ (x, x) & \text { if } x \geqslant 0\end{cases}$

Since f "splits the line" at 0 , we expect that f is not continuous. Lets check this using the formal definition of continuity.

Proof that f is not continuous
Let $\epsilon=1 / 2$.

No matter how small we take δ, if $y<0$ and $d(0, y)<\delta$, then $d(f(0), f(y))>\frac{1}{2}$.
Hence f is not continuous at O.
Examples of continuous functions.
Elementary \mathbb{R}-valued functions from calculus are continuous at each point where they are defined, e.g.:
$-\sin x, \cos x, \log x, c^{x}$, polynomials
-sums, products, and quotients of these.
4 facts (moral: functions that you think wald be captious usually are).

1) If $f: S \rightarrow T$ and $g: T \rightarrow U$ are both continuous, then $g \circ f: S \rightarrow U$ is continuous.
2) If $S<T \subset \mathbb{R}^{4}$, then the inclusion map $j: S \rightarrow T$ given by $j(x)=x$ is continual.
3) If $U \subset \mathbb{R}^{m}$ and $f_{1}, f_{2}, \ldots, f_{n}: U \rightarrow \mathbb{R}$ are continuous, then $\left(f_{1}, f_{2}, \ldots, f_{n}\right): \cup \rightarrow \mathbb{R}^{n}$, given by $\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$ is continuous.
4) If $f: S \rightarrow T$ is continuous then the
the map $\tilde{f}: s \rightarrow \operatorname{im}(f)$ defined by $\tilde{f}(x)=f(x)$ is continuous. In this class, we wont spence too much time worrying about the rigorous definition of continuity, but I do want you to be familiar with it.

Homeomorphism
For S,T subsets of Euclidean spaces, A function $f: S \rightarrow T$ is a homeomorphism if

1) f is a continua bijection bijection= has inverse
2) The inverse of f is also continuous.

Homeomorphism is the main notion of continuous deformation well consider in this course.

If \exists a homeomorphism $f: S \rightarrow T$, we say S and T are homeomorphic.
In this class, "topologically equivalent" $=$ homeomorphic.

Example Let $Y<\mathbb{R}^{2}$ be the square of side length 2 , embedded in the plane as shown

The function $f: Y \rightarrow S^{1}$ given by $f(x)=\frac{x}{\|x\|}$ is a homeomorphism.
where $\|x\|=$ distance of x to origin

$$
=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

By facts above, this is cartinvous.
It 13 intutivelyclear that this is a bijection with a continuous inverse. The inverse can be written down, but we wort bother.
Example: Consider the function
$f:[0,2 \pi) \longrightarrow S^{1}$ from last lecture given by $f(x)=(\cos x, \sin x)$.

f is continuous, and we saw last lecture that it is a bijection. However, $f^{-1}: S^{1} \rightarrow[0,2 \pi)$ is not continuous at $(1,0)$. (And therefore, f is not continuous.)

Note: The fact that f is not a homeomorphism does ut imply that $[0,2 \pi)$ and S^{\prime} are not homeomorphic. In fact they are not, and we will explain why
Basic Facts About Homeom or phisms. soon.

- Clearly, if $f: S \rightarrow T$ a homeomorphism, then f^{-1} is a homeomorphism.
- If $f: S \rightarrow T$ and $g: T \rightarrow U$ are homeomorphisms, then $g \circ f: S \rightarrow T$ is a homeomorphism $(w /$ inverse

Example: Returning to examples from the 1st day of class, consider the capital letters as unions of curves (no thickness)
D and O are home morphic
T, Y, and J, E, and F are G hameomorphic C, S, and Z home morphic.
X and K are homeomorphic (at least, the way I write K.)
Example: The donut and coffee mug are homeomorphic

Isotopy
All of the pair of homeormorphic spaces we've seen so far are topologically equivalent in a sense that's stronger than homeomorphism, called isotopy.

